
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 12, DECEMBER 2002 1491

Rigorous Green’s Function Formulation
for Transmembrane Potential Induced
Along a 3-D Infinite Cylindrical Cell

Leonid M. Livshitz, Pinchas D. Einziger, and Joseph Mizrahi�

Abstract—The quasi-static electromagnetic field interaction
with three-dimensional infinite-cylindrical cell is investigated
for both intracellular (IPS) and extracellular (EPS) current
point-source excitation. The induced transmembrane potential
(TMP), expressed conventionally via Green’s function, may alter-
natively be expanded into a faster-converging representation using
a complex contour integration, consisting of an infinite-discrete
set of exponentially decaying oscillating modes (corresponding
to complex eigenvalues) and a continuous source-mode convolu-
tion integral. The dominant contributions for both the IPS and
EPS problems are obtained in simple closed-form expressions,
including well documented special mathematical functions. In the
IPS case, the dominant modal contribution (of order zero)—an
exact solution of the well-known cable equation—is explicitly and
analytically corrected by the imaginary part of its eigenvalue
and the source-mode convolution contribution. However, the
TMP along a fiber was shown to decay at infinity algebraically
and not exponentially, as predicted by the classic cable equation
solution. In the EPS case, the dominant contribution is expressed
as a source-mode convolution integral. However, for a long EPS
distance (e.g., 10 cable length constant) the order-one-modes
involved in the convolution is not a solution of the cable equation.
Only for shorter EPS distance should the cable equation solution
(i.e., the order zero dominant mode) be included in addition to the
modes of order one. For on-membrane EPS location, additional
modes should be included as well. In view of our EPS result, we
suggest that the cable equation modeling existing in the literature
and related to functional electrical stimulation for EPS problems,
should be critically reviewed and corrected.

Index Terms—Functional electrical stimulation, Green’s func-
tion, infinite cylinder, membrane boundary conditions, transmem-
brane potential (TMP).

I. INTRODUCTION

NERVE cell excitation by an external electric field is
an important phenomenon, especially for functional

electrical stimulation (FES) applications. A full analysis of the
interaction process between electric field and excitable cell
presents great difficulties. For this reason, it is recommended
[5] to set separate models for the different stages of interaction,
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i.e.: 1) subthreshold excitation (linear membrane); 2) action
potential generation (nonlinear voltage-dependent model); and
3) action potential propagation.

Potential problems arising in nerve and muscle electrophys-
iology usually are not encountered in the quasi-static electro-
magnetic theory for the following reasons: 1) internal conduc-
tivity of an active fiber is finite and the interior of the fiber is not
strictly equipotential and 2) the membrane resistance is gener-
ally a function of membrane current flow and the boundary con-
ditions are not linear.

While an applied field is generally modeled as three-
dimensional (3-D) and sometimes time-dependent, excitable
fiber models are usually one-dimensional (1-D). In addition,
compared with a large body of theoretical works on electrodes
penetrating a nerve fiber or being in contact with it [1]–[4] there
are few available works on remote electrodes. A cell is usually
approximated by a finite (spheroidal) or an infinite (cylindrical)
geometry. As a subclass of cylindrical models, a 1-D “cable”
approximation is widely used [5]–[9]. The classical approach
to model an excitable fiber under FES combines 1-D cable
theory for pulse propagation, with a membrane model of the
Hodgkin–Huxley type [10].

One-dimensional methods have several major flaws. For ex-
ample, the radial component of the electric field must be taken
into account when the current flows into or out of the cell.
In cases where circuit models were analyzed it was assumed
that the extracellular voltage produced by the stimulating elec-
trode is not distorted by the presence of the cell. It is clear,
however, from the quasi-static models [1], that this approxima-
tion is weakest immediately outside the cell which is the re-
gion of greatest interest to the circuit models. In addition, using
finite-size electrodes violates the essential assumption of 1-D
cable theory of constant transmembrane potential (TMP) around
the cable.

The relation between the cable equation and the zero-order
mode of 3-D cylindrical problem with intracellular source loca-
tion is well-known. In the limit, where the external conductivity
approaches infinity, the zero-order mode is an exact solution of
the cable equation, as is well documented in the literature (e.g.,
[11]). Nevertheless, the validity of the cable equation for ex-
ternal problems seems to remain unchallenged.

