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Rigorous Green’s Function Formulation
for Transmembrane Potential Induced
Along a 3-D Infinite Cylindrical Cell

Leonid M. Livshitz, Pinchas D. Einziger, and Joseph Miztahi

Abstract—The quasi-static electromagnetic field interaction i.e.: 1) subthreshold excitation (linear membrane); 2) action
with three-dlmensmnal infinite-cylindrical cell is investigated potential generation (nonlinear voltage-dependent model); and
for both intracellular (IPS) and extracellular (EPS) current 3) action potential propagation

point-source excitation. The induced transmembrane potential Potential bl SO d le electroph
(TMP), expressed conventionally via Green’s function, may alter- otential problems arising in nerve and muscie electropnys-

natively be expanded into a faster-converging representation using i0logy usually are not encountered in the quasi-static electro-
a complex contour integration, consisting of an infinite-discrete magnetic theory for the following reasons: 1) internal conduc-

set of exponentially decaying oscillating modes (corresponding tjvity of an active fiber is finite and the interior of the fiber is not
to complex eigenvalues) and a continuous source-mode convolu-gyrictly equipotential and 2) the membrane resistance is gener-

tion integral. The dominant contributions for both the IPS and .
EPS problems are obtained in simple closed-form expressions ally a function of membrane current flow and the boundary con-

including well documented special mathematical functions. In the ditions are not linear.
IPS case, the dominant modal contribution (of order zero)—an  While an applied field is generally modeled as three-

exact solution of the well-known cable equation—is explicitly and dimensional (3-D) and sometimes time-dependent, excitable
analytically corrected by the imaginary part of its eigenvalue fihar models are usually one-dimensional (1-D). In addition,

and the source-mode convolution contribution. However, the d with a | bodv of th tical K lectrod
TMP along a fiber was shown to decay at infinity algebraically compared with a large body of theoretical Works on electrodes

and not exponentially, as predicted by the classic cable equation PE€Netrating a nerve fiber or being in contact with it [1]-[4] there
solution. In the EPS case, the dominant contribution is expressed are few available works on remote electrodes. A cell is usually

as a source-mode convolution integral. However, for a long EPS approximated by a finite (spheroidal) or an infinite (cylindrical)
distance (e.g.,>10 cable length constant) the order-one-modes gonmetry, As a subclass of cylindrical models, a 1-D “cable”
involved in the convolution is not a solution of the cable equation. . R .
Only for shorter EPS distance should the cable equation solution approximation is _W|dely.used [51-{9]. The clas§|cal approach
(i.e., the order zero dominant mode) be included in addition to the t0 model an excitable fiber under FES combines 1-D cable
modes of order one. For on-membrane EPS location, additional theory for pulse propagation, with a membrane model of the
modes should be included as well. In _view c_)f our EPS result, we Hodgkin—Huxley type [10].
suggest that the cable equation modeling existing in the literature 56 _gimensional methods have several major flaws. For ex-
and related to functional electrical stimulation for EPS problems, . L.
should be critically reviewed and corrected. _ample, the radial component of the eIe_ctrlc field must be taken
_ _ ] _ into account when the current flows into or out of the cell.
_Index Terms—Functional electrical stimulation, Green's func- |, ca5eg where circuit models were analyzed it was assumed
tion, infinite cylinder, membrane boundary conditions, transmem- . .
brane potential (TMP). that th.e extraqellular voltage produced by the stlmulatl'ng elec-
trode is not distorted by the presence of the cell. It is clear,
however, from the quasi-static models [1], that this approxima-
. INTRODUCTION tion is weakest immediately outside the cell which is the re-
ERVE cell excitation by an external electric field isgion of greatest interest to the circuit models. In addition, using
an important phenomenon, especially for functiondinite-size electrodes violates the essential assumption of 1-D
electrical stimulation (FES) applications. A full analysis of th&able theory of constant transmembrane potential (TMP) around
interaction process between electric field and excitable céie cable. _
presents great difficulties. For this reason, it is recommended? he relation between the cable equation and the zero-order

[5] to set separate models for the different stages of interactihode of 3-D cylindrical problem with intracellular source loca-
tion is well-known. In the limit, where the external conductivity
, . , . agproaches infinity, the zero-order mode is an exact solution of
Manuscript received Septem_ber?, 200_1; r_eV|sed July 9, 200_2. This Workmﬁ;le cable equation. as is well documented in the literature (e
supported by the Isler Foundatiohsterisk indicates corresponding author. q ) e h -9
L. M. Livshitz is with the Department of Biomedical Engineering, Tech{11]). Nevertheless, the validity of the cable equation for ex-
?eigﬂhilzrr]az(lzlirll)stitute of Technology, Haifa 32000, Israel (e-mail: jn@biomegarna| problems seems to remain unchallenged.

P. D. Einziger is with the Department of Electrical Engineering, Technion, Three-dimensional theory of p'0|09'ca| cell excitation was
Haifa 32000, Israel. _ . o ~ developed, among others, by Eisenberg and Johnson [2] and
*J. Mlzrghl is with the Departmer_‘lt of Biomedical Englnee;nn_g, Teqhnlorpeskoﬁ [3]' and summarized by Adrian [11]_ Unfortunately, in
Israel Institute of Technology, Haifa 32000, Israel (e-mail: jm@biomed. fth ks th ul di deled
technion.ac.l). most of these works the extracellular medium was modeled as
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The TMP, i.e., the difference between the internal and ex-
ternal potentials on the membrane surface, is given for a point
source excitation as

V(g 2 1) = —— [GO™, ) =G, )] (1)
where G(r, r') denotes the point source response (Green’s
function). The coordinates’ = (p’, 0, 0) andr = (a, ¢, 2)
correspond to locations of the source-pathénd the observa-
tion point P, respectively. The superscriptsand — represent
guantities evaluated at the outer and inner surface of the mem-
brane,p = a, respectively (i.ex® = (p*, ¢, 2), pT = a+¢,

e — 0). The point source current is ando(p’) is eithero; for

p < aoro, for p > a. The Green’s function in (1) can be
expressed in terms of cylindrical harmonics [14], leading to

Fig. 1. Physical configuration. >

G(r, ') = % Z €n cos(ngb)/o gn(p, p', k) cos(kz) dk

n=0
2

intracellularly. King and Wu [12] analyzed the finite cylindricalwhereey, = 1 ande, = 2, n > 0. Both G(r, r’) and
fiber model when a constant external electric field was applieg. (p, ¢, k) in (2) satisfy, 3-D and 1-D Laplace equations and

