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ABSTRACT: We address the problem of recovering a scene recorded

through a semireflecting medium (i.e. planar lens), with a virtual reflected
image being superimposed on the image of the scene transmitted

through the semirefelecting lens. Recent studies propose imaging

through a linear polarizer at several orientations to estimate the reflected
and the transmitted components in the scene. In this study we extend

the sparse ICA (SPICA) technique and apply it to the problem of separat-

ing the image of the scene without having any a priori knowledge about

its structure or statistics. Recent novel advances in the SPICA approach
are discussed. Simulation and experimental results demonstrate the effi-

cacy of the proposed methods. VVC 2005 Wiley Periodicals, Inc. Int J Imaging

Syst Technol, 15, 84–91, 2005; Published online in Wiley InterScience (www.

interscience.wiley.com). DOI 10.1002/ima.20042
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ICA; blind source separation (BSS); wavelet packets; clustering

I. INTRODUCTION

The phenomenon of a virtual image being semireflected by a trans-

parent medium, situated along the optical axis somewhere between

the imaged scene and the observing point, and superimposed on the

imaged scene, is typical of many optical setups. It may arise, for

example, when photographing objects situated behind a glass win-

dow or windshield, since most types of glass have semireflecting

properties. The need to separate the contributions of the real and the

virtual images to the combined, superimposed, images is important

in applications where reflections may create ambiguity in scene

analysis. Separation of the desired image from the superimposed

reflection is of particular importance in systems implementing

vision algorithms based on feature matching. Also, since the virtual

and the real images may appear at different distances from the cam-

era, the reflections may confuse autofocusing devices (Schechner

et al., 1999, 2000).

Approaches to reconstruction of the virtual and the real images,

based on polarimetric imaging, have attracted attention during the

last few years (Cronin et al., 1994; Nayar et al., 1997). Incorpora-

tion of a polarizer into the optical system is a common photographic

technique allowing suppression of semireflective layers (Schechner

et al., 1999, 2000). Several constructions of such cameras, e.g., a

system equipped with a liquid crystal polarizer (Fujikake et al.,

1998), were recently proposed.

However, the polarizer is capable of removing the reflected

component completely only when the viewing angle is equal to the

Brewster angle. This case results, however, in severe geometric dis-

tortions. In other cases, the polarization is not sufficient (Farid

et al., 1999a; Schechner et al., 1999, 2000); even when the polarizer

is oriented to minimize the reflected component, the virtual image

is still visible (Fig. 1b).

Several signal postprocessing approaches were proposed in

recent studies; however, they rely mainly on motion, stereo, and

focus, and assume that the real and the virtual objects lie at signifi-

cantly different distances from the camera (Bergen et al., 1990;

Shizawa, 1992). Other methods assume some knowledge about the

scene, such as the semireflector angle and refraction index, which

makes them hardly feasible in the general case (Schechner et al.,

1999, 2000).

Farid and Adelson (1999a,b) apply an analytic version of

independent component analysis (ICA) for blindly separating the

reflected and the transmitted images. Such an approach does not

require any prior knowledge regarding model parameters, and

offers better feasibility in real-world applications. However, the

proposed method is not general enough, since it works with two

sources only. On the other hand, iterative approaches such as

the information maximization (Infomax) algorithm (Bell and

Sejnowski, 1995) are relatively slow, although they can handle any

number of sources, provided a sufficient number of mixtures are

available.

It has been recently demonstrated by Zibulevsky and Pearlmut-

ter (2001), Zibulevsky et al. (2001b), and by Kisilev et al. (2000,

2003) that sparseness can significantly improve the accuracy and

the computational efficiency of existing ICA algorithms. In addi-

tion, sparse decomposition allows using simple ‘‘geometric’’ algo-

rithms to separate the mixed data. We adopt the sparse ICACorrespondence to: Michael Zibulevsky; e-mail: mzib@ee.technion.ac.il
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(SPICA) approach and show that it affords effective separation of a

transmitted image from superimposed reflections.

