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Abstract

Key-dependent message (KDM) secure encryption schemes provide secrecy even when the
attacker sees encryptions of messages related to the secret-key sk. Namely, the scheme should
remain secure even when messages of the form f(sk) are encrypted, where f is taken from some
function class F . A KDM amplification procedure takes an encryption scheme which satisfies
basic level of KDM security with respect to some simple function class Fbasic and converts it
into a new encryption scheme which achieves high level of KDM security with respect to a richer
function class Fext. Such procedures were recently studied by Brakerski et al. (ePrint 2009/485)
and Barak et al. (EUROCRYPT 2010), who showed that a strong form of amplification is some-
times possible, provided that the underlying encryption scheme satisfies some special additional
properties (i.e., entropic-KDM security and simulatable-KDM security).

In this work, we prove the first generic KDM amplification theorem which relies solely on the
KDM security of the underlying scheme without making any other assumptions. Specifically,
we show that an elementary form of KDM security against functions in which each output bit
either copies or flips a single bit of the key (aka projections) can be amplified into KDM security
with respect to any function family that can be computed in arbitrary fixed polynomial-time.
Furthermore, our amplification theorem and its proof are insensitive to the exact setting of KDM
security, and they hold in the presence of multiple-keys and in the symmetric-key/public-key and
the CPA/CCA cases. As a result, we can amplify the security of all known KDM constructions,
including ones that could not be amplified before.

Our main result is proven by combining ideas from the previous amplification theorems of
Brakerski et al., and Barak et al., together with a novel use of the machinery of randomized
encoding (Ishai and Kushilevitz, FOCS 2000). The resulting proof is very simple and, in some
sense, illuminates a new connection between the previous approaches.

Finally, we study the minimal conditions under which full-KDM security (with respect to all
functions) can be achieved. We show that under strong notion of KDM security, the existence
of cyclic-secure fully-homomorphic encryption is not only sufficient for full-KDM security, as
shown by Barak et al., but also necessary. On the other hand, we observe that for standard
KDM security, this condition can be relaxed by adopting Gentry’s bootstrapping technique
(STOC 2009) to the KDM setting.
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at the Weizmann Institute of Science, supported by Koshland Fellowship.
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1 Introduction

The study of secure encryption scheme is perhaps the most central subject in cryptography. Since
the discovery of semantic security [24] till the formulation of CCA-security [31, 33, 17], modern
cryptography have successfully developed increasingly stronger notions of security providing secrecy
in highly adversarial settings. Still, all these strong notions of security guarantee secrecy only as
long as the encrypted messages are independent of the secret key. This limitation dates back to
the seminal work of Goldwasser and Micali [24] who observed that semantic security may not hold
if the adversary gets to see an encryption of the secret key. For many years, such usage scenarios
were considered as “security bugs” that should be prevented by system designers.

A decade ago, the assumption of independency between the secret key and the encrypted data
was challenged by Camenisch and Lysyanskaya [15] and Black et al. [11]. Specifically, Camenisch
and Lysyanskaya considered schemes that remain secure under a “key cycle” usage, where we have t
keys organized in a cycle and each key is encrypted under its left neighbor. A generalization of this
notion, called key-dependent message (KDM) security, was suggested by Black et al. Informally,
an encryption is KDM(t) secure with respect to a function class F if security holds even when the
adversary can ask for an encryption of the message M = f(sk1, . . . , skt) under the i-th public-key,
where sk1, . . . , skt are the secret keys present in the system and f is an arbitrary function in F . This
notion of security implies cyclic-security if F is expressive enough (e.g., contains all “projections”
functions), and it becomes strictly stronger when the function class F grows. Hence, one would
like to achieve KDM security while making the function class F as large as possible.

The notion of KDM security was extensively studied in the past few years in several flavors
including the symmetric/public-key and the CPA/CCA settings [15, 11, 26, 8, 12, 16, 7, 27, 25,
4, 14, 2, 9, 13]. These works were motivated by the fundamental nature of the question as well
as by concrete applications including encrypted storage systems (e.g., BitLocker [12]), anonymous
credentials [15], and realization of security proofs at the framework of axiomatic security [1, 11, 3].
(See [12] for more motivations and details.)

