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ABSTRACT. Recently, Küsters, Truderung, and Vogt have proposed a simple, yet widely applicable
and formal definition of coercion-resistance for voting protocols, which allows to precisely quantify
the level of coercion-resistance a protocol provides. In this paper, we use their definition to analyze
coercion-resistance of Scantegrity II, one of the most prominent voting systems used in practice. We
show that the level of coercion-resistance of Scantegrity II is as high as the one of an ideal voting
system, under the assumption that the workstation and the PRNG used in Scantegrity II are honest.

1 Introduction
In the last few years many paper-based voting protocols have been proposed that are de-
signed to achieve (various forms of) verifiability [8] and receipt-freeness/coercion-resistance
[3], with protocols by Chaum [9], Neff [26], and Prêt à Voter [31, 11, 33, 32, 23] being the first
such protocols; other protocols include Scratch&Vote [1], PunchScan [7, 28], ThreeBallot,
VAV, Twin [30], Split Ballot [25], BingoVoting [4], a protocol by Riva and Ta-Shma [29], and
Scantegrity II [10]. Scantegrity II is among the most successful protocols in that it has been
used in practice for several elections. While this protocol is designed to provide coercion-
resistance, this property has not been formally stated and analyzed for Scantegrity II so far.
Providing such an analysis is the main goal of this paper.

Coercion-resistance is one of the most important and intricate security requirements
for voting protocols [17, 27, 3]. Intuitively, a voting protocol is coercion-resistant if it pre-
vents vote buying and voter coercion. Several definitions of coercion-resistance have been
proposed in the literature (see, e.g., [17, 24, 12, 34, 15, 16, 14, 2, 19]), both based on crypto-
graphic and symbolic models, where symbolic models take an idealized view on cryptog-
raphy. However, in the cryptographic setting, only very few voting protocols have been
analyzed rigorously w.r.t. coercion-resistance (see Section 5 for the related work). A major
obstacle has been that the above definitions tend to be complex and limited in scope: They
are often tailored to a very specific class of protocols or are too demanding; some otherwise
reasonable protocols are deemed insecure or can be shown to be secure only under stronger
assumptions or using stronger cryptographic primitives. Even some relatively simple vot-
ing protocols were out of the scope of most cryptographic definitions. The recently pro-
posed definition by Küsters et al. [20] overcomes these problems and allows a precise and
meaningful analysis of coercion-resistance of a wide range of voting protocols. (The paper
by Küsters et al. contains a more detailed comparison of their definition with other defini-
tions.) In this paper, we therefore use the definition by Küsters et al. to analyze Scantegrity
II. Indeed other cryptographic definitions would not be applicable (see Section 4).
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Contribution of this Paper. In this paper, we show that Scantegrity II provides an optimal
level of coercion-resistance, i.e., the level of coercion-resistance Scantegrity II provides coin-
cides with an ideal voting protocol, which only reveals the result of the election, but where
a coercer can force voters to abstain from voting: We assume that the coercer can see the
receipts of all voters, and hence, a coercer can force voters to abstain from voting (forced ab-
stention). Our analysis also assumes that the workstation and the PRNG used in Scantegrity
II are honest, i.e., these devices follow exactly the prescribed programs. This assumption is
indeed necessary for Scantegrity II to provide coercion-resistance.

Structure of this Paper. In the next section, we restate the definition of coercion-resistance
from [20]. In Section 3, we recall the Scantegrity II voting system and present a formal
specification. The analysis of Scantegrity II is then presented in Section 4. Related work is
discussed in Section 5. We conclude in Section 6. Some details of proofs are presented in the
appendix.

2 Coercion-Resistance

In this section, we recapitulate the definition of coercion-resistance from [20]. We also recall
from [20] the level of coercion-resistance an ideal voting protocol has, as this is used in
Section 3. First, we introduce some notation and terminology.

2.1 Preliminaries

As usual, a function f from the natural numbers to the real numbers is negligible if for every
c > 0 there exists `0 such that f (`) ≤ 1

`c for all ` > `0. The function f is overwhelming if the
function 1− f (`) is negligible. Let δ ∈ [0, 1]. The function f is δ-bounded if f is bounded by
δ plus a negligible function, i.e., for every c > 0 there exists `0 such that f (`) ≤ δ+ 1

`c for all
` > `0.

The modeling is based on a computational model similar to models for simulation-
based security (see, e.g., [5, 18]), in which interactive Turing machines (ITMs) communicate
via tapes. More concretely, Küsters et al. [20] use (a fragment of) the model proposed in
[18]. In this model, at every time only one ITM is active, all other ITMs in the system wait
to receive input. The active ITM may send a message to another ITM, which is then ac-
tivated. If no message is sent, the so-called master ITM, of which a system has only one,
is activated. The run of a system stops if, after being activated, the master ITM does not
send a message. Every ITM can be activated an unbounded number of times and in every
activation, an ITM may perform probabilistic polynomial-time computations in the length
of the security parameter and the input received so far. However, only systems that have
an overall polynomial runtime in the security parameter are considered. The details of the
model are not essential for the rest of the paper. However, we fix some notation.

A system S of ITMs is a multi-set of ITMs, which we write as S = M1 ‖ · · · ‖ Ml , where
M1, . . . , Ml are ITMs. If S1 and S2 are systems of ITMs, then S1 ‖ S2 is a system of ITMs,
assuming that the systems are connectible w.r.t. their interfaces (external tapes). Clearly, a
run of a system is uniquely determined by the random coins used by the ITMs in S .
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We assume that a system of ITMs has at most one ITM with a special output tape
decision. For a system S of ITMs and a security parameter `, we write Pr[S(`) 7→ 1] to
denote the probability that S outputs 1 (on tape decision) in a run with security parameter `.

A property of a system S is a subset of runs of S . For a property γ of S , we write
Pr[S (`) 7→ γ] to denote the probability that a run of S , with security parameter `, belongs to
γ.

2.2 Voting Protocols

A voting protocol P specifies the programs (actions) carried out by honest voters and honest
voting authorities, such as honest registration tellers, tallying tellers, bulletin boards, etc.