The present study was initiated to describe the TMP inducegpropriate constraints [5], [12], as summarized in Table I.
by a microelectrode current source placed outside an unmyeliSubstitution ofG(r, r’) in (2) into (1) results in an integral
nated nerve axon. Mathematically, the steady-state distributigpresentation for the TMP
of the potential is given by a Green'’s function of Laplace equa- I oo
tion. The tip of the microelectrode can be represented by apoint ~ V(¢, 2, r') = - Z enVa(z, p') cos(ng)  (3)
source, so that Green’s function is the potential that one would 2mo(p') n=0
observe at the membrane. The Green's function satisfies {hgere Vi(z, p), the TMP (Fourier's) coefficients, are ex-
membrane boundary condition. pressed as

The membrane boundary condition is that the normal deriva- -
tive of the potential at the inside and outside surface of the mem- V(z, p') = 1 / vn(p', k) cos(kz) dk (4)
brane (proportional to normal component of current) is propor- ™ .Jo
tional to some function of the potential difference across tr@dvn(pg k), the TMP spectral coefficients, are given via
membrane (nonlinear membrane boundary condition). Most au- , _ o, .
thors on the theory of propagated impulse assumed a piecewise ~ “n(P's ¥) = gn(p™, 0, k) = gn(p™, 0, k). (5)
linear relation between the membrane current and the membraipg expression for the characteristic Green’s function
potential difference (linear membrane, i.e.,impedance bound@gxp? o', k), obtained after a straightforward but somewhat
condition) [13]. Therefore, we started off with investigating thg.dious calculation, is given in Appendix A. The distinguishing
effects of subthreshold excitation, and assumed that the mefipscripts (or superscriptsjandi associated with’ < a and
brane is purely passive, with no voltage-sensitive conductan¢gs-, , respectively (Appendix A) were omitted in (1)—(5)
and with electrical properties comparable to those of a true filghce these equations apply to both extra (EPS) and intracellular
near the resting potential. ~current point-source (IPS) excitation locations. This rule is

Thus, this paper deals with finite extracellular conductlvn)édopted throughout the entire paper for all the equations that

and arbitrary placement of the stimulating electrode. This agny to both locations. The TMP spectrum for IPS and EPS
proach is vital because, during FES, stimulation is extracellulg§cations is given via

i In(kp’)} / /
vnmk:[ n (K p<a (6)
Il. INTEGRAL REPRESENTATION FORTMP (o', b) In(ka) (k)
and
The physical configuration of our problem, depicted in Fig. 1, ol K, (kp)I' (ka) ,
consists of a source-poifit, an observation poin® (located on vn(p's k) = K (ka) I, (ka) n (k) p>a (7)

membrane surface), and two cylindrical regions, the axoplasmic velv. H dK h dified B If
core and the surrounding fluid, separated by a thin membran<ér_%‘7’pe(:t'\’e y. Here, thé, andK, are the modified Bessel func-

radiusa. Assuming that the core, the outer fluid and the merioNs of the order. [15], and prime means differentiation with

brane are homogeneous, isotropic, ohmic conductors, their elg2Pect to the argument. The terms in square brackets in bofch
trical parameters are denoted by, o, andG,,, respectively. right-hand sides of (6) and (7) represent the point source contri-

The evaluation of the electrodes’ current distributions and pggtion to the TMP spectrum. Whereas the denomingi(k)
tentials is carried out within the quasi-static (low-frequency) (k) = Gma +ha I, (ka)  Gma Ky(ka)I},(ka)
regime. &R = =, I,(ka) 0. K/ (ka)l,(ka)

(8)
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TABLE |
POISSONEQUATIONS AND BOUNDARY/MEMBRANE CONDITIONS FORG(r, r') AND ¢, (p, p', k)

G(r, 1) 9n(p, p')
Differential V2G(r,1') = —4(r — 1) [1 . "2] B = -5
nr)=-—or—-r TP = 5|9\ P, = -/
| PrrEy pZ!J(PP ) p(p )
equation
Membrane Gn|G(x~, 1) — G(x*,1") Gulgn(p™, 0, k) — gulp™, o', k)]
oG (xt, ' OG(r~,r' dg.(p*, o =0
condition . ( )=—a¢ (r7,r) __Y (.7 k) _ dgalp”, 0, k)
dp dp dp ' dp
dgn(p'*, 0, k) dga(p=, 0k 1
Source Jr_V?G(x,1)dV=§, VG(r,1) -dA=—1 Gl )— il )= -
dp dp o
condition
d
Decay at rG(r, 1) ro00 < 00 \/ﬁ[a;—i- k] (0,0, k) posoo =0
infinity

depends on the intrinsic characteristics of the axon only, namélye terms in (11) correspond to the pole contribution (residues)
its geometry and the associated conductivities (radiasdo., atg,(k = jA,, ) = 0 in (8), explicitly
ai, G, respectively). Therefore, the zeros of the (8), which are ,
essential for the alternative representation of TMP to be carried, ;)\, ,.) = Gma A m In(An,ma)
out next, are independent of the source strength and location. ’ Oi T Ju(An,ma)
Gma HP O, ma) T, (A, ma)

[ll. ALTERNATIVE REPRESENTATION o Hé(z)()\n @) In (A ma@) =0 (12

The integral representation (4) in the previous section, rep-. given via the residue theorem, whexg,,, are complex
resenting a continuous summation over each spectral comp ’ ’

Sats of (12) and lie at close vicinity of the reslaxes (imag-
nent of the TMP spectrum [the slow convergence ©0f/ka), inarv k-axes. Appendices B and C) [3]. Heté. is a Bessel
sincev,(p’, k) = O(1/ka) aska — oo andp’ — a], can be nary %-axes, Append ) 13 Herg, |

. / . . function of the first kind and order and 7\ is a Hankel func-
expressed alternatively via an equivalent but discrete spectrthrgh of the second kind and order

which converges much faster (of exponential orderzfas 0
andG,,a/c. —0, see Appendix C). The alternative represe
tation utilizes¢p—p eigenfunctions expansion guided along the
direction rather tham—z expansion guided along thedirec- ; , < L, i k||
tion. This is definitely more appropriate for axon propagation Cnlz, p') = ﬁ/o un (', k)sy (K)e™ " dk