Although much is known today about KDM security both on the positive and negative sides,
it is still unclear whether a standard encryption scheme can be transformed into a scheme which
provides KDM(t) security, even with respect to a single key (i.e., t = 1) and simple non-trivial
function families (e.g., projections).1 Hence, it is natural to move forward and explore the possibility
of building strong KDM security given a weak form of KDM security as a primitive. This makes
sense as today, following the seminal work of Boneh et al. [12] and its follow-ups [16, 4, 13], it
is known that a basic form of KDM security (with respect to the family of “affine functions”)
can be achieved in several settings under various concrete cryptographic assumptions. Therefore,
following [14] we ask:

Is there a generic transformation which amplifies KDM security from a weak family of
functions Fbasic to a larger family of functions Fext ?

The two main features of such a procedure are generality – the transformation should work with
any scheme which satisfies Fbasic-KDM security without relying on any other additional property –

1It is known that KDM security with respect to sufficiently rich families of functions cannot be based on standard
assumptions via fully black-box reductions [25]. However, this impossibility result (and its extension in [9]) does not
hold for simple function class (e.g., projections). Moreover, this result is restricted to reductions which also treats
the function family in a black-box manner, a restriction which can be bypassed as shown in [9] and in the current
paper.
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and large amplification gap – ideally, Fbasic is a very simple function class whereas Fext is as rich as
possible. The question of KDM amplification was recently addressed by Brakerski et al. [14] and
Barak et al. [9], who made an important progress by showing how to amplify the KDM security
of several existing schemes. While these works achieve relatively large amplification gap, they fall
short of providing full generality as they strongly rely on additional properties of the underlying
scheme (i.e., simulatable-KDM security and entropic-KDM security). As a concrete example, it is
unknown how to use any of these techniques to amplify the KDM-security of the symmetric-key
encryption scheme of [4] which is based on the Learning Parity With Noise (LPN) assumption.
(See Section 1.3 for more details about these works and their relation to our approach.)

1.1 Our Results

We give an affirmative answer to the above question by providing the first generic KDM ampli-
fication procedure. In particular, we consider the projection function class Projt of all functions
f : (sk1, . . . , skt) 7→ v in which each output bit depends on (at most) single bit of the input. Namely,
each output bit vj is either fixed to a constant or copies/flips an original bit of one of the keys. We
show that this elementary function family is complete in the following sense:

Theorem 1.1 (Completeness of projections (Informal)). Let Fext be any function family which can
be computed in some fixed polynomial time. Then, any encryption scheme which satisfies KDM(t)

security with respect to projections can be transformed into an encryption scheme which is KDM(t)-
secure with respect to Fext.

Generality. Theorem 1.1 assumes nothing but KDM security regarding the underlying scheme.
Furthermore, the theorem (and its surprisingly simple proof) is insensitive to the exact setting of
KDM security: it holds for any number of keys (t), and in both symmetric-key/public-key and
CPA/CCA settings. In all these cases, the new scheme is proven to be secure exactly in the same
setting as the original scheme. This allows us, for example, to amplify the security of the affine-
KDM secure scheme of [4], and obtain the first symmetric-key encryption scheme with strong KDM
security based on the Learning Parity with Noise assumption.

Large gap. Theorem 1.1 provides a large amplification gap. In fact, this gap can be further
expanded as follows. First, we can achieve length-dependent KDM security [9], which means that
the target family Fext can be taken to be the family of all polynomial-size circuits whose size grows
with their input and output lengths via a fixed polynomial rate (e.g., the circuit size is quadratic
in the input and output lengths). This family is very powerful and it was shown to be rich enough
for most known applications of KDM security [9].2 (See Section 3 for details.) In addition, in
the case of CPA security (both in the public-key and symmetric-key settings), we can weaken the
requirement from the underlying scheme and ask for KDM security with respect to projections with
a single output : namely, all Boolean functions f(sk1, . . . , skt) 7→ b which output a single bit of one of
the keys, or its negation. This can be extended to the CCA setting via the transformations of [8, 16]
(though in the public-key setting one has to assume, in addition, the existence of non-interactive
zero-knowledge proofs for NP).