We first formulate in Section II the problem of removal of semi-

reflected images as a linear blind source separation (BSS) problem,

and then proceed to discuss in Section III the motivation for utiliz-

ing sparse representations for the purpose of BSS. This leads to the

presentation of the SPICA method. Section IV is devoted to the

question of how to obtain a sparse decomposition of images in order

to exploit the advantages of the sparseness. We introduce several

new approaches, suitable for decomposition of natural images.

In Section V, we apply the algorithm to simulated and real-

world images and compare it with the previously proposed

approaches.

II. THE BSS PROBLEM

A typical optical setup involving a semireflector is shown in

Figure 2. The real object (a) is situated on the optical axis behind a

semireflecting planar lens (d), e.g., glass window or windshield,

inclined with respect to the optical axis (Schechner et al., 1999,

2000). Another object (b) is partially reflected by the lens, creating

a virtual image (c). The camera (f) records a superposition of the

two images. That is, the intensity of the observed mixture image at

a single point is given by

m1 ¼ a11s1 þ a12s2; ð1Þ

where s1 and s2 are the images of two source objects (a) and (b),

and a11, a12 are scene-dependent multiplicative constants, which

can, in the case of a planar semireflector, be assumed invariant

w.r.t. the independent spatial variables (i.e. space invariant).

Since the reflected light is polarized, by introducing a linear

polarizer (e), the relative weights of the two mixed images can be

varied, thus yielding mixtures of the form

mn ¼ an1s1 þ an2s2; n ¼ 1; . . . ;N ð2Þ

or in matrix notation

m1

..

.

mN

0
B@

1
CA
� � �

¼
a11 � � � a12 � � �

..

. ..
.

aN1 aN2

0
B@

1
CA � s1

s2

� �
; M ¼ A � S; ð3Þ

where m1, . . ., mn are the N mixed images and s1 and s2 are the two
source images represented as row vectors, and A is the matrix that

produces the linear mixtures (usually referred to as the crosstalk or
the mixing matrix). The mixing matrix is usually unknown, unless

there exists an exact optical model of the underlying scene. Our

goal is to determine the two source images S from the set of equa-

tions (3) with an unknown mixing matrix. Such a problem is usually

referred to as the BSS problem. Under the assumption that the sour-

ces are statistically independent (which is reasonable in the pre-

sented case), it is possible to recover sources s1 and s2 up to a

permutation and multiplicative constant, by estimating the mixing

matrix Ã� A, and estimating the sources by means of the inverse

Figure 2. A typical optical setup including a semireflector: (a) object
1, (b) object 2, (c) virtual object, (d) glass, (e) polarizer, (f) camera.

Figure 3. Three sparse images containing about 5% of nonzero

samples and two synthetic mixtures.

Figure 1. The effect of polarization imaging on reflec-

tion removal. A glass-framed picture was photographed

through a polarizer, set in a position to maximize (a) and
to minimize (b) the reflected component. Note that even

when the reflection is minimized, the virtual image is still

clearly visible.
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of Ã:
~S ¼ ~A�1 �M: ð4Þ

The solution is possible using the SPICA method, as discussed in

the sequel.

III. SPARSE ICA

The idea motivating the development of the SPICA method is based

on the observation that most natural signals and images can be pro-

jected onto a space of sparse representation by the action of a proper

sparsifying transformation (Zibulevsky and Pearlmutter, 2001; Zibu-

levsky et al., 2001b). An intuitive understanding of SPICA is guided

first by considering the case of sparse sources. The approach is then

extended to general nonsparse signals.

A. Separating Sparse Images. As a motivating example, we

begin with a case in which the sources are sparse. Sparseness implies

that only a small number of the signal samples are significantly differ-

ent from zero. Three sparse source images were mixed using a random

matrix. The sources had about 5% of nonzero samples. The location of

the nonzero samples in the images was statistically independent

(Fig. 3). The mixtures were adjusted to have zero mean.