Three-dimensional theory of biological cell excitation was
developed, among others, by Eisenberg and Johnson [2] and
Peskoff [3], and summarized by Adrian [11]. Unfortunately, in
most of these works the extracellular medium was modeled as
a perfect conductor (or insulator), and the electrode was placed
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Fig. 1. Physical configuration.

intracellularly. King and Wu [12] analyzed the finite cylindrical
fiber model when a constant external electric field was applied.

The present study was initiated to describe the TMP induced
by a microelectrode current source placed outside an unmyeli-
nated nerve axon. Mathematically, the steady-state distribution
of the potential is given by a Green’s function of Laplace equa-
tion. The tip of the microelectrode can be represented by a point
source, so that Green’s function is the potential that one would
observe at the membrane. The Green’s function satisfies the
membrane boundary condition.

The membrane boundary condition is that the normal deriva-
tive of the potential at the inside and outside surface of the mem-
brane (proportional to normal component of current) is propor-
tional to some function of the potential difference across the
membrane (nonlinear membrane boundary condition). Most au-
thors on the theory of propagated impulse assumed a piecewise
linear relation between the membrane current and the membrane
potential difference (linear membrane, i.e., impedance boundary
condition) [13]. Therefore, we started off with investigating the
effects of subthreshold excitation, and assumed that the mem-
brane is purely passive, with no voltage-sensitive conductances
and with electrical properties comparable to those of a true fiber
near the resting potential.

Thus, this paper deals with finite extracellular conductivity
and arbitrary placement of the stimulating electrode. This ap-
proach is vital because, during FES, stimulation is extracellular.

II. I NTEGRAL REPRESENTATION FORTMP

The physical configuration of our problem, depicted in Fig. 1,
consists of a source-point, an observation point (located on
membrane surface), and two cylindrical regions, the axoplasmic
core and the surrounding fluid, separated by a thin membrane of
radius . Assuming that the core, the outer fluid and the mem-
brane are homogeneous, isotropic, ohmic conductors, their elec-
trical parameters are denoted by, and , respectively.
The evaluation of the electrodes’ current distributions and po-
tentials is carried out within the quasi-static (low-frequency)
regime.

The TMP, i.e., the difference between the internal and ex-
ternal potentials on the membrane surface, is given for a point
source excitation as

(1)

where denotes the point source response (Green’s
function). The coordinates and
correspond to locations of the source-pointand the observa-
tion point , respectively. The superscriptsand represent
quantities evaluated at the outer and inner surface of the mem-
brane, , respectively (i.e., , ,

). The point source current is, and is either for
or for . The Green’s function in (1) can be

expressed in terms of cylindrical harmonics [14], leading to

(2)
where and , . Both and

in (2) satisfy, 3-D and 1-D Laplace equations and
appropriate constraints [5], [12], as summarized in Table I.

Substitution of in (2) into (1) results in an integral
representation for the TMP

(3)

where , the TMP (Fourier’s) coefficients, are ex-
pressed as

(4)

and , the TMP spectral coefficients, are given via

(5)

The expression for the characteristic Green’s function
, obtained after a straightforward but somewhat

tedious calculation, is given in Appendix A. The distinguishing
subscripts (or superscripts)and associated with and

, respectively (Appendix A) were omitted in (1)–(5)
since these equations apply to both extra (EPS) and intracellular
current point-source (IPS) excitation locations. This rule is
adopted throughout the entire paper for all the equations that
apply to both locations. The TMP spectrum for IPS and EPS
locations is given via

(6)

and

(7)

respectively. Here, the and are the modified Bessel func-
tions of the order [15], and prime means differentiation with
respect to the argument. The terms in square brackets in both
right-hand sides of (6) and (7) represent the point source contri-
bution to the TMP spectrum. Whereas the denominator

(8)
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TABLE I
POISSONEQUATIONS AND BOUNDARY/MEMBRANE CONDITIONS FORG(r; r ) AND g (�; � ; k)

depends on the intrinsic characteristics of the axon only, namely,
its geometry and the associated conductivities (radiusand ,

, , respectively). Therefore, the zeros of the (8), which are
essential for the alternative representation of TMP to be carried
out next, are independent of the source strength and location.

III. A LTERNATIVE REPRESENTATION

The integral representation (4) in the previous section, rep-
resenting a continuous summation over each spectral compo-
nent of the TMP spectrum [the slow convergence is of ,
since as and ], can be
expressed alternatively via an equivalent but discrete spectrum,
which converges much faster (of exponential order for
and 0, see Appendix C). The alternative represen-
tation utilizes – eigenfunctions expansion guided along the
direction rather than – expansion guided along thedirec-
tion. This is definitely more appropriate for axon propagation
problems.

