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MINIMIZATION OF THE GLIDING INDEX: CRITERION
FOR THE GENERATION OF THE SURFACES OF A KNEE
ENDOPROSTHESIS

J. MizrAHI and E. BENAIM
Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

Abstract—Previous studies on removed failed artificial knees revealed significant degradation of the
articular surfaces, including pitting and shredding, as well as burnishing accompanied by score marks and
scratches, the latter damage group being related to the gliding motion of the joint. In an attempt to introduce
an improved version of an artificial knee joint, we have proposed a general model by which the opposing
surfaces of the prosthesis components can be synthesized. The criterion applied was that of minimization of a
defined gliding index. The femoral condyles in this model were expressed in terms of torus geometry, and the
kinematics of motion fed into the model was that of normal motion in the sagittal plane, including angles as
well as the displacement vector in the knee joint. Geometry of the tibial component was obtained from the
tangents of the femoral surface, in subsequent positions of motion. The optimal surfaces were those for which
the gliding index assumed a minimal value. The solutions obtained for various input motions are presented

and discussed.

INTRODUCTION

The main objectives of knee joint replacement are to
reduce pain and to restore normal movement capacity,
without damaging other healthy functions of the body.
In designing knee endoprostheses, emphasis can be put
either on restoring normal kinematics of the knee
(Buchanan et al., 1982; Convery et al., 1980; Gschwend
and Loehr, 1981; Jones et al., 1981; Moreland et al.,
1979), or on closely imitating the geometry of the
natural joint (Ewald et al., 1984; Finerman et al., 1979;
Insall et al., 1979; Laskin, 1981). In the former case the
resulting geometry of the prosthesis surfaces may be
considerably different from that of the natural joint
(Gschwend and Loehr, 1981).

In the commonly used types of artificial knee joints
the contacting surfaces are to various extents non-
conforming and the resulting motion is a combination
of rolling and gliding (Walker et al., 1981). Failure of
knee joint prostheses requiring removal and sub-
sequent revision was reported to be related primarily
to loosening (e.g. Andersen, 1979; Ducheyne et al.,
1978; Insall, 1984; Moreland et al. 1979; Sledge and
Walker, 1984). However, study of the removed artifi-
cial knees revealed significant degradation of the
articular surfaces, greatly exceeding that observed in
removed total hips in comparable time periods (Landy
and Walker, 1985; Walker et al. 1981; Walker, 1977).
Several modes of surface damage were reported,
including surface wear, permanent deformation and
fracture (Wright et al. 1985, 1982). Pitting and shred-
ding of the surface was associated with a three-body
wear mechanism as a result of ingress of cement or
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polyethylene particles (Bartel et al., 1985; Hood et al.,
1983; Walker et al., 1981) between the metal and the
plastic components, in an environment of high contact
stresses causing plastic deformation and fatigue failure
of the surface (Hood et al., 1981). The observed wear
rate was reported to be positively correlated to the
patient’s body weight and time of implantation.

Another reported and significant mode of surface
damage was that of abrasion and adhesion. Landy and
Walker (1985) observed this type to be the most
common pattern of wear (observed in 81 out of a total
of 84 components examined). Burnishing and polish-
ing in the gliding direction were noticed, accompanied
by loss of material, score marks and scratches (Walker
and Hsieh, 1977; Walker, 1977). Whereas the pitting
and shredding modes of surface damage are strongly
dominated by the contact stress magnitudes, abrasion
and adhesion are clearly affected by the gliding motion
as well. -

In this study minimization of a defined gliding index,
related to the tangential relative motion, was applied as
a criterion for the generation of the opposing surfaces
of a knee endoprosthesis. A general model was de-
veloped and further adapted for surfaces which are
analytically expressible and was explicitly presented
for the particular case where the femoral condyle
surfaces were expressed in terms of torus parameters.
The kinematics of motion fed into the model was that
of normal motion in the sagittal plane, including the
angles of the thigh and shank, as well as the displace-
ment vector within the knee joint. An optoelectronic
system was set-up in order to obtain data on various,
motions, not available from the literature. This paper
presents the model developed, the kinematics
measured and the results obtained for the geometrical
parameters of the mating surfaces of the
endoprosthesis.
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THE MODEL

Definition of the gliding index
Let U be a point of contact on the mating surfaces of
- _ aU " .
the artificial knee (U and o the position and velocity
vectors, respectively). For each motion k, and at a given
time t a purely kinematic index element, per unit length
at point U is defined as

éu
Gk{tlu) - E
Integrating for all points of a contact curve of length
L,(t), we get

n

Gy(t) = ( L. Gy(t,u) du)}’ Ly(2). @

Thus for the motion K with time T, the above relation
is normalized

The gliding index is, therefore, obtained by the relation
G =Y PG, @
k

where P, denotes the occurrence of motion k in daily
life activity (McLeod et al., 1975).