_The termC,,(z, p') can be uniquely represented as a convo-
"Nution integral, yielding

problems. =Va(z, p') ® 8, (2) (13)
A IPS:p < a where the symbok denotes the convolution operation. The
When the alternative representation is performed via contd4fctionss;, (z) ands;, (k) are given as
deformation in complex space, it is preferable to represent ' 1 [~ '
Va(z. o) in (4) as Sy =g [ shB)e M 14)
J0
‘ 1 0o and
Vi(z, p')==%R [/ vl (), k)e*E dk | 9) 5 (k) = ~ Gma I,(ka)
T Lo oy Iy(ka)
The continuous spectrum representation hspace) can % gm(=1)"
be converted into an alternative representation (Appendix B), kaK] (ka)[K] (ka) — gr(=1)"1},(ka)]
containing both discrete (dominant) and continuous (minor of Gma i Il (ka)  Gma I (ka)
O[(G.ma/o.)]) eigenvalues contributions % o + ha I.(ka) 0. I,(ka)
. . . Kn(ka) — gm(=1)"I, (ka)] ™"
1 / — 7 . / 7 / 15
Vn(zv P) Mn(z p ) + Cn('z7 P) (10) x K;](]{,(l) _ jﬂ(—l)”lr’t(ka) ( )
where the dominate contribution is respectively (Appendix B). They represent an “activation func-
o N ] tion” that is related to the external potential. The external po-
Mi(z, p') = Z Jn(An,mp’) et . (D) tential is a result of the internal potential (and the internal cur-
" = Ta(Anma) @, (A, m) rent) leaking out from the fiber due to finite. (Appendix D).
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Note that, the continuous spectrum representation in (13) cdrire discussion following (16) applies here as well, b
verges faster than integral representation (9), i.e)[0f /ka)?] term of the expansion in 2Lp( = 0,1, ..., 00) is of
[rather tharO(1/ka) for (9)], aska — oo andp’ — a. For suf- O[(G,a/0.)P]. Note, however, that the absence of Dirac
ficiently small G,,,a/o., which in practice is always the casedelta functioné(z) in (21) prevents a direct excitation of
|st (k)| < 1 (Appendix C). Thus, (10) and (13) can be exinternal modes, but instead provides an “activation function”
panded recursively, yielding a converging series representatmmvolution mechanism only: the EPS establishes an external
for Vi(z, p’) in (9) membrane potential. The resultant “activation function” excites
Vi(z p) = Mi(z p') internal modes (via convolution). They leak out from the fiber,

A nam e . ‘ establishing a®[(G,,a/o.)] external membrane potential. In

® [6(2) + 8,,(2) + S5 (2) ® S, (2) +---+] . (16) turn, the resultant “activation function” further excites internal

Note that thepth term of the expansion in (16)p( = ™modes (via convolution) and starts the same sequence once
0,1, ..., 00) is of O[(Gpa/c.)?]. The process outlined in more. For sufficiently smal(_}ma/cr?, the right-hand side of
(16) can be can be interpreted as follows: the IPS excite&l), expressed via (17), is straightforward and represents
internal modes which leak out from the fiber, establishing 4f€ dominantO[1] EPS “activation function” convolution
external membrane potential. In turn, the resultant “activatiG@ntribution to TMP.
function” further excites internal modes (via convolution) and
starts the same sequence once more. Fpéithiteration (con- IV. TMP EVALUATION FOR THE EPS RROBLEM

volution) is of order_(Gma/ag)P. In the_ Iim‘i‘t Te — OO, bOth_ . Tocomplete the alternative representation analysis, discussed
the external potential and the resulting “activation functionp section 111, it is desirable to obtain simple closed-form ex-
are zero, which is generally adopted in most of the relateglassions for the modal expansion as well as for internal and
textbooks (e.g., [5], [7], [10], and [16]), (16) is reduced int@yternal source-mode convolution integrals in (11), (13) and

mode expansion only (21), respectively. The IPS problem is well known and has been
Vi(z, ) = Mi(z, p') + O(Gma/o.) (17) investigated rigorously for the casg — oo (e.g., [5], [7], [10],
and [16]) and, thus, extended for finite in Appendices B-D.
where Unfortunately, there is no such rigorous documentation for the
i s InQnmp) Ny e nomlzl analysis of the EPS problem. Hence, we focus here on this
M, (z, p') = Z Jn( : a) (G a/0,52 ¥ O ma)?—12 problem which is crucially important for FES applications. The
me=1 T men - (18) cases: = 0andn > 0 are treated separately.

ande m IS a real-positiventh root of the reduced eigenvalues . .
equation (12) A. Zero-Order Fourier Coefficient = 0

Goa - T (on. ma) Generally, closed-form evaluation of either the convolu-

Gp(9An,m) = —— + A, ma —=———= = 0. (19) tion integral in the right-hand side of (21) or its spectral
i Tn(An, ma) representation
Equations (18) and (19) are identical with those obtained, for o o
the limiting case only (i.eq. — oo), in [3], [L1], and [17]. Ve o) = / fogg cos(hz) dks + O(Gma/o.) (23)
T™Jo 4o

B. EPS:p’ > a . : .
for any EPS location/(), is quite cumbersome. Fortunately,

The TMP spectrunay, (o', k) in (7) can be rewritten in terms ¢, o derately large EPS and observation-point distance (e.g.,

of v, (p" = a, k) = ¢~ '(k) in (6) as p' > 5a, as shown in Section V-B) the main contribution to
(o k) = s BVl (a. k) s (k) — K, (kp')I},(ka) integral (23) comes from the neighborhood of the origirs 0,
v (P’ k) = s (K)v,(a, k) s5,(k) = K! (ka)I,(ka) sinceK,(kp') decays exponentially even for smallThe same

(20) conclusion also holds for largein view of the rapid oscillations

, i , of the functioncos(kz). In the asymptotic limity’ > a, (23)
Thus, leading to the clear relation between the inner and

) uces to
outer problems and once more, utilizifg(z, a) in (16), to a
convolution representation fa£¢(z, p’) in (6) Vi(z, p') ~ ‘78(27 o)
e / _l > e 7 . N __l /OO szO(kpl) N
Viz, p') = - /0 st (k)vy, (a, k) cos(kz) dk =7 ). G o)+ 2 cos(kz)dk. (24)
_ Qe / 1
=52, 0) ® Vn,(z’ a) Noting that (24) can be rewritten as
=S5z, p) @ M, (2, a)
O16(2) + Si(2) + Si) @S+ 4] Vil )= L L /°° __ o) k) dk (25)
( ’ wdz? J, 2Gn/(oia) + k2

=5z, p) @ Mi(z, a) + O(Gma/o.) (21)
whereSe (z, p') is the convolution representation of (24) is

/ 1 oo (re / d2 ae / e
Sitec ) =7 [ stk (22) V(e ) = [@sowﬂ iz ) (26)
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where whereH, andY; are the zero-order Struve function and Bessel

o 1 [ cos(kz) exp(—Xo 1]2|) function of the second kind, respectively. The third term, ex-
Mj(z, a) = ;/ 3G/ (0s0) + K2 = 5 - pressed as a definite integral, converges very fast for sufficiently
0 mi 0,1 27y smallz/p’

X0,1a = /2G,a/0; is the lowermost eigenvalue (Ap- _

pendix C), and

1

2(22 + p2)1/2°
(28)

S¢(z, p') / Ko(kp') cos(kz) dk =

It should be noted that the cosine transforms of both (28) and 1
(27) are given by closed-form analytic expressions. Here and = X ; Z (
further on, for evaluation of integral representations, we exten- P
sively make use of both the symbolic softwaMathematica 4
(Wolfram Corp., Champaign, IL) and [15]. Boﬂ?[@(z, a) and