A voting protocol P, together with certain parameters, induces an election system S =
P(k, m, n,~p). The parameters are as follows: k denotes the number of choices, an honest
voter has in the election apart from abstaining from voting. In the simplest case, these
choices can be the candidates the voter can vote for. Choices can also be preference lists
of candidates, etc. In what follows, we often use the terms “candidate” and “choice” in-
terchangeably. By m we denote the total number of voters and by n, with n ≤ m, the
number of honest voters. Honest voters follow the programs as specified in the protocol.
The actions of dishonest voters and dishonest authorities are determined by the coercer, and
hence, these participants can deviate from the protocol specification in arbitrary ways. We
make the parameter n explicit since it is crucial for the level of coercion-resistance a system
guarantees. One can also think of n as the minimum number of voters the coercer may not
corrupt. The vector ~p = p0, . . . , pk is a probability distribution on the possible choices, i.e.,
p0, . . . , pk ∈ [0, 1] and ∑k

i=0 pi = 1. Honest voters will abstain from voting with probability
p0 and vote for candidate i with probability pi, 1 ≤ i ≤ k. We make this distribution explicit,
because it is realistic to assume that the coercer knows this distribution (e.g., from opinion
polls), and hence, uses it in his strategy, and because the specific distribution is crucial for
the level of coercion-resistance of a system.

An election system S = P(k, m, n,~p) specifies (sets of) ITMs for all participants, honest
voters and authorities, the coercer, subsuming dishonest voters and dishonest authorities,
and the coerced voter: (i) There are ITMs, say S1, . . . , Sl , for all honest voting authorities.
These ITMs run the programs as specified by the voting protocol. (ii) There is an ITM Svi , i ∈
{1, . . . , n} for each of the honest voters. Every such ITM first makes a choice according to the
probability distribution~p. Then, if the choice is not to abstain, it runs the program for honest
voters according to the protocol specification with the candidate chosen before. (iii) The
coercer is described by a set CS of ITMs. This set contains all (probabilistic polynomial-time)
ITMs, and hence, all possible coercion strategies the coercer can carry out. These ITMs are
only constrained in their interface to the rest of the system. Typically, the ITMs can directly
use the interface of dishonest voters and authorities. They can also communicate with the
coerced voter and have access to all public information (e.g., bulletin boards) and possibly
(certain parts of) the network. The precise interface of the ITMs in CS depends on the specific
protocol and the assumptions on the power of the coercer. (iv) Similarly, the coerced voter
is described by a set VS of ITMs. Again, this set contains all (probabilistic polynomial-time)
ITMs. This set represents all the possible programs the coercer can ask the coerced voter
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to run as well as all counter-strategies the coerced voter can run (see Section 2.3 for more
explanation). The interface of these ITMs is typically the interface of an honest voter plus
an interface for communication with the coercer. In particular, the set VS contains what we
call a dummy strategy dum which simply forwards all the messages between the coercer and
the interface the coerced voter has as an honest voter.

Given an election system S = P(k, m, n,~p), we denote by eS the system of ITMs con-
taining all honest participants, i.e., eS = (Sv1 ‖ . . . ‖ Svn ‖ S1 ‖ . . . ‖ Sl), where, as explained
above, Sv1 ‖ . . . ‖ Svn are the ITMs modeling honest voters and S1 ‖ . . . ‖ Sl are the honest
authorities. A system (c ‖ v ‖ eS) of ITMs, with c ∈ CS and v ∈ VS, is called an instance of S.
We often implicitly assume a scheduler (modeled as an ITM) to be part of a system. Its role
is to make sure that all components of the system are scheduled in a fair way, e.g., all voters
get a chance to vote. For simplicity of notation, we do not state the scheduler explicitly. We
define a run of S to be a run of some instance of S.

For an election system S = P(k, m, n,~p), we denote by Ω1 = {0, . . . , k}n the set of all
possible combinations of choices made by the honest voters, with the corresponding proba-
bility distribution µ1 derived from ~p = p0, p1, . . . , pk. All other random bits used by ITMs in
an instance of S, i.e., all other random bits used by honest voters as well as all random bits
used by honest authorities, the coercer, and the coerced voter, are uniformly distributed. We
take µ2 to be this distribution over the space Ω2 of random bits. Formally, this distribution
depends on the security parameter. We can, however, safely ignore it in the notation without
causing confusion. We define Ω = Ω1 ×Ω2 and µ = µ1 × µ2, i.e., µ is the product distri-
bution obtained from µ1 and µ2. For an event ϕ, we will write Prω1,ω2←Ω[ϕ], Prω1,ω2 [ϕ], or
simply Pr[ϕ] to denote the probability µ({(ω1,ω2) ∈ Ω : ϕ(ω1,ω2)}). Similarly, Prω1←Ω1 [ϕ]
or simply Prω1 [ϕ] will stand for µ1({ω1 ∈ Ω1 : ϕ(ω1)}); analogously for Prω2←Ω2 [ϕ].

A property of an election system S = P(k, m, n,~p) is defined to be a class γ of properties
containing one property γT for each instance T of S. We will write Pr [T 7→ γ] to denote the
probability Pr [T 7→ γT].

2.3 Defining Coercion-Resistance

We can now present the definition of coercion-resistance from [20]. Here, we concentrate on
the case that only a single voter is coerced. As discussed in [20], the definition in fact also
covers the case of multiple coerced voters and our results also hold for the case of multiple
coerced voters. In what follows, let P be a voting protocol and S = P(k, m, n,~p) be an
election system for P.

The definition of coercion-resistance assumes that a coerced voter has a certain goal
γ that she would try to achieve in absence of coercion. Formally, γ is a property of S. If,
for example, γ is supposed to express that the coerced voter wants to vote for a certain
candidate, then γ would contain all runs in which the coerced voter voted for this candidate
and this vote is in fact counted. We note that in some cases such a goal cannot be achieved,
e.g., in case ballots are sent over an unreliable channel or an election authority misbehaves
in an observable way (e.g., fails to provide a valid proof of compliance) and as a result the
election process is stopped. A more realistic goal γ would then be that the coerced voter
successfully votes for a certain candidate, provided that the voters ballot is delivered in
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time and the election authority did not misbehave in an observable way.
In the definition of coercion-resistance the coercer demands full control over the voting

interface of the coerced voter, i.e., the coercer wants the coerced voter to run the dummy
strategy dum (that simply forwards all the messages between the coercer and the interface
the coerced voter has as an honest voter) instead of the program an honest voter would
run. If the coerced voter runs dum the coercer can effectively vote on behalf of the coerced
voter or decide to abstain from voting. Of course, the coercer is not bound to follow the
specified voting procedure; he can perform arbitrary coercion strategies: The coercer can
send fake messages and depend his decisions on the information he has gathered so far. The
intention of the coercer might even be to merely test whether the coerced voter follows his
instructions, e.g., to find out whether this voter is “reliable”, and hence, is a good candidate
for coercion in later elections. Also, the coercer is not necessarily bound to use only the
interface of the coerced voter in his coercion strategy. There may be other ways to vote
on behalf of the coerced voter. However, for a protocol to be coercion-resistant, there will
always be at least one step in the protocol that the coercer cannot do all by himself, e.g.,
register, perform operations on a security token, or vote in a voting booth. For such actions,
the coercer has to consult the coerced voter.