Geometry

The surfaces of the femoral component were para-
meterized by means of two different tori. The simplistic
torus geometry is especially convenient since it is
analytically expressible by means of three parameters
only. A method for the more accurate and refined
representation of natural knee joint geometry was
recently reported by Huiskes et al. (1985).

The first step for modelling the femoral condyles as
tori and expressing the anatomical constraints con-
sisted of setting the femoral and tibial reference
systems, and defining the main dimension parameters
of the knee (Figs 1 and 2) and their relationships to the
torus parameters. This procedure is described for the
tibial plateau and for the condyles of the right knee
only, but can be easily extended to include the left knee
as well.

Referring to Fig. 1, the femoral reference axes were
defined as follows: Z, coincides with the axis of the
femoral shaft (perpendicular to the plane of the figure),
X ¢ is parallel to the contact axis of the condyles with
the tibial plateau when the femur is flexed at 90° and
passing through the top point, at mid-width of the
intercondylar notch, where the origin of the system is
fixed. The ¥ axis is defined accordingly to form an
orthogonal system. The system thus obtained is essen-
tially similar to previously defined reference systems
for the femoral condyles (e.g. Chao, 1980; Grood and
Suntay, 1983), except for the following two minor
differences: (a) rather than passing through the centre
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Fig. 1. Definition of the femoral reference system and dimen-
sion parameters for the femoral condyles in a 90° flexed
position of the femur.
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Fig. 2. Definition of the tibial reference system and dimen-
sion parameters for the tibial plateau.

of the femoral head, definition of the Z axis in this
study as parallel to the femoral shaft, allows the
possibility to refer to the geometrical data supplied by
Erkman and Walker (1974); (b) location of the origin
in the centre of the intercondylar notch allows easier
reference to the dimensions supplied by Mensch and
Amstutz (1975).

A tibial reference, required to express the motion of
the femur relative to the tibia was defined in a
somewhat simpler way to that reported earlier by
Grood and Suntay (1983): Z, coincides with the axis
of the tibia and pointing downwards, X, sidewards
and Y, forwards (Fig. 2).

The geometrical similarity among the knees of the
various individuals, as reported in the literature
(Erkman and Walker, 1974; Mensch and Amstutz,
1975), has led to the suggestion that altogether four
size groups of artificial knee prostheses are required to
satisfy the needs of the vast majority of the population
(Seedhom et al. 1974). Actual natural dimensions of the
knee for any of these groups were thus taken from this
literature.

The detailed dimensions of the femoral condyles as
taken from the literature for two extreme sizes of the
knee joint, the smallest and the biggest sizes, are given
in Table 1. The parameters are nondimensionalized by
normalization with respect to the joint’s width, as
suggested by Seedhom et al. (1972). The detailed
dimensions of the tibial plateau are given in Table 2 for
two extreme sizes, the smallest and the biggest.
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Table 1. Detailed dimensions of femoral condyle and of torus parameters, used in the model for two
extreme sizes (a = smallest, b = biggest). Values marked by an asterisk® were obtained from measure-
ments made in this study on cadaver femora. Definition of parameters is given in Figs 1, 2 and 3.

Ratio of anatomical and torus Dimensions (mm) for
dimensions to width of femur (WF) two extreme sizes
Mensch and  Erkman and Seedhom
Amstutz Walker et al. Average

(1975) (1974) (1974) used* a b
WF
(Seedhom 1 1 1 1 71 94

et al.,
1974)

Wi 0.263 0.266 0.265 19 25
Medial condyle
WM 0.354 0.369 0.36 25 34
HM 0.860 0.870 0.865 61 81
HPM 0.606 0.61 43 57
™ 0.50 35 47
DM 0.286 0.310 0.31 22 29
OMx 0.31* 22 29
OMy —0.18* -13 -17
OMz —0.45*% -32 —43
RM +0.45* +32 +43
SMx 20°
M 150°
aM 21°
Lateral condyle
WL 0.385 0.362 0.375 27 35
HL 0.864 0.887 0.88 62 83
HPL 0.542 0.54 38 51
rL 0.50 35 47
DL 0.296 0.312 0.33 23 31
OLx —0.32+ -23 -30
OLy —0.10* -1 -9
OLz —0.46* =33 —-43
RL 0.46* 33 43
dLx 5°
BL 150°
al 22°

Table 2. Detailed dimensions of tibial plateau for two extreme sizes (a = smallest, b = biggest).
Definition of parameters is given in Fig. 4.