Si(z, a) are closely related tdf¢(z, a) andS§(z, a), in (18)
and (22), respectively

a® |—, 0 X0, m exp(=Ao,m|z
i, a) - Y Do R A ED
2 =, (Gma/oi)? + (Ao, ma)
_ CL_2 nglexp(—xo71|z|)
2 (Gma/oi)g + (Xo,la)z
= M{(z, a) + O(Gpa/o;) (29)
2 . dz -,
ﬁSO(Za pI)N@SO('Zv pl) (30)
Substituting (27) and (28) into (26) results in
2 oo _\ _
ez o) = 1 d exp(—Xo, 1|z — t]) . (31)

Do 372 | (P )

The double differentiation with respect tocan be conve-
niently performed by subdividing the infinite integration do- 1

main —oo < t < oo into two semi-infinite domains-oco <
t<zandz <t < oo

N 1 a2 - > exp(— Ao, 1t)
e A . -~ - 7
Volz 1) = 37 22 {exp()\o’lz) / (02 +12)1/2

— # exp(XO, 1t)
+ exp(—Xo,12) /_oo 22 dt}

dt

1 a2 - oo —Xo. 1t
= — E) COSh(/\O_ 12) M dt
2X0,1 dz ’ 0 P+ t?
Z Sinh[_(]’ 1(t — Z)] dt
0 p'?+ 12

1 |— - e —Xo.1t
=3 [)\07 1 cosh(Xo, 12) M dt

Yo sinh[Ag 1(t — 2)] dqt
’ 0 pIZ + t2

_ i 1 z R
= )\0,1 Zap W/@ T Slnh[)\oyl(t — Z)]dt

—d2p N h[X ( )]d
— sin t—z)|dt
= P2+l d)\oz”’l /0 o

= Xo,1 Z
= [1 — cosh(Xg,12)] {1 +0

_ Yy e Boa2)?
=73, {()\01 )+

d? [1—cosh[Xg 17]
/2p+1 d)\ 21) XO 1

:)])

[l - (Xojp’)z}

2 ’ 12
+ O[(X()le)G]} (34)
where
1-3---(2p—1)
= =(-1)p— 7 > 1.
ap=1 and «a,=(-1) 2 d o p>1

Substituting (33) and (34) back into (32) results in

e 1 Xo,lﬂ
Vi ) =3

COSh(Xo_’ 12) [Ho (X(]’ 1/)’) —YO (X()’ 1/)’)]

1 dz
B /02 + 22 + Olpzo p /2p+1 d/\2p
{l—cosh(x 1z

)

The potentialVy (z, p’) attains its maximal value at = 0.
This value can be directly estimated by setting 0 either via
(24) or (35), leading to

(39)

L[ Kt
wJo 2Gn/(0ia)+ k>
1 1

o -
-1 {_? + 5 Ro.1 [Ho(Ro, 1)

‘78(07 pl) == dk

—Yo(Xo,10")] } .
(36)

0 02 + 12 ReplacingHo(Xo,10")—Yo(Xo, 1p')] in (36) by its asymptotic
H N /
1 o > inh[Ro. 1 (t—2)] N expansion for large argumehg, 1o’ [15]
v 0.1 21 12 : 1 1 - _ _
P+ z 0 pe+t _{__/—i_i)‘o’l[HU()‘O,IPI)_YO()\O,IP/)]}
(32) 20 0 2
The first t tained in the right-hand side of (32) b ! [ ! ! 22
e first term contained in the right-hand side o can be ~ = | = - = =
recognized as k 20" L (Xo,10")? 1(/\o, )t (Roap')®
> exp(—Ao, 1t) > exp(=Ao,19'u) +0 <ﬁ>] 37
—————dt = ———— 2 du (Ao,10")
0 pIZ + t2 0 A /1 + ’11,2
T -, -, leads to an explicit dependence of the TMP(0, p’) for suffi-
=3 [Ho(Xo,10") = Yo(Xo,10")]  (33) ciently distant EPS location.
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B. Higher Order Fourier Coefficients > 0 p"“f 0.1

The evaluation of Fourier coefficient§’(p’, z) is signifi-
cantly simplified forn > 1 andp’ >> a, since 05
; L[ s (k) S
Vit o) = [ 2 cos(ke) dk 4 O(Grnaf ) T S ——
1 [ K,(kp') 20 5 10 15 20
= '/0 TaK! (ko) cos(kz)dk + O(Gy,a/o.) E 1 pria= 0.9 — Vozr)
z wan Vi(zp')
+ O(Gra/o;) 3 e Vo(zp)
2 -, (K, (ka)I,(ka)]’ 0.5t
T /0 In(ka) Kn (k') | 1="535 0T ha) :
x cos(kz) dk + O(Gpa/o.) + O(Gra/a;). e S At ——
(38) 0 5 10 15 20

Distance along fiber z/a

. Asymptotic evaluation of the right-hand side of (38) reSUItlglg. 2. Normalized TMP for IPS and profiles of its coefficients.
in

fiber membrane, respectively, rather than in tia@gential
direction, as suggest in models based on one-dimensional (1-D)
cable theory. The exact contributions of different Fourier's
coefficients to the TMP will be calculated in Section V.

Vi(z, p) ~ V(2 p')
_ 2 / I, (ka)Ky(kp') cos(kz) dk
0

™

1 P2 4 22 4 a2
=———=Qup| ) (9
T/ ap 2ap

V. RESULTS
where QY (z) is the associated Legendre function of the half-
integer order of the second kind. Replacihgka) in (39) by
its value for small argument, we obtain

1 P24 22+ a2 =
2_1/2 (7, ~ V(2 p')

For the typical biological case, where the conductivity ratio
Gna/o; is maintained very low, we have found in the previous
section and Appendices A-D that the TMP coefficients (Fourier
series coefficients) are insensitive to variations in théo;.

Vilz, p') =— Thus, we used the following passive fiber properties as typical

v/ ap' 2ap )
ar s values for running our model; = 0., 0;/G,,a = 200.
= / k" K, (kp') cos(kz) dk
T = Jo A. TMP and Fourier Harmonics Calculation
[(n+1/2) (ap’)" . . . .
=- il [+ e (40) Calculation of V(¢, z, r') and its Fourier coefficients

V.(z, p") for both the EPS and IPS problems are carried out,
We note that the right-hand side of (40) is an asymptotic evaitilizing (3) and (4).

uation of the associated Legendre function of the half-integerFig. 2 shows the normalized TMP distribution along the fiber
order in (39) for large’? + 2% > a?. when the source point is placed intracellularly, either slightly

The potentialV,¢(z, p’) attains its maximal value at = 0.
This value can be directly estimated via (40) setting 0

IP(n+1/2) (a "
Vvl \p' )

The TMP coefficientd/2(0, p') for n = 0 andn = 1 can be

obtained directly from (37) and (41), respectively, as

Ve(0, ) = (41)

away from the fiber centes’/a = 0.1 or near the fiber mem-
branep’/a = 0.9. As predicted, the plots demonstrate a domi-
nant contribution of the zero-order Fourier harmonics which can
be very well approximated via the dominant mode in (18), cor-
responding ta» = 0, m = 1, and its associated source-mode
convolution integral (Appendix B). Only when the electrode is
at close vicinity to the membrane, the first order harmonic con-

tributes up to 15% of the total TMP. Note that for large values of
z/a, the TMP decays algebraically for finite. values. An ex-
ponential decay, associated with the physically unrealistic limit
o. — 00, leads to concentration of all the leakage current on
the outer membrane surface (Appendix B).