Now, for a protocol to be coercion-resistant the definition requires that there exists a
counter-strategy ṽ that the coerced voter can run instead of dum such that (i) the coerced
voter achieves her own goal γ, with overwhelming probability, by running ṽ and (ii) the
coercer is not able to distinguish whether the coerced voter runs dum or ṽ. More precisely,
the ability of the coercer to distinguish between these two cases is measured. Hence, ṽ has to
simulate dum while at the same time make sure that γ is achieved. If such a counter-strategy
exists, then it indeed does not make sense for the coercer to try to influence a voter in any
way, e.g., by offering money or threatening the voter, at least not from a technical point of
view:∗ Even if the coerced voter tries to sell her vote, the coercer is not able to tell whether
she is actually following the coercer’s instructions or just trying to achieve her own goal
by running the counter-strategy. For the same reason, the coerced voter is safe, even if she
wants to achieve her goal and therefore runs the counter-strategy.

The formal definition of coercion-resistance is the following:

DEFINITION 1.Let P be a protocol and S = P(k, m, n,~p) be an election system. Let δ ∈ [0, 1],
and γ be a property of S. The system S is δ-coercion-resistant w.r.t. γ, if there exists ṽ ∈ VS
such that for all c ∈ CS we have:

(i) Pr[(c ‖ ṽ ‖ eS)(`) 7→ γ] is overwhelming, as a function of the security parameter.
(ii) Pr[(c ‖ dum ‖ eS)(`) 7→ 1]− Pr[(c ‖ ṽ ‖ eS)(`) 7→ 1] is δ-bounded, as a function of the

security parameter.

Condition (i) says that by running the counter-strategy ṽ the coerced voter achieves
her goal with overwhelming probability, no matter which coercion-strategy the coercer per-
forms.

Condition (ii) captures that the coercer is unable to distinguish whether the coerced
voter runs dum or ṽ. More precisely, the coercer accepts a run (i.e., outputs 1 on tape decision)

∗Of course, voters can be influenced psychologically.
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with almost the same probability no matter whether the coerced voter performs dum or ṽ,
where “almost the same” is formalized as δ-bounded, for some reasonably small δ. Remark
that requiring the difference in (ii) to be negligible instead of δ-bounded would be too strict:
The difference, even for an ideal protocol, which merely reveals the result of the election,
does not decrease with an increasing security parameter, but may depend on the number
of choices, the distribution ~p on these choices, and the number of honest voters: Imagine
for example that a candidate did not get any vote in an election. Now, if the coercer asked
the coerced voter to vote for this candidate, it is clear that the coerced voter did not follow
the coercer’s instruction. The probability for this to happen is non-negligible and depends
on ~p and the number of voters; the larger the number of voters is, the more likely it is
that a candidate gets a vote. In fact, in Scantegrity II, δ will depend on the number of
candidates, ~p, and the number of honest voters. Such a δ provides for a precise measure
of the level of coercion-resistance, which is of practical relevance: It might, for example,
indicate that a voting protocols does not have a sufficient level of coercion-resistance if the
number of voters is below a certain threshold, the number of candidates is too big, or the
probability distribution of the choices (e.g., according to opinion polls) is problematic in
terms of coercion-resistance (see also [20]).

2.4 Level of Coercion-Resistance of the Ideal Protocol

We briefly recall from [20] the level of coercion resistance of the ideal protocol, which just
collects the inputs of the voters and outputs the correct result of the election.

We consider the goal γi of the coerced voter, for i ∈ {1, . . . , k}, defined as follows: γi
is satisfied in a run, if whenever the coerced voter has sent her candidate to the voting
authority, she has successfully voted for the i-th candidate. This implies that if the coerced
voter is not instructed by the coercer to vote, i.e., the coercer does not send his candidate to
the coerced voter, and hence, effectively wants the coerced voter to abstain from voting, the
coerced voter does not have to vote in order to fulfill γi. In other words, by γi abstention
attacks are not prevented.

For the ideal protocol, one could consider abstention to be a goal of the coerced voter.
But this goal cannot be achieved in most practical protocols in which a voter is given a
receipt, as in Scantegrity, as such receipts can be used by the coercer to verify that the voter
has actually voted.

The stronger and simpler goal γ ′i which requires the coerced voter to vote for i, even
if the coercer wants the coerced voter to abstain is too strong for Scantegrity II, since we
assume that the coercer can see all receipts of voters who voted, the coerced voter can be
forced to abstain from voting. For reasons of uniformity, we therefore restrict ourselves to
the goal γi.

Since we assume that the coercer knows the votes of dishonest voters, he can simply
subtract these votes from the final result and obtain what we will call the pure result of the
election. The pure result only depends on the votes by the n honest voters and the coerced
voter. Hence, a pure result is a tuple ~r = (r0, . . . , rk) of non-negative integers such that
r0 + · · ·+ rk = n + 1, where ri, for i ∈ {1, . . . , k}, is the number of votes for the i-th candidate
and r0 denotes the number of voters who abstained from voting. The coercer has to base
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his decision—accept or reject—solely on such a pure result~r. We will denote the set of pure
results by Res.

In the following definition of constants δmin(k, n,~p) expressing the level of coercion
resistance of the ideal protocol, we will use the probability Ai

~r that the choices made by
the honest voters and the coerced voter yield the pure result~r = (r0, . . . , rk), given that the
coerced voter votes for the i-th candidate. Let r′j = rj for j 6= i and r′j = ri − 1. It is easy to
see that

Ai
~r =

n!
r′0! · · · r′k!

· pr′0
0 . . . pr′k

k =
n!

r0! · · · rk!
· pr0

0 . . . prk
k ·

ri

pi
.