2Most of the statements in [9] refer to the slightly weaker notion of Bounded KDM security in which the circuit
size grows only as a function of the input via a fixed polynomial rate. However, as observed in [9, Sec. 6] their
construction actually satisfy the stronger definition of length-dependent KDM security.
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The relaxation to single-output projections also enables a liberal interface to which we can easily
plug previous constructions. For example, one can instantiate our reduction with schemes that enjoy
KDM security with respect to affine functions, while almost ignoring technical details such as the
underlying field and its representation. (These details required some effort in previous works. See
the appendices in [14, 9, 13].) This, together with the simple proof of our main theorem, allows to
simplify the proofs of [9, 13] for the existence of length-dependent KDM secure encryption scheme
under the Decisional Diffie-Hellman (DDH) assumption [12], the Learning With Errors assumptions
(LWE) [4], and the Quadratic Residuosity (QR) assumption [13].

Given this completeness theorem, the current status of KDM security resembles the status of
other “complete” primitives in cryptography such as one-way functions or oblivious transfer [32, 18]:
We do not know how to build these primitives from generic weaker assumptions, however, any
instantiation of them suffices for an entire world of applications (i.e., all symmetric-key primitives
in the case of one-way functions, and generic secure-computation in the case of oblivious transfer,
cf. [22, 23]).

Beyond length-dependent security. Although length-dependent KDM security seems to suf-
fice for most applications, one can strive for an even stronger notion of security in which the KDM
function class contains all functions (or equivalently all functions computable by circuits of arbi-
trary polynomial size). It is somewhat likely that any length-dependent secure scheme actually
achieves full-KDM security (see the discussion in [9]). Still, one may want to construct such a
scheme in a provably secure way. As a basic feasibility result, it was shown in [9] that any fully
homomorphic encryption scheme [20] which allows to encrypt the secret-key (i.e., “cyclic-secure”)
is also full-KDM secure. In light of the small number of FHE candidates [20, 34], and our little
understanding of this notion, one may ask whether it is possible to relax this requirement and
achieve full-KDM security under weaker assumptions.

We make two simple observations regarding this question. First, we consider the case of simu-
latable KDM security [9], in which it should be possible to simulate an encryption of f(sk) given
only the corresponding public-key in a way that remains indistinguishable even to someone who
knows the secret-key. We show that in this setting the two notions: circular-secure FHE and full-
KDM are equivalent. Hence, achieving full-KDM security under a relaxed assumption requires to
use non-simulatable constructions.

Our second observation asserts that the bootstrapping technique of Gentry [20] can be used
in the KDM setting as well (even for the case of non-simulatable constructions). That is, if one
can construct an encryption scheme which guarantees KDM security with respect to circuits whose
depth is only slightly larger than the depth of the decryption algorithm, then this scheme is actually
fully KDM secure. Unfortunately, all known amplification techniques [9, 14] including the ones in
this paper, amplify KDM security at the cost of making the decryption algorithm “deeper”. Still,
we view this observation as an interesting direction for future research.

1.2 Our Techniques

To formalize the question of KDM amplification, we define the notion of reduction between KDM
function families Fext ≤KDM Fbasic which means that any scheme that provides KDM security with
respect to Fbasic can be transformed (via a fully black-box reduction) to a scheme that satisfies
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KDM security with respect to Fext. We describe a novel way to derive such KDM reductions based
on the machinery of randomized encoding of functions [29, 6]. Before we explain this notion, let us
start with the simpler case of deterministic encoding.

Say that a function f deterministically encodes a function g if for every x the output of f(x)
“encodes” the output of g(x) in the sense that g(x) can be efficiently computed based on f(x) and
vice versa. That is, there are two efficiently computable mappings S and R such that S(g(x)) =
f(x), and R(f(x)) = g(x). Suppose that we are given a scheme which provides KDM security with
respect to the encoding f , and we would like to immunize it against the function g. This can be
easily achieved by modifying the encryption scheme as follows: to encrypt a message M we first
translate it into the f -encoding by computing S(M), and then encrypt the result under the original
encryption scheme. Decryption is done by applying the original decryption algorithm, and then
applying the recovery algorithm R to translate the result back to its original form. Observe that
an encryption of g(sk) in the new scheme is the same as an encryption of S(g(sk)) = f(sk) under
the original scheme. Hence, the KDM security of the new scheme with respect to g reduces to the
KDM security of the original scheme with respect to f .