Fig. 3 shows the normalized TMP distribution along the fiber
Evidently, the zero mode is proportional to the second spatighen the source point is placed extracellularly at different dis-
derivative of the potential while the first-order mode is propotances from the fibery’/a = 2.5, 20, 100, and 200. In the
tional to its first spatial derivative. close vicinity of the fiber, the harmonics of order zero and one

Thus, we can suggest a new rule of thumb to determife = 0, 1) contribute dominant portions of the total TMP, but
whether or not a given fiber will undergo excitation by distandther coefficients (e.gn = 2) are also present. As expected,
electrode. This rule is based on proportionality to the first @t distances from the fiber exceeding #G8e order-one coef-
second spatial derivative of the electrode potential (or botfigient (n = 1) contributes dominant portions of the total TMP,
in the normal and tangential directions with respect to the and the zero order coefficient’s contribution becomes small.

"'>:‘m(§)2+0 [(mfmﬂ (42)

(43)
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as a function of fiber to source distance.
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Fig. 4. Ratio of the zero- and first-order harmonics as a function of the

fiber/electrode distance at= 0. Fig. 6. Normalized TMP and its zero- and first-order coefficients for EPS at
z = 0 as a function of the fiber electrode distance.

Fig. 4 shows the ratio between the zero-order and first-order
harmonics as a function of fiber—source distance at0. The and it can serve as a measure of the interaction between elec-
plot demonstrates a maximum neéfa = 10 and coefficients trode and excitable fiber. For distances exceediiifg = 35,
equality nearp’/a = 5 andp’/a = 35, but nevertheless upt_he first-order coefficient, WhiCh drops a;‘._p’2 [as gasily veri-
to p’/a = 50 both coefficients are comparable. The order orféed from (43) and the semilog presentation of Fig. 6], starts to
coefficientV; (z, p’) becomes dominant for distances exceedirlay @ dominant part, and makes the fiber excitation by a distant
100 fiber diameters. It should be noted that the graph decayseigctrode (fiber—electrode interaction) possible.
1/p" [(42) and (43)]. I : .
Fig. 5 shows the ratio of TMP on the side of the fiber distarg- Verification of Closed-Form Expressions for Fourier
from the electroded = =) to TMP on the opposite fiber side COefficients
(near the electrodey = 0) as a function of fiber to source In Section V-A, (3) and (4) were rapidly integrated, using an
distance at = 0. effective discrete cosine transform (DCT) MATLAB routine.
The zero crossing occurs negi/fa = 1 andp’/a = 35, Nevertheless, itis useful to have some closed-form expressions
due to either division by the source singularity fdfa = 1 for the TMP, that can be further incorporated to nonlinear
or V.(m, 0,35a) = 0 since both dominant coefficientsmembrane excitation and action potential propagation models
Vi (0, 35a) and 2V(0, 35a) have the same amplitude and?5], [8], or for macroscopic models such as whole muscle acti-
opposite sign ap = 7 as can be concluded from Figs. 3 andation [18], [19]. We focus here on the EPS analysis which is
4, and the discussion that follows Fig. 4. Thus, the assumptiorost important in practical FES problems, where electrodes are
that the variation of the TMP witlp along the fiber is not always placed extracellularly. As was shown in Section V-A,
significant, namely the 1-D cable model, is unacceptable. the coefficients of orden = 0 andn = 1 are dominant for
Fig. 6 shows the variation of the normalized TMP and thmost of fiber—electrode distance range. Therefore, without loss
zero's and first-order harmonics with fiber—electrode distancé generality, we compare in the following figures plots of
atz = 0. This is the most important factor for FES applicathe closed-form expressions against numerical calculations of
tion, that directly affects calculation of the activation thresholdhe zero- and first-order Fourier coefficients. Comparisons for
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and solid lines, respectively, as the fiber—electrode distance was held conskigt 10. The ratio at = 0 of the exact cosine transform for the first-order

atp'fa = 5. Fourier coefficientV’¢(0, p’) in (39) andV¢(0, p’) (40), solid and dashed
lines, respectively, as function of fiber—electrode distance.
higher order Fourier coefficients that have been obtained in
Section IV can be applied as well.
Fig. 7 shows the ratio between the closed-form expressio
Ve (0, p') in (36) and exact cosine transforfit (0, p') in (4)
as function of fiber—electrode distancezat 0.

VI. SUMMARY AND DISCUSSION

Mrhe quasi-static electromagnetic field interaction with 3-D
infinite cylindrical cell was investigated for both IPS and EPS
Fig. 8 shows the zero-order Fourier coeﬁicieﬁbﬁz, J)in excnat,lons. The induced TMP, expressed_convgntlonally via

Green’s function, was expanded alternatively into a faster

(35) and the exact expressidfy(z, p’) in (4) normalized by . : . : .
, ) .~ converging representation using a complex contour integration,
V5(0, p'), along a fiber. It should be noted that the maximum "~ = A X .
S . consisting of an infinite discrete set of exponentially decaying
error appears at = 0. Note that, approximation errors in both

Figs. 7 and 8 are smaller than 8%. oscnla_tlng modes (corresponding to_ cor_nplex eigenvalues) and
. . L continuous source-mode convolution integral.
Fig. 9 shows the ratio between the exact expression in @l) ; " .
. , . : e , The TMP was found to be insensitive to large variations of the
Ve(z, p') and the first-order Fourier coefficienit’s(z, p') . o . :
. " d (40 fvelv. al i mternal/extern.all cond.uc.tlwty rath as long as the membra_ne/m-
alnd Vn((:v p') in (39) and (40), respectively, along a fiber aterna| conductivity ratio is maintained very low. The dominant
p./a = 5. F|%. 10 Ishows the I’a.tIO between th.e exact EXPreSantribution for both the IPS and EPS problems were obtained
sion in (4) Vi (z, /') anq the first-order Fourier (-:oefflmentin simple closed-form expressions, including well-documented
V5.(z, p') and V3, (0, p') in (39) and (40), respectively, as aspecial mathematical functions. In the IPS case, the dominant
function of fiber—electrode distance at= 0. modal contribution (of order zero)}—an exact solution of the
Note that the approximation error in both Figs. 9 and 10 {gell-known cable equation—was explicitly and analytically
bounded by 8% (as for Figs. 7 and 8). Furthermore, the error dattrected by the imaginary part of its eigenvalue and the
contained in both Figs. 9 and 10 clearly indicate #igt0, p’), source-mode convolution contribution, both of the order of the
being a simpler and more accurate closed-form expressionmismbrane/external conductivity ratio. The limit, where the
preferable tharv¢(z, p’) (i.e., the associated Legendre funcexternal conductivity approaches infinity is well documented in
tion of the half-integer order of the second kind). the literature. In this limit, the convolution integral contribution
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vanishes and complex eigenvalues become real. From thieereps. = max(p, p’) andp~ = min(p, p’). The coefficients
model simulation, we concluded that the cable equation is still, (k) andB,, (k) can be found by applying the membrane con-
valid when the axon is stimulated by an internal electrode addion (Table I)