Since most pixels in the source images have a near-zero magni-

tude and the locations of the nonzero pixels in the sources are statis-

tically independent, there is a high probability that only a single

source will contribute to a given pixel in each mixture. Conse-

quently, the majority of the pixels in each mixture will be influenced

by one source only and have a magnitude equal to that of the source

multiplied by the corresponding coefficient of the mixing matrix. In
Figure 4. Scatter plot of the mixtures m2 vs. m1 (a) and the angular

histogram of the scatter plot (b). The orientations and the peaks A–C
in the histogram correspond to Sources A–C.

Figure 5. Coefficients’ distribution after their projection onto a
hemisphere and clustering with refined fuzzy C-means (FCMs). Clus-

ter centers are marked with squares.

Figure 6. Two sources (A and B) and their mixed images.
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the scatter plot of one mixture versus the other, these data will there-

fore cluster along lines, each corresponding to a source, at a distance

from the center depending on source magnitude. It is therefore possible

to estimate the ratios of sources’ contribution to the mixtures by mea-

suring the angles of the centroids of the colinear clusters.

Figure 4a depicts a scatter plot of the mixtures. The colinear

clusters identifying the columns of the mixing matrix are clearly

visible, so that one can estimate the angles (e.g., from the angular

histogram, Fig. 4b) and thereby the matrix entries. This observation

highlights our approach to the development of the separation algo-

rithms, which we address as being geometric and present it in Sec-

tion III.B.

B. Geometric Separation. Geometric separation approaches are

based on the detection of colinearities in the distribution of the

coefficients over the scatter plot. The straightforward way to esti-

mate the proper orientations with reference to the scatter plot is by

using the angular histogram. Applications of this approach are lim-

ited to low dimensions (practically to 2D) because of the difficulty

in constructing the angular histogram in higher dimensions. The M
points in the scatter plot (M equals the number of pixels in the

image) are represented as points in N-dimensional space (in our

case, N ¼ 2). Since the mixtures are assumed to have a zero mean,

the oriented colinear distributions are centered at the origin. For

each point ck 2 R2, the angle

�k ¼ tan�1 c2k
c1k

� �
ð5Þ

is computed. Constructing the histogram of �, it is possible to

detect the optimal orientations using a peak-detection algorithm. In

case of two sources and two mixtures (K ¼ N ¼ 2), the histogram

has a bimodal shape. Hence, fitting with two Gaussians (bimodal fit-
ting) can be used for peak detection.

An alternative approach of data clustering along orientations in

the scatter plot is as follows: each point ck is projected on a unit

hemisphere, by normalizing the data vectors:

ck ¼ ck
ckk k ð6Þ

and multiplying them by the sign of the first vector coordinate ck
l

(Kisilev et al., 2000). As a result, a number of clusters corresponding

to the number of the sources emerges on the hemisphere (Fig. 5).

Applying some clustering algorithm, e.g. Fuzzy C-means

(FCM), it is possible to determine the cluster centroids. The coordi-

nates of the centroids define the columns of the estimated mixing

matrix, equivalently to the orientations found in the previous

approach. Refinement iterations may be performed by deleting the

points with low membership value and performing again FCM on

the refined data set.

Lennon et al. (2001) used a dynamic vector quantization algo-

rithm instead of clustering. This approach may be advantageous

over FCM, since it does not assume an a priori knowledge of the

number of sources.

It is important to note that the performance of geometric separa-

tion depends heavily on the quality of the scatter plot: the more the

orientations in the scatter plot are distinguishable and clear, the

higher is the accuracy in estimating the mixing matrix.

IV. SPARSE DECOMPOSITION OF IMAGES

In Section III, we showed how to separate linearly mixed images,

assuming that the sources are sparse. Although one can find exam-

ples of natural signals or images that in their original space of repre-

sentation, i.e. the native signal or image space, depict the property

of sparseness, in most cases (including the application of separation

of transmitted image from reflections superimposed by a semireflec-

Figure 8. Scatter plot of the mixtures m2 vs. m1 before (a) and after

(b) the sparse transformation.