A. IPS:

When the alternative representation is performed via contour
deformation in complex space, it is preferable to represent

in (4) as

(9)

The continuous spectrum representation (in-space) can
be converted into an alternative representation (Appendix B),
containing both discrete (dominant) and continuous (minor of

]) eigenvalues contributions

(10)

where the dominate contribution is

(11)

The terms in (11) correspond to the pole contribution (residues)
at in (8), explicitly

(12)

are given via the residue theorem, where are complex
roots of (12) and lie at close vicinity of the real-axes (imag-
inary -axes, Appendices B and C) [3]. Here, is a Bessel
function of the first kind and order and is a Hankel func-
tion of the second kind and order.

The term can be uniquely represented as a convo-
lution integral, yielding

(13)

where the symbol denotes the convolution operation. The
functions and are given as

(14)

and

(15)

respectively (Appendix B). They represent an “activation func-
tion” that is related to the external potential. The external po-
tential is a result of the internal potential (and the internal cur-
rent) leaking out from the fiber due to finite (Appendix D).
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Note that, the continuous spectrum representation in (13) con-
verges faster than integral representation (9), i.e., of
[rather than for (9)], as and . For suf-
ficiently small , which in practice is always the case,

(Appendix C). Thus, (10) and (13) can be ex-
panded recursively, yielding a converging series representation
for in (9)

(16)

Note that the th term of the expansion in (16) (
) is of . The process outlined in

(16) can be can be interpreted as follows: the IPS excites
internal modes which leak out from the fiber, establishing an
external membrane potential. In turn, the resultant “activation
function” further excites internal modes (via convolution) and
starts the same sequence once more. Eachth iteration (con-
volution) is of order . In the limit , both
the external potential and the resulting “activation function”
are zero, which is generally adopted in most of the related
textbooks (e.g., [5], [7], [10], and [16]), (16) is reduced into
mode expansion only

(17)

where

(18)
and is a real-positive th root of the reduced eigenvalues
equation (12)

(19)

Equations (18) and (19) are identical with those obtained, for
the limiting case only (i.e., ), in [3], [11], and [17].

B. EPS:

The TMP spectrum in (7) can be rewritten in terms
of in (6) as

(20)

Thus, leading to the clear relation between the inner and the
outer problems and once more, utilizing in (16), to a
convolution representation for in (6)

(21)

where is

(22)

The discussion following (16) applies here as well, theth
term of the expansion in (21) ( ) is of

. Note, however, that the absence of Dirac
delta function in (21) prevents a direct excitation of
internal modes, but instead provides an “activation function”
convolution mechanism only: the EPS establishes an external
membrane potential. The resultant “activation function” excites
internal modes (via convolution). They leak out from the fiber,
establishing an external membrane potential. In
turn, the resultant “activation function” further excites internal
modes (via convolution) and starts the same sequence once
more. For sufficiently small , the right-hand side of
(21), expressed via (17), is straightforward and represents
the dominant EPS “activation function” convolution
contribution to TMP.

IV. TMP EVALUATION FOR THE EPS PROBLEM

To complete the alternative representation analysis, discussed
in Section III, it is desirable to obtain simple closed-form ex-
pressions for the modal expansion as well as for internal and
external source-mode convolution integrals in (11), (13) and
(21), respectively. The IPS problem is well known and has been
investigated rigorously for the case (e.g., [5], [7], [10],
and [16]) and, thus, extended for finite in Appendices B–D.
Unfortunately, there is no such rigorous documentation for the
analysis of the EPS problem. Hence, we focus here on this
problem which is crucially important for FES applications. The
cases and are treated separately.