The intuition behind the definition of δmin(k, n,~p) is the following: If the coercer wants
the coerced voter to vote for j and the coerced voter wants to vote for i, for some i, j ∈
{1, . . . , k}, then, as it is shown in [20], the best strategy of the coercer to distinguish whether
the coerced voter has voted for j or i is to accept a run if the pure result~r of the election in
this run is such that Ai

~r ≤ Aj
~r. Let M∗i,j = {~r ∈ Res : Ai

~r ≤ Aj
~r} be the set of those results,

for which—according to his best strategy—the coercer should accept the run. Now, we are
ready to define the constant δi

min, which is shown to be optimal in [20]:

δi
min(n, k,~p) = max

j∈{1,...,k}
∑

~r∈M∗i,j

(Aj
~r − Ai

~r).

In the definition of this constant, all possible candidates 1, . . . , k that the coercer can wish
the coerced voter to vote for are taken into account, excluding abstention, as in this case the
counter-strategy coincides with the dummy strategy. We take the worst possible case, i.e.,
the index j for which the sum in the expression above is maximal.

Figure 2.4 shows δ = δmin for some selected cases, see [20] for more values. The calcu-
lations show that the level of coercion-resistance heavily depends on the number of honest
voters, the number of candidates, and the probability distribution on the choices.
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Figure 1: Level of coercion-resistance (δ) for the ideal protocol. The goal of the coerced voter
is, in each case, to vote for candidate 1.
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3 Scantegrity II
In this section, we first give an informal description of the Scantegrity II system [10]. We
then provide a formal specification as an election system, as introduced in Section 2.2.

3.1 Informal Description

We shortly describe the Scantegrity II system as proposed in [10], which we will denote by
PSct.

In addition to the voters, the participants in this system are the following: (i) A work-
station (WSt), which is the main component in the voting process. The workstation uses a
bulletin board, that everybody has read-access to, for broadcasting messages. (ii) A pseudo
random number generator (PRNG), which is an independent source of randomness and which
is connected to the workstation. (iii) Some number of auditors aud1, . . . , audt who will con-
tribute randomness in a distributed way used for randomized partial checking (RPC). (iv)
A number of clerks cl1, . . . , clr that share a secret seed as input to the workstation.

The election consists of three phases described below: initialization, voting, and tally-
ing.

Initialization phase. In this phase, the election officials cl1, . . . , clr secret-share a seed to a
pseudo-random number generator and input this seed to a workstation that creates so called
P-table that is, k · s pseudo-random confirmation codes {cj

i} i=1,...,s
j=1,...,k

(where s is at least twice as

high as the number of voters, and k is the number of candidates). This table will never be
published. For every row i = 1, . . . , s in the P-table, a ballot is printed with the serial number
i and the confirmation codes cj

i written in invisible ink next to the respective candidate name

j, (j = 1, . . . , k). The workstation also creates a Q-table {cπ
−1
i (j)

i } i=1,...,s
j=1,...,k

obtained from the P-

table by permuting cells with a random permutation πi in each row i. Next, the, so called,
S-table of size k · s is created. This table is initially empty and will be used to mark positions
corresponding to the candidates chosen by the voters. Further, another table, the R-table
is created. The R-table consists of two columns, one column for Q-pointers pQ

k and one
column for so called S-pointers pS

k , for k = 1, . . . , (s · k). These pointers are just indices
of the respective table and are (supposed to be) pseudo-randomly generated in a way that
for every cell (i, j) ∈ {1, . . . , s} × {1, . . . , k} of the Q-table, there is exactly one Q-pointer
pQ

k = (i, j) and, similarly, for every cell (i, j) ∈ {1, . . . , s} × {1, . . . , k} of the S table, there
exists exactly one S-pointer pS

k pointing to that cell. Moreover, for every k, if pQ
k = (i, j) and

pS
k = (i′, j′), then j′ = π−1

i (j), i.e. the S-pointer next to a Q-pointer pointing to a cell with

confirmation code cπ
−1
i (j)

i for candidate j′ = π−1
i (j), points to a cell in the j′-th column of the

S-table. The workstation commits on every value in the Q- and R-table and publishes these
commitments.

Voting phase. In this phase the voter asks for either one or two ballots and a decoder pen
which she can use to reveal the codes written in invisible ink. If she takes two ballots, she
chooses one ballot to audit, which means that all codes are revealed and the workstation has
to open all the corresponding commitments in the Q- and R-table. Because of this check, a
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workstation that cheats by producing wrong ballots or wrong tables is detected with high
probability.

The other ballot is used for voting: The voter unveils exactly the code next to the can-
didate she wants to vote for and notes down that code somewhere. Unveiling the code
darkens the space next to the candidate, which can be detected by a conventional optical
scanner. The choice of the voter, together with the ballot serial number is recorded.

Tallying phase. In this last phase, the election officials publish a list of all voters that voted
and the tally given by the optical scanners. Furthermore, the P-table is used to reconstruct,
for every voter, the confirmation code from the voters choice j and the ballot serial number
i. The commitment to that code in the Q-table is then opened, i.e. the commitment on the
value of the cell (i, j′) of the Q-table, with j′ = πi(j). Further, the corresponding cells in the
R- and S-table are flagged: the election officials flag (publish) the index k of the R-table such
that pQ

k = (i, j′) and the index pS
k of the S-table. In the end, for each row k of the R-table,

either the commitment on the Q-pointer pQ
k or on the S-pointer pS

k is opened, depending on
a publicly verifiable coin flip.

Now, the result can be easily computed from the publicly available information: the
number of votes for candidate i is the number of flagged cells in the i-th column of the S-
table. As the workstation does not know a priori the result of the coin flips, if it tries to flag
several different cells, this is detected with high probability.

3.2 Modeling and Security Assumptions

The formal specification of Scantegrity II as an election system in the sense of Section 2.2
is straightforward. However, we highlight some modelling issues and, most importantly,
state our security assumptions.

Voting Authorities. We assume that the workstation, the pseudo random number gen-
erator and at least one clerk cli (i = 1, . . . , r) is honest; all others may be dishonest. This
assumption, that may seem to be rather strong, is in fact necessary for the Scantegrity II
system to be coercion-resistant:
• Clearly, as the workstation learns the votes of the voters, it is necessary that the work-

station is honest.
• If the PRNG were dishonest, it could leak the information which code it produces for

which candidate to the coercer which would give the coercer the possibility to check a
voters vote by demanding the receipt.
• If all clerks are dishonest, they may leak the secret seed that is used as input for the

PRNG, and hence, it may be clear for the coercer which code is produced for which
candidate.