Ratio of anatomical Dimensions (mm) for
dimensions to width of femur (WF) two extreme sizes
Mensch Erkman :
and and Seedhom
Amstutz Walker et al. Average
(1975) (1974) (1974) used a b
WF
(Seedhom
et al., 1 1 1 1 71 94
1974)
WT 0.992 0.991 0.984 0.990 70 93
WTM 0.404 0.395 — 0.400 28 38
WTI 0.163 0.166 — 0.165 12 16
WTL 0.426 0.438 — 0430 3 40
DM 0.650 — — 0.650 46 61
DL 0.608 — — 0.608 43 57

The geometry of the torus is entirely defined by its  circle. In this notation the subscript refers to the torus
external (R) and internal (r) radius (Fig. 3). Its position  system. A system of reference (0, X, Y, Z,) is fixed
is obtained by the location of the centre of the external  onto the torus and the relation of this system to the
circle (0)and by the normal axis (X;)to the planeof the  earlier defined femoral system is shown in Fig. 4. In
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Fig. 3. Definition of parameters of the torus, used to rep-
resent the femoral surfaces.
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Fig. 4. Definition of the torus reference system and dimen-
sion parameters of the medial condyle.

this torus system a point U is located by its position
vector U; satisfying the following:

Use =rcosa
U,y = (R—=r+rsina)cosf (5)
Uy, = (R—r+rsina)sin

where a and f represent the angular positions on the
internal and external circles, respectively. The para-
metric equations (5) of the torus are equivalent to the
following implicit relation

F(Uy) = (U3 + U3, + U}, — (R—r)* —r?)?
+4(U,~r)(R -1} =0. ©6)

The position of U relative to the femoral system is
obtained by the position vector U, satisfying the
relation

U,=M;0+0,) (7

where M; is the matrix of transformation from the
femoral system to the torus system. Dimensions for the
torus, such as the internal radius (Fig. 4) were not
available from the literature and were obtained from
measurements made in this study on cadaver femora
(Table 1). The centre of the internal circle was located
at mid-width of the condyle. The values of a,, and f,,
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which define the range of the « and § parameters were
determined from the relationship
. WM

sinat,, = —. 8

v er { }

The parameters R, r, 0, X,, were normalised to the

joint’s width, as suggested by Seedhom et al. (1972).

The range of these parameters and the variables « and

B were limited by the anatomical and physiological

conditions, by which: (a) the dimensions of the pros-

thesis surfaces should be enclosed within the range of

the natural knee dimensions, and (b) bone resections

should be minimal. Other conditions, e.g. related to

stability, laxity and stress concentration were not

considered in the present study.

Formulation of the above anatomical and physiological
conditions

The first of the above conditions is that the artificial
surface should be restricted within the torus descrip-
tion of the condyles. If the index M denotes the torus
parameters of the medial condyle, then by expressing
the equation of the natural condyle in its implicit form
(6) and describing the artifical surface through the
parametric equations (5), the following inequality
results

{(0O,— OM, +rcosa)?
+(0,— OM,+ (R —r+rsina)cos f)?
+(0,—~OM, +[R—r+rsina]sin f)> — (RM
—rM)? — rM2)?
< 4{rM?—(0,— OM, +rcosa)’} {RM —rM}2.
©)

The second of the above conditions may be ex-
pressed in a similar form: the artificial surface points
should be outside another torus, smaller than the torus
describing the natural knee. The difference between the
two represents bone resection. This difference must be
calculated while taking into account the thickness of
the prosthesis. The signs of the inequality and of R,,
are reversed in the second anatomical condition.

Finally, it should be added that the tibial surface
generated should be within the dimensions given in
Table 2.