Figure 7. The transformed mixtures obtained by the action of deriv-

ative in x-direction.
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tive medium), images have rather nonsparse nature. The important

observations mentioned by us earlier is that such images can be

sparsely represented by their projection into a proper space, i.e.,

there exists a linear transformation T such that

di ¼ Tsi ð7Þ

is sparse. (Note that it is not necessary to be able to restore si from
di, i.e. T does not necessarily have to be invertible.) Application of

the transformation to the mixtures in (3), because of the linearity of

T, yields
Tmi ¼ Tðai1s1 þ ai2s2Þ ¼ ai1d1 þ ai2d2: ð8Þ

Thus, the problem at hand is equivalent to separation of linearly-

mixed sparse sources. This can be solved using the techniques

described in Section III.

The question is then whether there exists a universal transforma-

tion that projects any given natural signal or image onto its optimal

sparse representation. Unfortunately, this is not the case. Different

classes of signals require their specific, optimal (in some sense),

sparsification transformations (Kisilev et al., 2003). However, a

wide range of transforms can result in sparse representation that

permits good estimation of the mixing matrix. For example, and this

is relevant to our reflection separation problem, in the case of natu-

ral images (Fig. 6), the edge distribution is usually sparse (other

than in the extreme cases of densely textured image).

Thus, even such simple operations as a derivative followed by

thresholding yields a sparse image (Fig. 7). The effect of this simple

transformation on the potential of separation can be appreciated by

comparing the scatter plots of the original mixtures (Fig. 8a) with

those of the transformed mixtures (Fig. 8b). Although the two domi-

nant orientations, corresponding to the columns of the mixing matrix,

are apparent in the scatter plot of the transformed mixtures, the fuzzy

cloud in the scatter plot of the original images does not permit any

reasonable estimation of the mixing matrix. The reason is that the

original images are endowed with nonzero pixel-value distribution

all over the image space, and therefore, the probability of having a

high value at a specific pixel in one image, and almost zero value in

the corresponding pixel of the other image is very small.

On the other hand, since it is very unlikely that the majority of

the edges of the source images will coincide, many points in the

scatter plots of the mixtures are contributed by a single source only.

Thus, optimality of the sparse transformation calls for the search for

such a transformation that increases the proportion of those points

contributed by only one of the sources.

A. Multinode Decomposition. Since there is no common

sparse representation to different images, such a simple transforma-

tion as the derivative is usually data-dependent. Having this prob-

lem in mind, richer representations, that over a wide range of natu-

ral images lend themselves to relatively good sparse representa-

tions, such as the wavelet packet transform (WPT), were proposed

(Kisilev et al., 2000, 2003).

The 2D WP image decomposition can be represented as the tree

shown in Figure 9. The nodes of the WP tree are numbered by two

indices (i, j), where i ¼ 0, . . ., N is the depth of the level, and j ¼ 0,

. . ., 2i � 1 is the node number at the specified level (Mallat, 1998;

Kisilev et al., 2000, 2003).

The task is to select only the nodes, corresponding to sparse

decomposition. Kisilev et al. (2000, 2003) proposed an algorithm,

according to the clustering procedure, which is first applied to each

one of the nodes, but only nodes with minimal global distortion
(i.e., the mean-squared distance of data points to the centers of the

closest clusters) are then selected for further processing. A more

general approach is to assign some quality factor to each node,

which determines its sparseness, and then select a certain percent-

age of the ‘‘best’’ nodes in the sense of the assigned quality crite-

rion. The choice of such a criterion is discussed in Section IV.B.

As an alternative to the WP decomposition, we propose to divide

the image into blocks (possibly overlapping), compute some simple

sparse transformations such as the first or the second order deriva-

tive (possibly concatenated) and only then to select the ‘‘best’’

blocks according to some sparseness criterion. Our observation is

that most natural images have certain regions, in which edges and

texture make such an approach efficient. Figure 10 depicts how the

use of blocks can refine the sparseness and consequently the quality

of the scatter plot in the previous example shown in Figure 6. The

mixtures are partitioned into 16 blocks of equal size, and the same

sparse transformation is applied to each block independently.