Remarks: We could drop the assumption that the PRNG and one clerk is honest, if the
workstation secretly permuted the codes such that only the (honest) workstation knows,
which code belongs to which candidate.
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Honest voters. As described in Section 2.2, an honest voter first makes a choice accord-
ing to the probability distribution ~p. If the choice is to abstain from voting, she abstains,
otherwise follows the procedure described for the voting phase. After the voting phase is
finished, an honest voter reveals her (paper) receipt, e.g., mails it to an organization to ask it
to verify the correctness of the voting process w.r.t. her receipt or to publish it on some bul-
letin board. In particular, the coercer will get to see all receipts of honest voters, and hence,
know whether a voter voted or not. The assumption that the paper receipts are revealed
after the voting phase is reasonable. Also, the (presumably small) fraction of honest voters
for which the coercer manages to get hold of the receipt earlier, could be considered to be
dishonest. In any case, the assumption helps in the proof and we believe that our results
also hold without this assumption.

The coerced voter. A coerced voter, running the dummy strategy or emulating it by run-
ning a counter-strategy, can communicate with the coercer and send her candidate on an
untappable channel to the voting authority.

The coercer. The coercer can freely communicate with dishonest participants (voters and
authorities) as well as with the coerced voter; in fact, dishonest participants are considered
to be part of the coercer program. In a run of the system the coercer can see the following:
(v1) his random coins, (v2) all messages published by the workstation, both in the initial-
ization phase and the tallying phase, (v3) receipts of all honest voters, as already explained
above, and (v4) the messages received from the coerced voter (and dishonest parties), in-
cluding the receipt of the coerced voter. However, the coercer cannot directly see the infor-
mation the coerced voter obtains in the voting booth. In particular, the coerced voter can
lie about what she sees and does in the voting booth, such as the candidate she picked. So,
while talking with the coercer on the phone would be allowed, taking pictures or videos
should be prohibited (unless they can be manipulated on-the-fly, which, however, is unre-
alistic).

4 Analysis of Scantegrity II
In this section, we show that the Scantegrity II system, as specified in Section 3, enjoys the
same level of coercion-resistance as the ideal protocol.

4.1 The Main Result

We prove the following theorem, where we will consider goals γi of the coerced voter, for
i ∈ {1, . . . , k}, as described in Section 2.3.

THEOREM 2. Let S = PSct(k, m, n,~p). Then S is δ-coercion-resistant with respect to γi, where
δ = δi

min(n, k,~p).

Because, as it is shown in [20] and as we have already mentioned, δi
min(n, k,~p) is the

level of coercion-resistance the ideal voting protocol (i.e. the protocol that just outputs cor-
rectly the tally) achieves, Theorem 2 states the best possible δ for this protocol; for any δ′ < δ

the system PSct(k, m, n,~p) is not δ′-coercion-resistant w.r.t. γi.
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Remarks: None of the other definitions of coercion resistance proposed in the literature is
suitable for the analysis of Scantegrity II (see also Section 5):
• Juels et al. [17] propose a definition specifically tailored towards voting in a public-key

setting, with protocols having a specific structure. Scantegrity II does not fall into the
class of protocols considered by Juels et al. Similarly for the definition proposed by
Gardner et al. [15], which is also tailored to the protocol considered by the authors.

• The definition by Moran and Naor [24] is simulation-based, and hence, it suffers from
the commitment problem. Due to the intensive use of commitments in Scantegrity II,
the definition rejects the protocol as insecure, only due to the commitment problem.
The definition might be possibly used to prove coercion-resistance of the protocol,
if one would weaken the security assumptions, namely assume that all auditors are
honest. In this case a simulator can simulate these auditors, which allows it to fake
the proof that the R-table connects correctly the Q- and S-table, as it “knows” the
challenges.

• The definition by Teague et al. [34] is intended to be used for protocols that have
been reduced to ideal functionalities. As the authors suggest, this definition should
be combined with a simulation-based definition, such as the one by Moran and Naor,
and hence, it suffers from the same problem as that definition.

4.2 Proof of the Main Result

The remainder of this section is devoted to the proof of Theorem 2. First, we define the
counter-strategy ṽ of the coerced voter: ṽ coincides with the dummy strategy dum, with
the exception that ṽ votes for candidate i, i.e., the coerced voter reveals the code next to
candidate i, if the coercer instructs the coerced voter to vote for some candidate j.

Clearly, if the coerced voter runs the counter-strategy ṽ, then condition (i) of Definition 1
is satisfied for every c ∈ CS. Note that if the coercer does not instruct the coerced voter
to vote for some candidate j (abstention attack), then following the counter-strategy the
coerced voter abstains from voting, which is in accordance with γi.

It remains to prove condition (ii) of Definition 1. For this purpose, let us fix a program c
of the coercer. We need to prove that Pr[T 7→ 1]− Pr[T̃ 7→ 1] ≤ δ, where T = (dum ‖ c ‖ eS)
and T̃ = (ṽ ‖ c ‖ eS). The rest of the proof consists of two parts, a cryptographic and a
combinatorial part. The cryptographic part is Lemma 3. Using Lemma 3, the combinatorial
part is merely a reduction to the ideal case (see Section 2.4); it does not have to be redone.

As introduced in Section 2.2, by ω1 ∈ Ω1 we denote a vector of choices made by the
honest voters and by ω2 ∈ Ω2 we denote all the remaining random coins of a system. We
denote by ρ a view of the coercer, as described in Section 3.2, (v1)–(v4). We use the notion
of a pure result~r = (r0, . . . , rk) which is the result of the election not including the dishonest
voters. In particular, it holds that r0 + · · · + rk = n + 1 and the coercer can compute this
result from his view, by subtracting the votes of dishonest voters from the result of the
election. We will denote the pure result determined by a view ρ of the coercer by res(ρ).
A pure result determined by ω1 and the choice j of the coerced voter will be denoted by
res(ω1, j).



12 PROVING COERCION-RESISTANCE OF SCANTEGRITY II

As mentioned before, the coercer can derive from his view which voters abstained from
voting. Given a view ρ of the coercer, we denote by abst(ρ) the set of voters who abstained
from voting, among the honest voters and the coerced voter; the number of such voters is
referred to by r0(ρ) = |abst(ρ)|. As this set/number depends only on ω1, we will sometimes
write abst(ω1)/r0(ω1).

For a coercer view ρ in a run of the system, we denote by f (ρ) the candidate the coercer
wants the coerced voter to vote for; if the coercer does not instruct the coerced voter to vote,
then f (ρ) is undefined. Note that the coercer has to provide the coerced voter with f (ρ)
before the end of the election. Consequently, all messages the coercer has seen up to this
point only depend on ω2 and are independent of the choices made by honest voters, which
are determined by ω1. Therefore, we sometimes write f (ω2) for the candidate the coercer
wants the coerced voter to vote for in runs that use the random coins ω2.