Kinematics

Natural kinematics for the relative motion of the
femur to the tibia for various daily motions was
obtained experimentally to determine the two relations

U, =MU,+0, (10)
dU,/dt = d0,/dt +w x 0,U, (11)

where U is a point fixed to the femur with the position
vectors Uf in the moving femoral system, and U,, at
time t, in the fixed tibial system, w is the instantaneous
rotation vector, 0, is the position of the origin of the
femoral system relative to the tibial system at time ¢,
and M, is the matrix of transformation, determined by
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Euler’s angles, from the tibial system to the femoral
system. The Euler’s angles were defined in a similar
way as defined by Chao et al. (1983), so that ¥ stands
for flexion—extension, 8 for abduction-adduction, and
¢ for external or internal rotation. Hence,

cos ¢ cosf cos ¢ sin @ sin y —sin ¢ cos
sin ¢ sin@ siny + cos ¢ cos Y
cos 0 sin

M= My MO M¢ = | sin¢cosf

—sinf

The instantaneous rotation vector w, described by its
components p, g and r in the tibial reference system is
also related to the Euler’s angles by the relations
(Darboux, 1914);

d¢ dé

q=sm¢cos€a+ws¢—&t— (13)

d¢
de
Since U is a point on the femoral surface, with location

determined by x and B, U ; must satisfy relations (7), so
that at each instant ¢

U =MM;0+UT;)+0, (14)

If U is a point of contact at instant ¢, its velocity should
be tangent to the surfaces, so that

o0, a0,] U,
[aa"aﬁ] a =0 13)
where dU,/d« x 8T, /3B is the gradient of the femoral
surface at U in the tibial reference system. From

equation (14) and in view of the fact that M,, M;, O,, 0,
do not depend on the variable « and f, we get that

56,{@& = Ml Ma(}Udr{(}ﬁ

r = cosiy cosf —sinu‘ag.

oU,/dB = M, M,0U;/0p. (16)
It follows that
8U,/0a x 8U /OB = M, M;(0U,/0a x 8U,/3p). (17)

Hence, from (11), (14) and (17), equation (15) becomes:
M, M;(0U,/00 x 00 5/0B)- (d0,/dt + % x M, M,
(0+U;))=0 (18)

with U, satisfying the relation (6). Equation (18)
defines the condition for a point to be on the envelope
of the femoral surface positions during motion. This
envelope determines the only compatible tibial surface
to this motion for the femoral surface considered.
Equation (18) thus formulates the conditions for a
point to be a point of contact.

Procedure for the generation of the contacting surfaces

A block diagram describing the gliding index model
is given in Fig. 5. Generation of the contacting surfaces
is as follows:

855

We denote by pi(R,r,0,,0,,0,,M,) the set of
parameters which determine in the femoral system a
given torus, complying with the anatomical constraints
(equation 9). Different sets of torus geometries and
locations are fed into the model. The natural kine-

cos ¢ sin 8 cos y + sin ¢ sin Y
sin ¢ sinf cos  — cos ¢ sin i
cos 8 cos i

(12)

matics as determined by the Euler’s angles, the dis-
placement of the origin and the instantaneous rotation
vector is then applied for each set on the defined system
to determine those points on the surface for which
equation (18)is satisfied, i.e. the points of contact, from
which the contacting tibial surfaces are actually ob-
tained. The gliding index (equation 4) for the resulting
contacting surfaces is therefore calculated for each set
of parameters y; and the local minimum identified. The
resulting optimal femoral and mating tibial surfaces
are those where the minimal gliding index is obtained.
In producing the tibial surface, the constraining anat-
omical conditions, i.e. those related to the dimensions,
are enforced. The detailed procedure of calculating the
contact points and subsequently the contact curves
from equation (18) is shown in the flow-chart given in
Fig. 6.

Consistency evaluation of the model

Reliability of the model in calculating the gliding
index and in generating the points of contact was
examined by introducing to it as input data parameters
of the femoral torus for which the mating tibial
component with zero gliding index is known. The tibial
component can, on the other hand, be generated from
the model and the results compared to the known
surface. The motion taken as input in the model was
that of pure plane rolling at constant velocity of a
cylinder of radius R, and center coordinates C, and C,
and the plane of motion-parallel to the xy plane.
Figure 7 shows the model results for these data, of the
gliding index surface versus the Y and Z coordinates of
the torus center. The obtained minimum of the surface
plotted was indeed zero for the given specified para-
meters. Additionally, the opposing surface generated
by the model was parallel to the xy plane (Fig. 8), and
the lines of contact were evenly spaced, cerresponding
to the constant velocity of the given motion.