A. Zero-Order Fourier Coefficient

Generally, closed-form evaluation of either the convolu-
tion integral in the right-hand side of (21) or its spectral
representation

(23)

for any EPS location ( ), is quite cumbersome. Fortunately,
for moderately large EPS and observation-point distance (e.g.,

, as shown in Section V-B) the main contribution to
integral (23) comes from the neighborhood of the origin, ,
since decays exponentially even for small. The same
conclusion also holds for largein view of the rapid oscillations
of the function . In the asymptotic limit , (23)
reduces to

(24)

Noting that (24) can be rewritten as

(25)

the convolution representation of (24) is

(26)
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where

(27)
is the lowermost eigenvalue (Ap-

pendix C), and

(28)
It should be noted that the cosine transforms of both (28) and
(27) are given by closed-form analytic expressions. Here and
further on, for evaluation of integral representations, we exten-
sively make use of both the symbolic softwareMathematica 4
(Wolfram Corp., Champaign, IL) and [15]. Both and

are closely related to and , in (18)
and (22), respectively

(29)

(30)

Substituting (27) and (28) into (26) results in

(31)

The double differentiation with respect tocan be conve-
niently performed by subdividing the infinite integration do-
main into two semi-infinite domains

and

(32)

The first term contained in the right-hand side of (32) can be
recognized as

(33)

where and are the zero-order Struve function and Bessel
function of the second kind, respectively. The third term, ex-
pressed as a definite integral, converges very fast for sufficiently
small

(34)

where

and

Substituting (33) and (34) back into (32) results in

(35)

The potential attains its maximal value at .
This value can be directly estimated by setting either via
(24) or (35), leading to

(36)

Replacing in (36) by its asymptotic
expansion for large argument [15]

(37)

leads to an explicit dependence of the TMP for suffi-
ciently distant EPS location.
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B. Higher Order Fourier Coefficients

The evaluation of Fourier coefficients is signifi-
cantly simplified for and , since

(38)

Asymptotic evaluation of the right-hand side of (38) results
in

(39)

where is the associated Legendre function of the half-
integer order of the second kind. Replacing in (39) by
its value for small argument, we obtain

(40)

We note that the right-hand side of (40) is an asymptotic eval-
uation of the associated Legendre function of the half-integer
order in (39) for large .

The potential attains its maximal value at .
This value can be directly estimated via (40) setting

(41)

The TMP coefficients for and can be
obtained directly from (37) and (41), respectively, as

(42)

(43)

Evidently, the zero mode is proportional to the second spatial
derivative of the potential while the first-order mode is propor-
tional to its first spatial derivative.

Thus, we can suggest a new rule of thumb to determine
whether or not a given fiber will undergo excitation by distant
electrode. This rule is based on proportionality to the first or
second spatial derivative of the electrode potential (or both)
in the normal and tangential directions with respect to the

Fig. 2. Normalized TMP for IPS and profiles of its coefficients.

fiber membrane, respectively, rather than in thetangential
direction, as suggest in models based on one-dimensional (1-D)
cable theory. The exact contributions of different Fourier’s
coefficients to the TMP will be calculated in Section V.

V. RESULTS

For the typical biological case, where the conductivity ratio
is maintained very low, we have found in the previous

section and Appendices A–D that the TMP coefficients (Fourier
series coefficients) are insensitive to variations in the .
Thus, we used the following passive fiber properties as typical
values for running our model , .

A. TMP and Fourier Harmonics Calculation

Calculation of and its Fourier coefficients
for both the EPS and IPS problems are carried out,

utilizing (3) and (4).
Fig. 2 shows the normalized TMP distribution along the fiber

when the source point is placed intracellularly, either slightly
away from the fiber center or near the fiber mem-
brane . As predicted, the plots demonstrate a domi-
nant contribution of the zero-order Fourier harmonics which can
be very well approximated via the dominant mode in (18), cor-
responding to , , and its associated source-mode
convolution integral (Appendix B). Only when the electrode is
at close vicinity to the membrane, the first order harmonic con-
tributes up to 15% of the total TMP. Note that for large values of

, the TMP decays algebraically for finite values. An ex-
ponential decay, associated with the physically unrealistic limit

, leads to concentration of all the leakage current on
the outer membrane surface (Appendix B).

Fig. 3 shows the normalized TMP distribution along the fiber
when the source point is placed extracellularly at different dis-
tances from the fiber, , 20, 100, and 200. In the
close vicinity of the fiber, the harmonics of order zero and one
( ) contribute dominant portions of the total TMP, but
other coefficients (e.g., ) are also present. As expected,
at distances from the fiber exceeding 100the order-one coef-
ficient ( ) contributes dominant portions of the total TMP,
and the zero order coefficient’s contribution becomes small.
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Fig. 3. Normalized TMP for EPS and profiles of its coefficients.

Fig. 4. Ratio of the zero- and first-order harmonics as a function of the
fiber/electrode distance atz = 0.