the surrounding axoplasm is of finite conductivity. However,
the transmembrane potential along a fiber was shown to decay ~ ““m [An(k)In(ka) + Kn(ka) = Ba(k)Kn(ka)]

at infinity algebraically and not exponentially, as predicted by = —o.kaB(k)K], (ka)
the classic cable equation solution. aGm|An (k) (ka) + K, (ka) — Bp(k) K, (ka))
In the EPS case the dominant contribution was expressed as = —oika[An (k)T (ka) + K/, (ka)] (A.2)

a source-mode convolution integral. However, for a long EPS

distance (e.g.»10 cable length constant) the order-one modeading to
involved in the convolution was not a solution of the cable equa- o I’ (ka)
tion. Only for shorter EPS distance should the cable equatioR. (k) = G—L [1 + A(k) K", (ka):| (A.3)
solution (i.e., the order zero dominant mode ) be included in ad- N "

dition to the modes of order one. For on-membrane EPS loca; (k) = {aGmKn(k'a) <i B i) B kaK;L(ka)}/ k)
tion additional modes should be included as well. In view of our ™"/ I, (ka) e O; I, (ka) "

EPS result, we suggest that the cable equation analysis and mod- (A.4)
eling presented in the existing literature and related to functional o i o .
electrical stimulation for EPS problems should be critically ré¥hereq(k) is given in (8). Substituting (A.3) and (A.4) into
viewed and corrected. (A1), results in

There were several attempts in the literature to modify thej (p, ', k)
“activation function” concept [8], [9], [20], [21]. Nevertheless, ¢ 4G K (k) 1
the validity of the one-dimensional cable equation in the case of In(kp<){ln(kp>) X {% <0— - ;)
externalelectrode excitation via comparison to 3-D model was " € !
not completely justified [6]. ) kaK;L(/ﬂl)}/q (k) + Kn(kp )} ) <a
We maintain that the assumptions on which the application I (ka) " ey
of the cable equation to external stimulation is based, restrict 4G Lo (kp") K n (p)
the possibility to apply the “activation function” concept for the ool (ka)K ' (ka) / n (k) p>a.
case of fiber stimulation by a distant, real-size, electrode. The . c " (A.5)

preliminary analysis of the 3-D cable theory led us to the conclu-
sion that the voltage gradient associated with the current leavindgrhus, evaluatingg: (p, p’, k) on the both sides of the
or penetrating the fiber through the membrane can become sigembrane

nificant in the close vicinity of the fiber. This result significantly

differs from 1-D cable theory. 9n(ps 05 k)

From the EPS model, it was clear that the zero-order Fourier In(kp') [1 _aGn Ky (ka)}/ (k) -
coefficient is proportional to the second spatial derivative of the I, (ka) kao K/ (ka)|/ "7 p=r
potential and the first-order coefficient is proportional to its first - aG L, (ko) K (ka) .
spatial derivative. Thus, we can suggest a new rule of thumb to “hao L, (ka) K. (ka) / (k) p=p
determine whether or not a given fiber will undergo excitation o " (A.6)

by distant electrode. This rule is based on proportionality to the
first or second spatial derivative of the electrode potential (and taking their difference as outlined in (5), leads#¢y’, k)
both) in thenormal and tangentialdirections with respect to in (6).
the fiber membrane, respectively, rather than intdreential
direction, as suggested in models based on 1-D cable theoryB- External Point-Sources’ < a
Similarly to the IPS caseg (p, p’, k) for the external point-
source, satisfying both the source condition and the decay con-
dition infinity in Table I, is given as

APPENDIX A
CHARACTERISTIC GREEN S FUNCTION as(p, Py k)
{An(k)ln(kP)Kn(kP,)7 p<a
_— , _
A. Internal Point-Sourcey’ < a Kou(kps)n(kp<) + Bu(k)Kn(kp<)l, p > a.
The characteristic Green’s functian (p, o/, k) for the in- (A7)

ternal point source, satisfying both the source condition and tlilﬁe coefficientst.,

dB,.(k be found b lying th
decay condition infinity in Table I, is given as [14] (k) an () can be found by applying the

membrane condition (Table I)

gups 0, k) G [An (k)L (kp) — Lu(kp) — B (k) K (kp)]
B {In(kr)<)[An(k)In(k/)>) + Kn(kps)], p<a A1) = —oikad,(k)I,(kp)
T\ Bu(k) L (kp") K (kp), p>a el (kp) + B (k) K, (kp)] = 0;An(k) 1, (kp)  (A.8)
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leading to 1 Imi]
N K] (ka)
Ap(k) = = [1 + B, (k) T (ka) } (A.9)
poles
and 2
1 1 I (ka) I (ka) X Dominant pole
B,(k) =|aGp| — — — | — ka = z (k). X
=[5 - 7)) Ko o |
A.10 e
Substituting (A.10) and (A.9) into (A.7) results in brafnch line 0 Re[#]
9n(ps 0, k)
( aG K (kp' ) (kp)
- kaoiIn(ka) K (ka) an(k), P <a  Fig.11. Contour deformation in the complexplane.
= Kn(k‘p>){fn(kp<) + [aGm (i - i) the complex conjugate of (B.1) from the left-hand side of (B.2),
Oe 0i results in
I (ka)| I (ka) o
_ n n K/ . .
\ ka In(ka)] K;L(ka) n(kp<) n(k) ) p>a Z Res [ p k e]kl |i|
k=k
(A.11) m=1
1 i ! T —k|z|
Thus, evaluating® (p, o, k) on the both sides of the membrane 2_/ — v (¢, ke'™)] e dk
e L I( pl) elhnmlzl
gn(ps 0’ k) Z T ) ¢ )
1 CLG K (kp/) /q(k) p B p_ m=1 n ma n,m
_ “ka o; K!(ka) ’ L1 /‘°° ara k)[ (.p ,keﬂ)}eml dk
_Ka(kp) [ 1 aG T (ka) ). o=t 2 v, (0, k)
K, (ka) [ka o; @ L(ka)|/ ™ P=F (B.4)