Application of the model

The above described model was applied in this study
for two dimensional kinematics in the sagittal plane,
for various daily activities. The more general three-
dimensional kinematics (Woltring et al., 1985) is more
appropriate but unfortunately could not be measured
in this study with sufficient accuracy. This, however,
should indeed be used, once reliable and accurate data
become available in the literature. The present analysis
allows, however, to evaluate gliding both during the
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ANATOMICAL FEMORAL PROSTHESES SURFACE
CONDITIONS U= ula,p,uy) (ea. 8)
(eq. 12)
KINEMATICS OF
THE K MOTION: CONTACT CURVE BETWEEN
, TIBIAL AND FEMORAL COMPONENTS
EULER'S ANGLES AT EACH INSTANT ¢
(ea. 15), FOR THE MOTION NUMBER K
DISPLACEMENT U = ufa,B.p,t)
OF ORIGIN, F /ot (a,B.t) = 0
INSTANTANEOUS (a. 18)
ROTATION VECTOR
{E@. 16).
GLIDING-INDEX Glpp
. (ea, 7)
FOR ALL THE ALLOWED VALUES
OF THE PARAMETERS g
'
DETERMINATION OF THE PARAMETERS j;
FOR WHIcH THE INDEX G 1S MINIMIZED
ANATOMICAL TIBIAL COMPONENT FEMORAL COMPONENT
CONDITIONS SURFACE SURFACE

ENVELOPE OF THE

{-FAMILY SURFACES

WHEN t 1S VARYING
(ea. 18)

Fig. 5. Block diagram describing the gliding index model (,, geometrical parameters of the femoral
condyles; a, B, angle coordinates of a point on the femoral condyle surface).

design of the tibial component and also in studying
the performance of existing prostheses in terms of the
gliding index.

Kinematic data, which included the flexion angle, as
well as the displacement vector of the knee were partly
taken from the literature and partly measured in this
study, as will be described in the next section.
Geometrical parameters included the external radius
of the torus R and the location of its centre, O, and O,.

EXPERIMENTAL METHOD

Sufficient data on normal gait of subjects has been
reported in the literature (Chao et al., 1983). In order to
provide additional kinematical data for daily activities
such as bending, rising, sitting and standing up, we
have set up a system, initially composed of an op-
teoelectronic system (Selspot) and a microcomputer
(Mostek Z80). A special interface including hardware
and software was developed and designed for the data
acquisition (Benaim, 1985). A calibration method
taking account of noise, parallax error and distortion
was devised by generalising already reported methods
(Andriacchi et al., 1979; Woltring, 1980). The much
more elaborate method using a point by point calib-

ration procedure (Mann and Antonsson, 1983), was
not used in this study. Each camera-computer plane
system was calibrated with reference to a calibration
plane. A set of LEDs was positioned on this plane. A
bipolynomial relation of variable order was assumed,
the coefficients of which were obtained by minimising,
for each point of interest, the difference between the
real coordinate and the estimated one. Location of the
camera in space, with reference to the calibration
plane, was obtained as the nearest point to all lines
connecting known positions of the LEDs in space and
their evaluated images on the reference plane. Once the
parameters of the system, namely the calibration plane
coefficients and the location of the cameras, were
determined, unknown objects could be located as the
nearest point to the lines connecting the evaluated
location of the cameras to the respective evaluated
image of the object in question.

PROCEDURE

LEDs were positioned in femoral and tibial refer-
ence systems. They were attached to the leg at bony
prominences, by means of elastic belts. Care was taken
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Fig. 6. Procedure of calculating contact points and contact curves from kinematics and femoral geometry.
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Local
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Fig. 7. Gliding-index surface obtained by introducing into

the model a test motion corresponding to pure plane rolling

of a cylinder at constant velocity. (R, radius of external circle;
0y, 0 z,-coordinates of torus centre).

to properly position and attach the LEDs, with a
sufficiently high preload force to reduce the soft tissue
effects (Mizrahi and Susak, 1982; Streitman and Pugh,
1978; Thompson, 1973). Various daily knee motions,
not previously reported in the literature, were
measured for normal subjects. The motions studied are
detailed in the following section. The xy coordinates

were obtained for each LED as a function of time and
the stick diagrams for the shank and thigh were drawn.
From these diagrams the flexion angles of the knee
Joint were determined. The measuring accuracy of the
flexion angle was 4 %/, believed to be within the range
of individual variation of kinematics. The diplacement
vector was also obtained from the stick diagrams by
superimposing it on the roentgenograms of the leg of
the subject.