Fig. 4 shows the ratio between the zero-order and first-order
harmonics as a function of fiber–source distance at . The
plot demonstrates a maximum near and coefficients
equality near and , but nevertheless up
to both coefficients are comparable. The order one
coefficient becomes dominant for distances exceeding
100 fiber diameters. It should be noted that the graph decays as

[(42) and (43)].
Fig. 5 shows the ratio of TMP on the side of the fiber distant

from the electrode ( ) to TMP on the opposite fiber side
(near the electrode, ) as a function of fiber to source
distance at .

The zero crossing occurs near and ,
due to either division by the source singularity for
or since both dominant coefficients

and have the same amplitude and
opposite sign at as can be concluded from Figs. 3 and
4, and the discussion that follows Fig. 4. Thus, the assumption
that the variation of the TMP with along the fiber is not
significant, namely the 1-D cable model, is unacceptable.

Fig. 6 shows the variation of the normalized TMP and the
zero’s and first-order harmonics with fiber–electrode distance
at . This is the most important factor for FES applica-
tion, that directly affects calculation of the activation threshold,

Fig. 5. The ratio of TMP atz = 0, on the side of the fiber distant from the
electrode (� = �) to TMP on the opposite fiber side (near the electrode,� = 0)
as a function of fiber to source distance.

Fig. 6. Normalized TMP and its zero- and first-order coefficients for EPS at
z = 0 as a function of the fiber electrode distance.

and it can serve as a measure of the interaction between elec-
trode and excitable fiber. For distances exceeding ,
the first-order coefficient, which drops as [as easily veri-
fied from (43) and the semilog presentation of Fig. 6], starts to
play a dominant part, and makes the fiber excitation by a distant
electrode (fiber–electrode interaction) possible.

B. Verification of Closed-Form Expressions for Fourier
Coefficients

In Section V-A, (3) and (4) were rapidly integrated, using an
effective discrete cosine transform (DCT) MATLAB routine.
Nevertheless, it is useful to have some closed-form expressions
for the TMP, that can be further incorporated to nonlinear
membrane excitation and action potential propagation models
[5], [8], or for macroscopic models such as whole muscle acti-
vation [18], [19]. We focus here on the EPS analysis which is
most important in practical FES problems, where electrodes are
always placed extracellularly. As was shown in Section V-A,
the coefficients of order and are dominant for
most of fiber–electrode distance range. Therefore, without loss
of generality, we compare in the following figures plots of
the closed-form expressions against numerical calculations of
the zero- and first-order Fourier coefficients. Comparisons for
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Fig. 7. The ratio atz = 0 of the exact cosine transform for the zero-order
Fourier coefficientV (0; � ) in (36) as function of the fiber–electrode distance.

Fig. 8. The exact cosine transform for the zero-order Fourier coefficient and
closed-form expression in (35), normalized byV (0; � ), along a fiber dashed
and solid lines, respectively, as the fiber–electrode distance was held constant
at � =a = 5.

higher order Fourier coefficients that have been obtained in
Section IV can be applied as well.

Fig. 7 shows the ratio between the closed-form expression
in (36) and exact cosine transform in (4)

as function of fiber–electrode distance at .
Fig. 8 shows the zero-order Fourier coefficients in

(35) and the exact expression in (4) normalized by
, along a fiber. It should be noted that the maximum

error appears at . Note that, approximation errors in both
Figs. 7 and 8 are smaller than 8%.

Fig. 9 shows the ratio between the exact expression in (4)
and the first-order Fourier coefficient

and in (39) and (40), respectively, along a fiber at
. Fig. 10 shows the ratio between the exact expres-

sion in (4) and the first-order Fourier coefficient

and in (39) and (40), respectively, as a
function of fiber–electrode distance at .

Note that the approximation error in both Figs. 9 and 10 is
bounded by 8% (as for Figs. 7 and 8). Furthermore, the error data
contained in both Figs. 9 and 10 clearly indicate that ,
being a simpler and more accurate closed-form expression, is
preferable than (i.e., the associated Legendre func-
tion of the half-integer order of the second kind).

Fig. 9. The ratio of the exact cosine transform for the first-order Fourier
coefficients (39) and (40), solid and dashed lines, respectively, along a fiber, as
the fiber–electrode distance was held constant at� =a = 5.

Fig. 10. The ratio atz = 0 of the exact cosine transform for the first-order
Fourier coefficient~V (0; � ) in (39) and ~~V (0; � ) (40), solid and dashed
lines, respectively, as function of fiber–electrode distance.