For a coercer view ρ, letϕρ be a predicate over Ω1 such thatϕρ(ω1) holds iff res(ω1, f (ρ)) =
res(ρ) and abst(ω1) = abst(ρ), i.e., the choices ω1 of the honests voter are consistent with
the view of the coercer, as far as the result of the election and the set of abstaining vot-
ers is concerned, in case the coerced voter runs the dummy strategy. Analogously, for the
counter-strategy, we define that ϕ̃ρ(ω1) holds iff res(ω1, i) = res(ρ) and abst(ω1) = abst(ρ).

For a coercer view ρ, by T(ω1,ω2) 7→ ρ, or simply T 7→ ρ, we denote the fact that the
system T, when run with ω1,ω2, produces the view ρ (similarly for T̃). For a set M of views,
we write T(ω1,ω2) 7→ M if T(ω1,ω2) 7→ ρ for some ρ ∈ M.

The following lemma is the key fact used in the proof of Theorem 2 (see Appendix A
for the proof). It constitutes the cryptographic part of the proof of Theorem 2.

LEMMA 3. Let ρ be a coercer view such that f (ρ) is defined. Let ωρ1 and ω̃ρ1 be some fixed
elements of Ω1 such that ϕρ(ω

ρ
1 ) and ϕ̃ρ(ω̃

ρ
1 ), respectively. Then, the following equations

hold true:

Pr[T 7→ ρ] = Prω1 [ϕρ(ω1)] · Prω2 [T(ωρ1 ,ω2) 7→ ρ] (1)

Pr[T̃ 7→ ρ] = Prω1 [ϕ̃ρ(ω1)] · Prω2 [T̃(ω̃ρ1 ,ω2) 7→ ρ] (2)

Prω2 [T(ωρ1 ,ω2) 7→ ρ] = Prω2 [T̃(ω̃ρ1 ,ω2) 7→ ρ] . (3)

Intuitively, the lemma says that the view of the coercer is information-theoretically in-
dependent of the choices of honest voters and the coerced voter as long as these choices are
consistent with the result of the election given in this view.

Now, using this lemma, we can link the level of coercion-resistance the Scantegrity II
system provides with the optimal bound δmin established in [20]. Clearly, if f (ρ) is defined,
we have:

Prω1 [ϕρ(ω1)] = Prω1 [res(ω1, f (ρ)) = res(ρ)] · Prω1 [abst(ω1) = abst(ρ) | res(ω1, f (ρ)) = res(ρ)]

= A f (ρ)
res(ρ) · Prω1 [abst(ω1) = abst(ρ) | res(ω1, f (ρ)) = res(ρ)]

and similarly

Prω1 [ϕ̃ρ(ω1)] = Ai
res(ρ) · Prω1 [abst(ω1) = abst(ρ) | res(ω1, i) = res(ρ)].
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Furthermore, we have

Prω1 [abst(ω1) = abst(ρ) | res(ω1, f (ρ)) = res(ρ)] =
= Prω1 [abst(ω1) = abst(ρ) | r0(ω1) = r0(ρ)]
= Prω1 [abst(ω1) = abst(ρ) | res(ω1, i) = res(ρ)],

as the set of abstaining voters depends only on the number of abstaining voters.
Together with Lemma 3, we immediately obtain for all ωρ1 with ϕρ(ω

ρ
1 ):

Pr[T 7→ ρ]−Pr[T̃ 7→ ρ] =
(

A f (ρ)
res(ρ)−Ai

res(ρ)
)
·Prω2 [T(ωρ1 ,ω2) 7→ ρ] ·Prω1 [abst(ω1) = abst(ρ) | r0(ω1) = r0(ρ)].

Note that we do not assume here that there exists ω̃ρ1 such that ϕ̃ρ(ω̃
ρ
1 ). In this special case

we have Ai
res(ρ) = 0 and Pr[T̃ 7→ ρ] = 0.

Let M be the set of views that are accepted by the program c of the coercer, i.e., for
which the coercer outputs 1. In what follows, let j range over the set of candidate names
{1, . . . , k},~r = (r0, . . . , rk) over all the pure results and S over all subsets of {1, . . . , n}. Let
M~r,S

j = {ρ ∈ M : f (ρ) = j, abst(ρ) = S and res(ρ) = ~r}. In the following, we can assume
without loss of generality that M contains only views ρ such that Pr[T 7→ ρ] > 0 (this is
because, by removing from M views that fail to satisfy this condition, we only make the
expression Pr[T 7→ 1] − Pr[T̃ 7→ 1] bigger). Therefore, for all j,~r, and S such that M~r,S

j is

non-empty, there exists ω j,~r,S
1 such that res(ω j,~r,S

1 , j) =~r and abst(ω j,~r,S
1 ) = S. Clearly, we have

ϕρ(ω
j,~r,S
1 ) for all ρ ∈ M~r,S

j . We have

Φ = Pr[T 7→ 1]− Pr[T̃ 7→ 1]
= Pr[T 7→ M]− Pr[T̃ 7→ M]
= ∑

j
∑
~r

∑
S

∑
ρ∈M~r,S

j

(
Pr[T 7→ ρ]− Pr[T̃ 7→ ρ]

)
= ∑

j
∑
~r

∑
S

∑
ρ∈M~r,S

j

(Aj
~r − Ai

~r) · Prω2 [T(ω j,~r,S
1 ,ω2) 7→ ρ] · Prω1 [abst(ω1) = S|r0(ω1) = r0]

= ∑
j

∑
~r

(Aj
r − Ai

r) ∑
S

∑
ρ∈M~r,S

j

Prω2 [T(ω j,~r,S
1 ,ω2) 7→ ρ] · Prω1 [abst(ω1) = S|r0(ω1) = r0].

Let M∗i,j = {~r : Aj
~r ≥ Ai

~r}. Then, we obtain

Φ ≤∑
j

∑
~r∈M∗i,j

(Aj
~r − Ai

~r) ∑
S

∑
ρ∈M~r,S

j

Prω2 [T(ω j,~r,S
1 ,ω2) 7→ ρ]Prω1 [abst(ω1) = S | r0(ω1) = r0].