(A12)  where prime ing,, (k.. ) means differentiation with respect to

and taking their difference as outlined in (5), leads36y’, k) the argument. Identifying;, (k) as

in (7). )

Sn

vi,(p', ke'™)
ky=1-2~~——-+ B.5
W=t ®9
leads to expression (15) and consequently to the convolution
_ _ _ _ _ relation in (13). The spectral integral either in the right-hand
Equation (9) can be written in an analytic transformation forside of (B.4) or in (13) can be evaluated asymptotically, for large

APPENDIX B
EIGENFUNCTION AND CONVOLUTION EXPANSION OF THETMP

as follows: z, via end-point integration. The evaluation is carried out by
. / 1~ ., i expanding;;(p’, k) and_s:,,(k) in (6) and (15), respectively, in
Vi(z, p') = - v, (p', ke dE. (B.1) power series at end-point (& 0), leading to
J0
Then, utilizing the residue theory in conjunction with Fig. 11, ;i Ggi ;3, n =20
one obtains 0. Gma alz/al
i —. i / 2 2n G , A 1
Vil(z, )+ V(2 0) Culz 0)~4 = < ) <4a> o alz/a]?ntl
o N i (o ket G G
_27Te7m§::1ReS[}v”(p’ k)e? e (B.2) > [14_0( ,,;a) +O< ;ja)] , mn>0.
—. B.6
whereV (z, p') is given as (86
0 Further simplification of the asymptotic expressions in (B.6)
Vi(z, p) = l/ vl (o', k) #l dk; for_n > 0 have been obtain_ed due to the biological parameter
T Jooern ratio, G,a/o. < 1 (Appendix C). It should be noted that even

T[>, , k2] though the terms correspondingsio= 0 andn = 1 decay as
= /0 vn(p's keT)e™ M dE - (B.3) 1/(z/a)?, the zero-order contribution is dominant

.,
i 2 2

and k,, ., are simple zeros of the eigenvalue equation Ci(z: 2)| 2<E> <Gma> oo 2< > <G a)
¢n(kn, m) = 0. The integration path in (B.3) is just above the | Cj(z, p’) o; o, a = \o; Oc
branch cut depicted in Fig. 11. Finally, adding and subtracting (B.7)
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since,G,a/o. < 1 whereass./o; = O(1). Assuming for 13 ‘ ' 3
typical biological data?,,,a/o. < 10~2 the right-hand side of .
(B.7) is less than 10*.

. =z *
The asymptotic results foilC¢(z, p’) in (B.6) can be ;;m_ ¢ °
extended by including the dominant pole contribution at =
ko,1a = 3\/2Gna/o; ~ 0. Indeed, expanding the integrand > o * : ”f(l’
neark = 0 results in S . ° -
‘§ | * ¢ n=3
R(CH(2, a)] sl o
Gma [ (ka)?sin(k|z|) dk = ,
_ — [(X071a)2—|—(ka)2]2 ":/(G,,,/G,) =0.1
1 Gpajo. - —No.1]7l o 2 3 4
= 74}0 v [(1 - Ao, 1lz))e” Root number m
% E()\o, 1|z|) . (1 + X0,1|z|)eio~1|Z|Ei(—Xo, 1|2|)} Fig. 12. Eigenvalue locations.

(B.8) B. Analytic Approach fon. = 0 andm =1

whereX, 1 = jko 1, andEi denotes the exponential integral After expansion of the modified Bessel functions at its small

[15]. As expected argument value, (8) reads
, Gma  (ka)? Gma _
R[Cp(0, a)] ~ 0 (B.9) 5, T o |1m—, (ke =0 (C1)
sinceCj (0, a) is a Sine transform at = 0, and Let us defineia = pe’® = pcos(p) + ysin(y) andln(ka) =
In(p) + yp, wherey is the imaginary unit. After separating into
, g , 1 the real and image parts, we obtain
R[Ci(z, a)] ~ 2= T |s|—o0 (B.10) gep
20. Gpa al|z/al?
2 Gma s(20) 41— Emelnle) _
2 _——_—— =
.02
which is identical to (B.6), setting = 0. ip e (C.2)
Note that, the TMP decays at infinity| — oo algebraically 9 Gma sin(2¢) — Gmap =0.
and not exponentially, as predicted by the classic cable equation oip? Oc

solution. Hence, the leading mode, corresponding o 0 and Noting that0 < p < 1,0 < ¢ < « and substitutingp =
m = 1, is dominant for0 < [z| < L = 1/Xo,1 (L is the 7/2 + 6 into (C.2), leads to
so-called cable length constant), wher€géz, a) is dominant

2
for |z| > L. w:g<1+U;p>
In( ) (C.3)
12 (2% ) .
APPENDIX C te ( 20, 2Gpa

EIGENVALUES DETERMINATION .
Equation (C.3) represents a system of the two transcendental

A. Numerical Approach equations with two unknowng, and ¢, gives us solutions for
the dominant eigenvalue, that can be found for the specific set
The numerical results of evaluation ,,, of the roots of (12) of values ofo., ¢;, andG,,a. For example, for the particular
using routinefsolvein Symbolic Toolbox Matlab software arecase whemw, approaches infinity (C.3) reduces to
summarized in Fig. 12. The real part of the eigenvalues is nega-

tive and very small (typically10~°). Thus, only the imaginary o= T
part is shown. The imaginary part of the eigenvalues is found to 2 (C.4)
be insensitive to large variations of thg/ 0. ratio as long as the p=/2Gmalo;.
conductivity ratioG,,a/c; is maintained low. The membrane
thicknessé and conductivitys,, are considered to approach
APPENDIX D

zero individually in such a way that the rat®,, = o,,/4,
the surface conductivityd/m?), remains finite. For typical cell
used in physiological experiments (nerve axon or muscle fiber),
§=10"Ymanda = 5+ 10 x 10~¢ m, so that the limit — 0 A. General Solution of the Cable Equation

will lead to no appreciable error on the scale of the cell. Typical The steady-state cable equation [8] reads as follows:
values foro,,, ando; are 10°1° S/m and 102 S/m, respectively

[10]. Hence, the quantit§er,,, /§)(a/o;) = Gpa/o; is less than BV, APV
1073, dz? mem T g2

RELATION OF THE STEADY-STATE CABLE EQUATION SOLUTION
TO LOWEST EIGENVALUE

(D.1)
a+
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Note thatR; = 1/(ma’0;) ande,, = G,,2ma both per unit It should be noted that th®(G,,,a/s.) correction to the im-
length. The homogeneous solution is pulse response in (18) [or (29)] has been ignored, since either it
is insignificant for0 < |z| < L = 1/X orCi(p’, a) is dominant

for |z| > L.