VI. SUMMARY AND DISCUSSION

The quasi-static electromagnetic field interaction with 3-D
infinite cylindrical cell was investigated for both IPS and EPS
excitations. The induced TMP, expressed conventionally via
Green’s function, was expanded alternatively into a faster
converging representation using a complex contour integration,
consisting of an infinite discrete set of exponentially decaying
oscillating modes (corresponding to complex eigenvalues) and
a continuous source-mode convolution integral.

The TMP was found to be insensitive to large variations of the
internal/external conductivity ratio as long as the membrane/in-
ternal conductivity ratio is maintained very low. The dominant
contribution for both the IPS and EPS problems were obtained
in simple closed-form expressions, including well-documented
special mathematical functions. In the IPS case, the dominant
modal contribution (of order zero)—an exact solution of the
well-known cable equation—was explicitly and analytically
corrected by the imaginary part of its eigenvalue and the
source-mode convolution contribution, both of the order of the
membrane/external conductivity ratio. The limit, where the
external conductivity approaches infinity is well documented in
the literature. In this limit, the convolution integral contribution
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vanishes and complex eigenvalues become real. From the
model simulation, we concluded that the cable equation is still
valid when the axon is stimulated by an internal electrode and
the surrounding axoplasm is of finite conductivity. However,
the transmembrane potential along a fiber was shown to decay
at infinity algebraically and not exponentially, as predicted by
the classic cable equation solution.

In the EPS case the dominant contribution was expressed as
a source-mode convolution integral. However, for a long EPS
distance (e.g., 10 cable length constant) the order-one mode
involved in the convolution was not a solution of the cable equa-
tion. Only for shorter EPS distance should the cable equation
solution (i.e., the order zero dominant mode ) be included in ad-
dition to the modes of order one. For on-membrane EPS loca-
tion additional modes should be included as well. In view of our
EPS result, we suggest that the cable equation analysis and mod-
eling presented in the existing literature and related to functional
electrical stimulation for EPS problems should be critically re-
viewed and corrected.

There were several attempts in the literature to modify the
“activation function” concept [8], [9], [20], [21]. Nevertheless,
the validity of the one-dimensional cable equation in the case of
externalelectrode excitation via comparison to 3-D model was
not completely justified [6].

We maintain that the assumptions on which the application
of the cable equation to external stimulation is based, restrict
the possibility to apply the “activation function” concept for the
case of fiber stimulation by a distant, real-size, electrode. The
preliminary analysis of the 3-D cable theory led us to the conclu-
sion that the voltage gradient associated with the current leaving
or penetrating the fiber through the membrane can become sig-
nificant in the close vicinity of the fiber. This result significantly
differs from 1-D cable theory.

From the EPS model, it was clear that the zero-order Fourier
coefficient is proportional to the second spatial derivative of the
potential and the first-order coefficient is proportional to its first
spatial derivative. Thus, we can suggest a new rule of thumb to
determine whether or not a given fiber will undergo excitation
by distant electrode. This rule is based on proportionality to the
first or second spatial derivative of the electrode potential (or
both) in thenormal and tangentialdirections with respect to
the fiber membrane, respectively, rather than in thetangential
direction, as suggested in models based on 1-D cable theory.

APPENDIX A
CHARACTERISTIC GREEN’S FUNCTION

A. Internal Point-Source,

The characteristic Green’s function for the in-
ternal point source, satisfying both the source condition and the
decay condition infinity in Table I, is given as [14]

(A.1)

where and . The coefficients
and can be found by applying the membrane con-

dition (Table I)

(A.2)

leading to

(A.3)

(A.4)

where is given in (8). Substituting (A.3) and (A.4) into
(A.1), results in

(A.5)

Thus, evaluating on the both sides of the
membrane

(A.6)

and taking their difference as outlined in (5), leads to
in (6).

B. External Point-Source,

Similarly to the IPS case, for the external point-
source, satisfying both the source condition and the decay con-
dition infinity in Table I, is given as

(A.7)

The coefficients and can be found by applying the
membrane condition (Table I)

(A.8)



1500 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 12, DECEMBER 2002

leading to

(A.9)

and

(A.10)
Substituting (A.10) and (A.9) into (A.7) results in

(A.11)

Thus, evaluating on the both sides of the membrane

(A.12)

and taking their difference as outlined in (5), leads to
in (7).