Next, we use that, by the definition of M~r,S
j , for ρ ∈ M~r,S

j we have f (ρ) = j and, because

f (ρ) depends only on ω2, T(ω j,~r,S
1 ,ω2) 7→ ρ implies f (ω2) = j. With this, we obtain

Prω2 [T(ωρ1 ,ω2) 7→ ρ] = Prω2 [ f (ω2) = j] · Prω2 [T(ω j,~r,S
1 ,ω2) 7→ ρ | f (ω2) = j]
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for ρ ∈ M~r,S
j . Now, we can conclude

Φ ≤∑
j

∑
~r∈M∗i,j

(Aj
~r − Ai

~r) ∑
S

Prω1 [abst(ω1) = S|r0(ω1) = r0] ∑
ρ∈M~r,S

j

Prω2 [ f (ω2) = j] · Prω2 [T(ω j,~r,S
1 ,ω2) 7→ ρ | f (ω2) = j]

≤∑
j

Prω2 [ f (ω2) = j] ∑
r∈M∗i,j

(Aj
r − Ai

r) ∑
S

Prω1 [abst(ω1) = S|r0(ω1) = r0]

≤∑
j

Prω2 [ f (ω2) = j] ∑
~r∈M∗i,j

(Aj
~r − Ai

~r)

≤∑
j

Prω2 [ f (ω2) = j] · δi
min(n, k,~p) ≤ δi

min(n, k,~p) = δ.

This concludes the proof of Theorem 2.

5 Related Work

As mentioned in the introduction, only very few voting protocols have been analyzed rig-
orously in cryptographic models w.r.t. coercion-resistance.

In [17], Juels et al. presented one of the first definitions of coercion-resistance, which is
tailored towards voting in a public-key setting, with protocols having a specific structure.
This definition is applied to the author’s voting protocol.

A definition of coercion-resistance within the simulation-based approach was presented
by Moran and Naor [24], based on a definition of coercion-resistance for multi-party com-
putation by Canetti and Gennaro [6]. Moran and Naor apply their definition to two of their
protocols, including their Split-Ballot protocol [25]. As further discussed in [20], and also
mentioned in Section 4.1, among others due the so-called commitment problem, the defi-
nition of Moran and Naor is quite demanding and rules out many seemingly reasonable
voting protocols.

Teague et al. [34] proposed a definition of coercion-resistance which takes a quantitative
approach. However, this definition has the following limitations: (i) It is intended to be used
for ideal protocols, combined, as the authors suggest, with a simulation-based definition. (ii)
The coercer may only use a specific strategy to decide whether to punish the coerced voter or
not. Also, the class of counter-strategies available to the coerced voter is limited. (iii) Only
the probability that a cheating voter gets punished is considered, ignoring the possibility
that a voter might try to sell her vote by following the instructions of the coercer. Teague et
al. apply their definition to a tallying procedure for STV voting.

A recent definition of coercion-resistance by Gardner et al. [15] is specifically tailored
to the protocol considered by the authors. It also considers only a very restricted part of
an election process, denying, for example, the coercers access to information in the tallying
phase.

As mentioned in the introduction, our work is based on the definition of coercion-
resistance proposed in [20] by Küsters et al. They apply their definition to ThreeBallot [30]
and Bingo Voting [4]. As Küsters et al. pointed out in their work, these protocols could
not have been analyzed based on other cryptographic definition of coercion-resistance. As
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menionted in Section 4.1, the analysis of Scantegrity II is also outside the scope of other
definitions of coercion-resistance.

As already mentioned in the introduction, several definitions of coercion-resistance
were proposed in symbolic models [14, 2, 19]. The definitions in [14, 2] were, among others,
applied to the protocol proposed in [17]. The authors of [19] applied their definition to the
voting system Civitas [13], a voting protocol by Lee et al. [22], and one by Okamoto [27].

6 Conclusion and Future Work
In this paper, we have shown that Scantegrity II provides an optimal level of coercion-
resistance, i.e., the same level of coercion-resistance as an ideal voting protocol, under the
(necessary) assumption that the workstation and the PRNG used in Scantegrity II are hon-
est. Since we assume that the coercer can see the receipts of all voters, and hence, can see
whether or not a voter voted, Scantegrity II is not resistant to forced abstentation attacks.

Besides coercion-resistance, Scantegrity II is also designed to provide verifiability. We
leave it to future work to analyze Scantegrity II w.r.t. this property. It seems possible to use
a very recently proposed definition of verifiability by Küsters, Truderung, and Vogt [21] for
this purpose. In the same paper, Küsters et al. also provide a definition of accountability,
which would be interesting to apply to Scantegrity II.
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A Proof of Lemma 3
The core of Lemma 3 is stated in the following lemma.

LEMMA 4. Let ρ be an arbitrary view such that f (ρ) is defined. Let ω1,ω′1,ω′′1 ,ω′′′1 be arbi-
trary, fixed elements of Ω1 with ϕρ(ω1),ϕρ(ω′1), ϕ̃ρ(ω′′1 ), and ϕ̃ρ(ω′′′1 ). Then the sets

A = {ω2 : T(ω1,ω2) 7→ ρ}, C = {ω2 : T̃(ω′′1 ,ω2) 7→ ρ},
B = {ω2 : T(ω′1,ω2) 7→ ρ}, D = {ω2 : T̃(ω′′′1 ,ω2) 7→ ρ}.

have the same cardinality, and hence, µ2(A) = µ2(B) = µ2(C) = µ2(D).

To prove this lemma, we use Lemma 5. To state Lemma 5, we use the following no-
tation. By T̃j we denote the system (ṽj ‖ c ‖ eS), where ṽj is defined like ṽ but votes for
j instead of i. So we have ṽ = ṽi and T̃ = T̃i. Moreover, for each view ρ of the coercer,
for which f (ρ) is defined, we clearly have: T(ω1,ω2) 7→ ρ iff T̃f (ρ)(ω1,ω2) 7→ ρ. A per-
mutation σ on a tuple (v0, . . . , vn) ∈ {0, 1, . . . , k}n+1 is a permutation on the set of indices
{0, . . . , n}. We write σ(v0, . . . , vn) for the tuple (vσ(0), . . . , vσ(n)). For simplicity of notation,
we sometimes write σ(vi) instead of vσ(i). We say that σ does not change the abstaining
votes of (v0, . . . , vn) if σ(j) = j for every j ∈ {0, . . . , k} with vj = 0. For j ∈ {1, . . . , k} and
ω1 ∈ Ω1(= {0, 1, . . . , k}n), we consider (j,ω1) to be an (n+1)-tuple over {0, 1, . . . , k}. If σ is
a permutation on (j,ω1), we may apply σ to ω1, written σ(ω1), with the obvious meaning.
With this and the above conventions, we have that σ(j,ω1) = (σ(j),σ(ω1)).