RESULTS

Kinematics

The pattern of the different motions of the knee
studied is presented in Figs 9a—f. These motions
include sitting down (9a), standing up (9b), first step at
gait initiation (9¢), bending when using the back (9d),
bending using the knees (9¢) and rising from squatting ,
position (9f). The minimal flexion angle necessary for
these motions was found to be 120° (9e), which agrees
with the results previously reported in the literature
(Laubenthal et al., 1972). These data were used as input
kinematic data in the model.
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LATERAL

FEMORAL COMPONENT

Fig. 8. Mating surfaces obtained for test motion at different positions: (a) 0°, (b) 45°, (c) 90°, (d) 120°.

Model results for daily motion

As no qualitative difference was found between the
results of the medial and the lateral condyles, the
results and discussions to follow will be presented for
the medial condyle only.

A three-dimensional plotting of the gliding index
surface as a function of the coordinates 0, and O, of
the centre of the torus is shown in Fig. 10 for bending
motion using the knees. The gliding index surface
slopes outwards, towards + O, and in the figure two
surfaces are shown, for two different values of the torus
radius. Itis seen from the figure that the gliding index is
affected by the size of the radius of the torusand the 0,
location of its centre, and less so by its O, location.
Thus, the gliding index is found to decrease, when
increasing the radius of the torus R and at the marginal
values of O, and O, (points A in Fig. 10).

When plotting the gliding index parameter for the
various motion types measured earlier (Fig. 9), it was
found that the general features of the plotted surfaces
were the same. Although the actual gliding index
values, ie. the level of the surface above the 0, 0,
plane, were strongly affected by the type of motion, the
locations corresponding to minimum gliding index
remained the same. This is demonstrated in Fig. 11, for
the sitting down motions, which can be compared to
the bending motion using the knees, Fig. 10.

The range of valid values of the torus parameters, i.e.
those which comply with the anatomical constraints is
shown in Fig. 12. Non valid values of 0, and 0, for
given values of R were omitted from the solid surface
and represented by dots. The motion for which the
data in Fig. 12 are plotted corresponds to bending

motion using the knees, earlier shown to have the
widest knee flexion range, thus imposing more severe
constraints and resulting in a narrower range of values
for the torus parameters.

The optimal prosthesis surfaces for the input anat-
omical data are defined by means of the parameters
given in Table 3. The surfaces are shown from a
posterior view in different positions in Fig. 13. As seen
from this figure, both tibial surfaces obtained were
convex.

DISCUSSION

The model presented in this study introduces the
following new concepts for the design and evaluation
of knee endoprostheses: (1) Determination of design
parameters for a prosthesis satisfying a given natural
kinematics, by minimizing the gliding index, the latter
shown to be related to adhesive and abrasive wear.
(2) Generation of tibial surface from the known
motion of the femoral component. (3) Evaluation of
existing knee endoprostheses by means of the gliding
index.

The surfaces of a ‘rolling’ type prosthesis were
determined in this study by minimization of the gliding
index. However, these could also be obtained by
another method, according to which pure rolling
motion is achieved by the usage of calculated incan-
gruent surfaces (Elad et al., 1981). This latter method
requires the incorporation of a constraining linkage
between the two surfaces of the prosthesis—hence
implying sacrifice of the cruciate ligaments—to ensure
that pure rolling is indeed obtained (Wongchaisuwat
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Fig. 9. Pattern of different knee motions studied: (a) sitting down, (b) standing up, (¢} first step at gait
inititation, (d) bending using the back, (e) bending using the knees and (f) rising from a squatting position.

et al., 1984). It should be noted, however, that with this
constraining linkage, the actual prosthesis becomes
exposed to higher loads and more subject to loosening.