Vm :A —Xo.lz B X0.12 ; . . .
h ¢ + e Finally, the internal currenf;(z) can be efficiently approxi-

Ao, 10 =V Riopma = \/2Gma/o;. (D.2) mated, via the dominant mode & 0, m = 1) contribution
Green’s function for the cable equation is define via 1 1 dVy(2)
) 1(z) R; 27o;  dz
d” gm -
d—i — Riomgm = —6(2) (D.3) = g e~ Mol 4 O<%> . (D.11)
e
ie.,
e~ o1zl REFERENCES
I9m = —/= (D.4)
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Substitution of (B.8) into (D.1)

?zo, ; d*V,
(E - /\0,1> R[Cp(2, /’/)] = - dz2

(D.7)

results in

2 oo 2
A7V _Gma/ ((ka) sin(k|z]) Uk
0

dz? N a20'e XO, 1@)2 + (ka)2
_ Gna d_2 /°° sin(k|z|)
o Oe dZ2 0 (X071a)2 + (k(l)2

dk  (D.8)

where [see (B.8)]

v _ Gha /°° sin(k|z|)
e Joo (No1a)? + (ka)?

Gm 5Y T /N N, . N
= mf [e_AO’llz‘El(/\o, 1]z]) = et FIEi(= X, 1|Z|)} :
209)\0, 1Q

(D.9)

Combining both (D.9) and (18) [or (29)], one obtains the com-

plete cable equation for the IPS problem

(71
(8]

9]

(10]
(11]

(12]

(13]
(14]
(15]
[16]
(17]

(18]

(19]

[20]

IEEE Trans. Biomed. Engvol. BME-23, pp. 329-337, Apr. 1976.

F. Rattay,Electrical Nerve Stimulation New York: Springer-Verlag,
1990.

E. N. Warman, W. M. Grill, and D. M. Durand, “Modeling the effects of
electric fields on nerve fibers: Determination of excitation thresholds,”
IEEE Trans. Biomed. Engvol. 39, pp. 1244-1254, Dec. 1992.

C. M. Zierhofer, “Analysis of a linear model for electrical stimulation
of axons—Critical remarks on the ‘activating function concedgEE
Trans. Biomed. Engvol. 48, pp. 173-184, Feb. 2001.

J. P. Reilly,Applied Bioelectricity New York: Springer-Verlag, 1998.

R. H. Adrian, “Electrical properties of striated muscle,” ifandbook

of PhysiologyL. Peachy, Ed. Bethesda, MD: Amer. Phys. Soc., 1983,
ch. 10, Skeletal Muscle, sec. X, pp. 275-300.

R. W. P.King and T. T. Wu, “Electric field induced in cells in the human
body when this is exposed to low-frequency electric fielliys. Rev.

E, vol. 58, no. 2, pp. 2363-2369, 1998.

A. M. Weinberg, “Green’s function in biological potential problem,”
Bull. Math. Biophys.vol. 4, pp. 107-115, 1942.

J. D. Jackson(Classical ElectodynamicS8rd ed. New York: Wiley,
1999.

I. S. Gradstein and I. M. Ryzhikiable of Integrals, Series, and Prod-
ucts New York: Academic, 1965.

R. Plonsey and R. E. Barr, “Electric field stimulation of excitable tissue,”
IEEE Trans. Biomed. Engvol. 42, pp. 329-336, Apr. 1995.

H. S. Carslaw,Mathematical Theory of the Conduction of Heat in
Solids New York: Dover, 1945.

L. M. Livshitz, P. D. Einziger, and J. Mizrahi, “Current distribution in
skeletal muscle activated by FES: Image-series formulation and iso-
metric recruitment curve,Ann. Biomed. Eng.ol. 28, pp. 1218-28,
2000.

L. M. Livshitz, J. Mizrahi, and P. D. Einziger, “Interaction of array of
finite electrodes with layered biological tissue: Effect of electrode size
and configuration,1EEE Trans. Neural Syst. Rehab. Engol. 9, pp.
355-361, Aug. 2001.

J. Ruohonen, M. Panizza, J. Nilsson, P. Ravazzani, F. Grandori, and G.
Tognola, “Transverse-field activation mechanism in magnetic stimula-
tion of peripheral nerves,Electroenceph. Clin. Neurophysol. 101,

pp. 167-174, 1996.

o o [21] V. Schnabel and J. J. Struijk, “Calculation of electric fields in a multiple
d 32 V. = _3 5(2,) _ d“Ve (D.10) cylindrical volume conductor induced by magnetic coil§EE Trans.
dz2 0,1 ) *m a2 dz? ' Biomed. Eng.vol. 48, pp. 78-86, Jan. 2001.



LIVSHITZ et al. RIGOROUS GREEN’S FUNCTION FORMULATION

Leonid M. Livshitz received the B.S. degree in elec-
trical engineering from the Moscow State Universit
of Railway Transport (MIIT), Moscow, Russia,
and the M.S. and Ph.D. degrees in biomedica
engineering from the Technion—Israel Institute off
Technology, Haifa, Israel, in 1986, 1997, and 2002,
respectively.

From 1986 to 1991, he worked as a Computer an
Electrical Engineer at the Moscow Transport Univer-
sity, Moscow, Russia. His research interests includ ¢
computational aspects of the interaction between ap-

1503

Joseph Mizrahi received the B.Sc. degree in aero-
nautical engineering, the M.Sc. degree in mechanics,
and the D.Sc. degree in biomechanics, all from the
Technion—Israel Institute of Technology, Haifa,
Israel, in 1967, 1970, and 1975, respectively.

He is currently Professor and Incumbent of
the Pearl Milch Chair of Biomedical Engineering
Sciences in the Department of Biomedical Engi-
neering, Technion. For 18 years, he was head of
the Biomechanics Laboratory at the Loewenstein
Rehabilitation Center, Raanana, Israel. He also held

plied electrical and magnetic fields with nerves and muscles, functional eleseveral visiting professorships, including with the Harvard Medical School,
trical stimulation of muscles, and muscle excitation—contraction coupling. Cambridge, MA, (1989-1990), the University of Cape Town, South Africa,

(1991) and the Hong Kong Polytechnic University (1998-1999), Hong Kong.
He is principal author of some 200 publications, and he presently holds several
) . ) editorial responsibilities. His major research interests are in orthopaedic
Pinchas D. Einziger received the B.Sc. and piomechanics and electrical stimulation of muscles.

M.Sc. degrees in electrical engineering from the
Technion—Israel Institute of Technology, Haifa,
Israel, and the Ph.D. degree in electrophysics from
the Polytechnic University, Brooklyn, NY, in 1976,
1978, and 1981, respectively.

Since 1981, he has been on the Faculty of
the Department of Electrical Engineering at the
Technion. His main interests are electromagnetic
wave theory, nonlinear wave phenomena, and
bioelectromagnetics.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