Clearly, the independence of the edge distributions contributed to

the mixtures, from each of the sources, varies from block to block,

and therefore a subset of blocks, in this example only (1,1), (1,3), and

(1,4), yields the best scatter plots with two dominant orientations.

Figure 9. 2D wavelet packet tree.

Figure 10. Sparseness refinement by

image partitioning into 16 blocks. Scatter

plots of the coefficients in each block, using

x derivative as the sparse transformation (a)
and a scatter plot resulting from merging the

coefficients of blocks (1,1), (1,3), and (1,4) (b).
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Hence, the estimation of the mixing matrix entries can be further

improved by combining the data obtained from the best sets of blocks.

B. Quantitative Sparseness Criteria. Finding an adequate

sparseness criterion is a crucial task for selecting the best nodes or

blocks. Following Kisilev et al. (2000, 2003), one can perform the clus-

tering procedure on each node or block and measure some distortion

function of the clusters. The use of fuzzy clustering allows incorporating

the membership probability as weighting of the distortion function. The

main disadvantage of this approach is its high computational complexity,

since it requires executing the clustering algorithm at each node. More-

over, in higher dimensions clustering usually gives poor results.

The general problem of quantitative node sparseness estimation is

to find such a function q(x) which, given a vector x 2 Rn, yields a large

value if it is sparse or a small value if it is not sparse. One of the possi-

bilities is to use the so-called L0 norm (threshold), i.e., measure the

number of vector coordinates, which is higher than some threshold � :

q�1ðxÞ ¼ 1

n

Xn
k¼1

I xk � �ð Þ; ð9Þ

where I is the indicator function. A natural choice of the threshold

would be � ¼ kx � �xk2, where �x is the mean value of x.
Yet another possible sparseness criterion is the Lp norm for 0 <

p � 1:

q�1ðxÞ ¼ xk kp
n
1
p�1

2 � xk k2
¼ 1

n
1
p�1

2

�
Pn

k¼1 x
p
k

� �1
p

Pn
k¼1 x

2
k

� �1
2

: ð10Þ

Recent studies indicate that the L1 norm is a more natural choice for

dealing with various aspects of image quality criteria. This, normal-

ized by the L2 norm, as in (10), may turn out to be the best sparse-

ness criterion. This, however, has yet to be further investigated.

V. RESULTS

The experimental results are obtained by applying the SPICA

approach to polarization images obtained by simulated images as

well as to images photographed in real-world conditions. The

results are compared with those of Farid and Adelson (1999a,b).1

A. Simulated Data. In the first experiment, the mixtures were

obtained by artificially mixing two source images (‘‘Terry’’ and

‘‘Parrot,’’ denoting sources A and B, respectively; left column of

Fig. 11). We used two SPICA methods: WP decomposition and

block partitioning with second-order Sobel numeric derivative,

applied as the projection onto the space of sparse representation.

The reconstruction was performed geometrically, using an angular

histogram. Peak detection was performed in two stages: first, peaks’

locations were estimated in a coarse histogram. Then, the coarse

estimation was refined by performing peak detection in a fine histo-

gram of the data points in a small angular spread around each of the

estimated peaks.

Although one has to scrutinize the separated images in order

to realize the improvement in the results obtained by the sparse

representations over blocks, proposed in this study, as com-

pared with those obtained by the application of closed-form

ICA [(Farid and Adelson, 1991, 1999b); compare the left two

columns of Fig. 11], the SNR values represented in Table I

reveal a considerable improvement by sparse representations. It

is difficult, however, to draw a clear conclusion from this simu-

lation study about the comparison of the WP and the block par-

titioning. Obviously, all the localized techniques yield good

results.