LEMMA 5. For every j ∈ {1, . . . , k}, every ω1 ∈ Ω1 and every permutation σ0 on (j,ω1) that
does not change the abstaining votes, there is a bijective function h = hj,ω1,σ0

from Ω2 to Ω2

such that for all ω2 we have that T̃j(ω1,ω2) yields the same view as T̃σ0(j)(σ0(ω1), h(ω2)).

We postpone the proof of this lemma to the end of this section. Now, Lemma 4 follows
directly from Lemma 5: Given the assumptions of Lemma 4, there are permutations σ0

1 , σ0
2 ,

and σ0
3 such that ( f (ρ),ω1) = σ0

1( f (ρ),ω′1) = σ0
2(i,ω′′1 ) = σ0

3(i,ω′′′1 ). Moreover, T(ω1,ω2) 7→ ρ

iff T̃f (ρ)(ω1,ω2) 7→ ρ and T̃(ω1,ω2) 7→ ρ iff T̃i(ω1,ω2) 7→ ρ. From this and Lemma 5 we obtain
that the functions h f (ρ),ω1,(σ0

1)−1
, h f (ρ),ω1,(σ0

2)−1
, and h f (ρ),ω1,(σ0

3)−1
, are bijections between A and

B, A and C, and A and D, respectively.
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Now with Lemma 4 we can easily complete the proof of Lemma 3:

Pr[T 7→ ρ] = Prω1,ω2 [ϕρ(ω1), T(ω1,ω2) 7→ ρ]
= ∑

ω′1 :ϕρ(ω′1)
Prω1,ω2 [ω1 = ω′1, T(ω′1,ω2) 7→ ρ]

= ∑
ω′1 :ϕρ(ω′1)

µ1(ω′1) · Prω1,ω2 [T(ω′1,ω2) 7→ ρ | ω1 = ω′1]

= ∑
ω′1 :ϕρ(ω1)

µ1(ω′1) · Prω2 [T(ω′1,ω2) 7→ ρ]

= ∑
ω′1 :ϕρ(ω1)

µ1(ω′1) · Prω2 [T(ωρ1 ,ω2) 7→ ρ]

= Prω1 [ϕρ(ω1)] · Prω2

[
T(ωρ1 ,ω2) 7→ ρ

]
.

This proves (1). The proof for (2) is analogous. Statement (3) follows immediately from
Lemma 4.

Proof of Lemma 5. To prove Lemma 5, we first introduce notation for the components
(cryptographic operations, random numbers, etc.) of the Scantegrity II protocol.

The cryptographic components. We first describe in detail the structure of the sequence ω2 ∈
Ω2 of random coins. In the following, by comm(a)r we denote the commitment on a with
randomness r.

(a) α — the random coins of the coercer.

(b) cj
i for i ∈ {0, . . . , s} and j ∈ {1, . . . , k}— the codes.

(c) πi for i ∈ {0, . . . , s} — the permutations used to create the Q-table from the P-table
(row i of P is permutated by πi).

(d) π, — a permutation of 1, . . . , s · k representing the Q-pointers of table R.
(e) π′, — a permutation of 1, . . . , s · k representing the S-pointers of table R, where we

assume that π′ is consistent with π and πi, i.e. a every element of the P-table is mapped
to the right column in the S-table.

(f) rj
i for i ∈ {0, . . . , s} and j ∈ {1, . . . , k} — the random numbers used for the commit-

ments of the entries in the Q-table, ccj
i = comm(πi(cj

i), rj
i).

(g) R1
t , R2

t for t ∈ {1, . . . , s} — the random numbers used for the commitments of the
entries in the R-table, cR1

t = comm(π(t), R1
t ) and cR2

t = comm(π′(t), R2
t ).

(h) Random values Si for i = 1, . . . , n — determining whether the honest voter vi takes
two ballots and which of the ballots to audit.

(i) Random challenges st ∈ {1, 2} for t ∈ {1, . . . , s} contributed by the auditors.

A view ρ of the coercer, depending on ω2 and the choices v0, . . . , vn taken by the voters,
consists of the following parts:
(B1) α — random coins of the coercer.

(B2) The commitments ccj
i = comm((cπi(j)

i ), rj
i), cR1

t = comm(π(t), R1
t ), and cR2

t = comm(π′(t), R2
t ).
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(B3) cvi
i — the code of the i-th voter, for every non-abstaining voter i (voting for candidate

vi).
(B4) The opened commitments in the Q table.
(B5) The challenges sl and the corresponding opened commitments of the R-table.
(B6) The flagged entries in the R- and S-table.

Because every permutation is the finite composition of permutations that switch only
two successive positions, it suffices to consider the case where σ flips the positions l and
l + 1; the rest follows from composing permutations and bijections. Let ṽ0, . . . , ṽn be such
that

σ(v0, . . . , vn) = (ṽ0, . . . , ṽn) = (v0, . . . , vl+1, vl , . . . , vn.)

Further, we assume that vl = y 6= z = vl+1, as the case that σ(v0, . . . , vn) = (v0, . . . , vn) is
trivial. Recall that, by assumption, we have that y, z 6= 0.

Let ω2 be any element of Ω2 and let α, cj
i , πi, π, π′, rj

i , R1
t , R2

t , Si, and st be the parts of
ω2 defined as above. Here, i ranges over 0, . . . , s and j over 1, . . . , k and t over 1, . . . , k · s. We
will denote the corresponding parts of h(ω2) by α̃, c̃j

i , and so on. We define h(ω2) as follows:

• α̃ = α. As one can see, (B1) remains unchanged.

• c̃j
i are defined like cj

i , except for that cy
l and cz

l as well as cz
l+1 and cy

l+1 are swapped. By
that, (B3) remains unchanged.
• π̃i is defined as πi, except for π̃l and π̃l+1. These two permutations differ from πl and
πl+1 in that the positions of cy

l and cz
l and of cz

l+1 and cy
l+1 are swapped.

• r̃j
i are defined like rj

i . By that we get that (B2) remains unchanged.
• The rest of ω2 remains unchanged. By that, (B4), (B5), and (B6) remain unchanged.

This concludes the description of h(ω2). As we have noted, all the parts (B1)–(B6) of the
views in both cases—for ω2 and h(ω2)—are exactly the same. As h just flips two times two
codes and changes two corresponding permutations, h is a bijection from Ω2 to Ω2.