The starting point in setting up the general model
was the formulation of a gliding index (equation 1),
integrated for the points on the contact curve and over
the time of duration of a given motion, and weighed for

the occurrence of different motions in daily life activity
(equations 2-4). Geometrically the model was for- +
mulated to generate the femoral surfaces in terms of
torus parameters (equations 5-7), by which the anat-
omical constraints were also formulated (equation 9).
From the input kinematics the tibial mating surface is
obtained as the envelope of the femoral surface
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Fig. 10. Three-dimensional plotting of the gliding index

surface for bending motion using the knee as a function of the

coordinates Oy and O of the centre of the torus. Note that

minimum value is obtained at point A, for which the gliding

index is 0.2 approximately, and corresponding to R = 33 mm,
Oz= —30mm and Oy = — 11 mm.
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Fig. 11. Three dimensional plotting of the gliding index
surface for sitting-down motions.
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Fig. 12. Range of valid values of the torus parameters, i.c.
those which comply with the anatomical constraints. Motion
to which these data are given is bending using the knee.

positions during the motion. The procedure for gener-
ation of the contacting surface from the model
(Figs 5, 6) was aimed at determining the surfaces for
which the gliding index obtained a minimal value.
As stated earlier, application of the model was done
in accordance with the data already available from the
literature and the supplementary data obtained in this
study. These consisted of two-dimensional kinematics
in the sagittal plane for various daily activities and
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Table 3. Orientation and coefficients of the optimal pros-
theses. The parameters are obtained by multiplying the given
coefficients by the total width of the femur, taken from one of
the following four groups: (1) 71 mm, (2) 78 mm, (3) 86 mm,

(4) 94 mm
Medial Lateral
condyle condyle
Orientation ox 20° —5°
oy 0° 0°
oz 0° 0°
Center Ox 0.31 —-0.32
Oy —0.18 - 006
0z -0.42 —-0.42
Radius
Internal RS 0.5 0.5
External RB 0.45 0.44
MEDIAL
LATERAL

ANTERIOR

./
\y

i,
Seaiiiit

TIBIAL COMPGNNT

MEDIAL

Fig. 13. Knee prosthesis surfaces shown from a posterior
view in different positions: (a) 0°, (b) 30°, (c) 60°, (d) view of
tibial prosthesis surfaces.

included two parameters: the flexion angle and the
displacement vector of the knee. Internal/external
rotation and abduction/adduction motions were not
included. The results thus obtained reflect minimiz-
ation of the gliding index, as far as the kinematics in the
principal plane of motion is concerned. The described
model presents an approach by which: (a) the tibial
component surface can be generated from any given
femoral surface to achieve kinematic compatibility,
and (b) the mating surfaces can be selected by minirhiz-
ing gliding motion.

In our model, we proposed to calculate the envelope
of the femoral component in successive positions. This
envelope may be used as a basis for the design of the
final tibial component independently of the type of
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prostheses to be used. An exception though is the
linked-joint endoprostheses for which the kinematics
is already provided by the prosthesis itself.

The gliding index is an objective tool which may be
used in the evaluation of prostheses both at the design
stage and after implantation. This requires statistical
knowledge of kinematics, as well as dynamics of the
knee joint, both to be determined in studies including
the participation of patients. These studies should
evaluate the variation of the gliding index with time,
after years of implantation, while comparing different
types of prostheses implanted.

The behaviour of the gliding index was similar for all
input motions used, reducing the significance of the
parameter of frequency of occurrence of motions in
equation (4). It should, however, be remembered that
the motion used was two-dimensional and that in
three-dimensional motion this parameter might
assume a more significant role.

The surfaces of the tibial plateau obtained in this
study were both convex. In the natural joint only one
surface of the tibial plateau, the lateral, is convex
resulting indeed in a reduced gliding motion there. To
evaluate the prosthesis obtained by minimization of
the gliding index it is also necessary to compare it to
existing prostheses. Reported experiments introducing
different geometries for the tibial component and.
measuring the resulting rolling motion (Sledge and
Walker, 1984) support the results found in this study.

The convexity obtained raises however the question
of stability of the joint, as indeed stability should be
expected in the antero-posterior direction, which is the
direction of convexity. It should be remembered,
however, that the results obtained correspond to the
assumed constraints and optimization criteria used in
this study. Other constraints, such as those related to
stability, presence and laxity of the ligaments and stress
concentration should be taken into consideration as
additional design factors of an artificial knee joint.

The model treated is not limited to the torus type
geometry and other geometries, such as ellipsoidal or
analytically expressed geometry of the natural knee,
may be tested as well (Huiskes et al., 1985). However,
torus type geometry is easily manufacturable and may
already be included into a comprehensive design of the
prosthesis including additional aspects such as overall
geometry, implantation procedure and materials.
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