APPENDIX B
EIGENFUNCTION AND CONVOLUTION EXPANSION OF THETMP

Equation (9) can be written in an analytic transformation form
as follows:

(B.1)

Then, utilizing the residue theory in conjunction with Fig. 11,
one obtains

(B.2)

where is given as

(B.3)

and are simple zeros of the eigenvalue equation
. The integration path in (B.3) is just above the

branch cut depicted in Fig. 11. Finally, adding and subtracting

Fig. 11. Contour deformation in the complexk-plane.

the complex conjugate of (B.1) from the left-hand side of (B.2),
results in

(B.4)

where prime in means differentiation with respect to
the argument. Identifying as

(B.5)

leads to expression (15) and consequently to the convolution
relation in (13). The spectral integral either in the right-hand
side of (B.4) or in (13) can be evaluated asymptotically, for large
, via end-point integration. The evaluation is carried out by

expanding and in (6) and (15), respectively, in
power series at end-point ( ), leading to

(B.6)

Further simplification of the asymptotic expressions in (B.6)
for have been obtained due to the biological parameter
ratio, (Appendix C). It should be noted that even
though the terms corresponding to and decay as

, the zero-order contribution is dominant

(B.7)
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since, whereas . Assuming for
typical biological data the right-hand side of
(B.7) is less than 10 .

The asymptotic results for in (B.6) can be
extended by including the dominant pole contribution at

. Indeed, expanding the integrand
near results in

(B.8)

where , and denotes the exponential integral
[15]. As expected

(B.9)

since is a Sine transform at , and

(B.10)

which is identical to (B.6), setting .
Note that, the TMP decays at infinity algebraically

and not exponentially, as predicted by the classic cable equation
solution. Hence, the leading mode, corresponding to and

, is dominant for ( is the
so-called cable length constant), whereas is dominant
for .

APPENDIX C
EIGENVALUES DETERMINATION

A. Numerical Approach

The numerical results of evaluation of the roots of (12)
using routinefsolvein Symbolic Toolbox Matlab software are
summarized in Fig. 12. The real part of the eigenvalues is nega-
tive and very small (typically, ). Thus, only the imaginary
part is shown. The imaginary part of the eigenvalues is found to
be insensitive to large variations of the ratio as long as the
conductivity ratio is maintained low. The membrane
thickness and conductivity are considered to approach
zero individually in such a way that the ratio ,
the surface conductivity ( ), remains finite. For typical cell
used in physiological experiments (nerve axon or muscle fiber),

m and m, so that the limit
will lead to no appreciable error on the scale of the cell. Typical
values for and are 10 S/m and 10 S/m, respectively
[10]. Hence, the quantity is less than
10 .

Fig. 12. Eigenvalue locations.

B. Analytic Approach for and

After expansion of the modified Bessel functions at its small
argument value, (8) reads

(C.1)

Let us define and
, where is the imaginary unit. After separating into

the real and image parts, we obtain

(C.2)

Noting that , and substituting
into (C.2), leads to

(C.3)

Equation (C.3) represents a system of the two transcendental
equations with two unknowns, and , gives us solutions for
the dominant eigenvalue, that can be found for the specific set
of values of , , and . For example, for the particular
case when approaches infinity (C.3) reduces to

(C.4)

APPENDIX D
RELATION OF THE STEADY-STATE CABLE EQUATION SOLUTION

TO LOWESTEIGENVALUE

A. General Solution of the Cable Equation

The steady-state cable equation [8] reads as follows:

(D.1)
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Note that and both per unit
length. The homogeneous solution is

(D.2)

Green’s function for the cable equation is define via

(D.3)

i.e.,

(D.4)

Thus, the particular solution is given as

(D.5)

The general solution is

(D.6)

B. Relation of the Lowest Eigenfuction ( , ) to the
Cable Equation and “Activation Function” IPS Case [7]

Substitution of (B.8) into (D.1)

(D.7)

results in

(D.8)

where [see (B.8)]

(D.9)

Combining both (D.9) and (18) [or (29)], one obtains the com-
plete cable equation for the IPS problem

(D.10)

It should be noted that the correction to the im-
pulse response in (18) [or (29)] has been ignored, since either it
is insignificant for or is dominant
for .

Finally, the internal current can be efficiently approxi-
mated, via the dominant mode ( , ) contribution

(D.11)
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