B. Real-world Data. To further test the performance of the

three algorithms (the closed-form ICA and two versions of

SPICA), we used the images of a Renoir’s painting, framed behind

glass, with a superimposed reflection of a mannequin (‘‘Sheila’’),

photographed by Farid and Adelson through a linear polarizer at

orthogonal orientations.2 SPICA algorithms were implemented in

MATLAB.3

The block partitioning approach is a natural way to handle the

case of spatially varying mixing coefficients, which often occur in

reality. A better assumption is of a locally spatially invariant sys-

tem that can be dealt with by partitioning of the image into blocks.

The acquired images were divided into four equally sized super-

blocks and the separation problem was solved in each superblock

1 This algorithm is termed ‘‘closed-form ICA,’’ as proposed by Prof. Hany Farid in
private communications.

Figure 11. Separation of synthetic mix-

tures.

2 The polarized images and the analytic ICA MATLAB code for image separation
are available from http://www.cs.dartmouth.edu/�farid/research/separation.html (cour-
tesy of Hany Farid, Dartmouth College).

3 The SPICA MATLAB codes are available from http://visl.technion.ac.il/bron/spica.
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separately. The coefficients of the estimated unmixing matrix were

then linearly interpolated over the entire image to produce a more

accurate unmixing. Figure 12 shows the reconstruction results.

The desired photographed image of Renoir’s painting is recovered

with high precision, without notable artifacts. The nonseparated

details in the reconstructed image of the mannequin resulted from

geometric distortions due to imperfections of the optical system,

i.e., the optical system cannot be considered as a spatial-invariant

system.

Consequently, the reconstruction of the virtual image is

improved by block partitioning in two ways, first by better matching

the algorithm to the nonstationarity of the sources, and second by

better dealing with the spatial varying properties of the optical sys-

tem. Reconstruction with WP decomposition was done under the

spatial invariance assumption.

Yet another important task after performing the separation of

images is to determine which of them belongs to the real object and

which to the reflected one. Taking into consideration the prior

knowledge of the fact that the contribution of the virtual object

varies more because of polarization than the intensity of the real

object (which remains almost constant), we can identify the virtual

object as that corresponding to the column of the estimated mixing

matrix, whose coefficients vary the most. This principle is sup-

ported by our processing of the example of the real polarized

images.

VI. CONCLUSIONS

The SPICA approach can be effectively used in a wide range of

scenarios wherein various mixtures of source images are available

for separation of the sources. In this study, we are primarily con-

cerned with separation of an image from virtual images superim-

posed on it by reflections from a semireflecting medium. The pro-

posed novel sparse decomposition method incorporates block par-

titioning, suitable for nonstationary natural images, as well as for

imaging systems such as polarized semireflecting media, that can-

not be considered as spatial invariant systems, but can to a good

approximation be dealt with as locally spatial invariant systems.

Experiments conducted with simulated and photographed data

show the efficiency of this approach and its advantages in the spe-

cific problem of separation of an image with superimposed reflec-

tions over previously proposed wavelet packet decomposition and

closed-form ICA.

We have assumed that only two images, acquired at perpendicu-

lar polarization angles, are available. However, in its implementa-

tion to physical systems, one may extend the application to acquisi-

tion of more than two images. In this case, principal component

analysis (PCA) can be used prior to the application of ICA.

Lastly, the block partitioning into fully localized subsets of data

can be also useful in cases where in addition to the mixing, there is

a weak effect of convolution. This combined case of mixing with

convolution is, of course, much more difficult than the mixing only,

and is encountered in many physical systems. However, convolu-

tion too is only an approximation of more complex action of a

kernel in an integral equation that does not represent convolution.

The argument of locally stationary is, however, valid in this case

too. Therefore, our proposed block partitioning should improve the

results regardless of the type of blind deconvolution combined with

the BSS.
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Figure 12. Separation of polarized images. Arrows point

to nonseparated details in the virtual component (Sheila)
reconstruction, which are significantly reduced using the

blocks approach.

Table I. SNR (dB) of the reconstructed sources.

Closed Form

ICA (Farid

and Adelson)

SPICA

With WP

Decomposition

SPICA With

Block

Partitioning

Estimated source A 12.18 38.58 35.83

Estimated source B 26.07 45.96 64.96
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