This simple idea provides a direct reduction with very nice structure: any KDM query for the
new scheme is translated into a single KDM query for the original scheme. This simple single-
query-to-single-query translation leads to high level of generality: the transformation is insensitive
to the exact KDM setting (symmetric-key/public-key and CPA/CCA), to the number of keys, and
it can be used with respect to large function families Fext and Fbasic as long as every function in
Fext is encoded by some function in Fbasic via a pair of universal mappings S and R. On the down
side, one may complain that security was not really amplified, as the function g and its encoding
f are essentially equivalent. It turns out that this drawback can be easily fixed by letting f be a
randomized encoding of g.

In the case of randomized encoding (RE), the function f(x; r) depends not only on x but also
on an additional random input r. For every fixed x, the output of f(x; r) is now viewed as a
distribution (induced by a random choice of r) which should encode the value of g(x). Namely,
there are two efficiently computable randomized mappings S and R such that for every x: (1) the
distribution S(g(x)) is indistinguishable from f(x; r), and (2) with high probability over the choice
of r (or even with probability one) R(f(x; r)) = g(x). One can view these conditions as saying that
g(x) is encoded by a collection of functions {hr(x) = f(x; r)}r.

Now suppose that our scheme is KDM secure with respect to the family {hr(x) = f(x; r)}r,
then we can apply the above approach and get a scheme which satisfies KDM security with respect
to g. The only difference is that now the message preprocessing step is randomized: To encrypt a
message M first encode it by the randomized mapping S(M), and then use the original encryption
function. The security reduction is essentially the same except that a KDM query for g in the new
scheme is emulated by an old KDM query for a randomly chosen function hr. This idea can be
easily extended to the case where all functions in Fext are encoded by functions in Fbasic:

Theorem 1.2 (Informal). If Fbasic is an RE of Fext, then Fext ≤KDM Fbasic.

The crux of this theorem, is that, unlike deterministic encoding, randomized encoding can
represent complicated functions by collections of very simple functions [29, 30, 6, 5]. Specifically,
by combining the above theorem with the REs of [5], which, in turn, are based on Yao’s garbled
circuit [35], we obtain our main results (Thm. 1.1).
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1.3 Comparison with BGK and BHHI

Our techniques are inspired by both [14] (BGK) and [9] (BHHI). We believe that our approach
inherits the positive features of each of these works, and sheds new light on the way they relate to
each other. Let us review the main ideas behind these constructions and explain how they compare
to our solution.

1.3.1 The BGK reduction

The starting point in [14] is an encryption scheme which satisfies entropic KDM security with
respect to Fbasic. Roughly speaking, this means that KDM security should hold not only when
sk is chosen uniformly from the key space K = {0, 1}k but also when it is chosen uniformly from
a smaller domain K′, e.g., K′ = {0, 1}kε

. By relying on this notion, BGK shows that for every
efficiently computable injective mapping α : K′ → K, one can amplify security from Fbasic to the
class Fbasic◦α, i.e., with respect to functions f(α(sk)) for every f ∈ Fbasic. The idea is to choose the
key sk′ from K′ and employ the original scheme with the key sk = α(sk′). This allows to translate
a KDM query f(α(sk′)) for the new scheme into an entropic-KDM query f(sk) for the old scheme.

The deterministic encoding (DE) approach is inspired by the BGK approach, and can be seen as
a complementary solution. BGK extends a function f : K →M to f ◦α : K′ →M by shrinking the
key space (from K to K′), whereas in the DE approach f : K →M is extended to R ◦ f : K →M′

by padding messages which effectively shrinks the message space (from M to M′ = R(M)).
As a result BGK enjoys a similar attractive security reduction with single-query-to-single-query

translation. This leads to flexibility with resect to the KDM setting. Indeed, although the BGK
approach is not fully general due to its use of entropic-KDM security (a notion which seems stronger
than standard KDM security), it immediately generalizes to the CCA and the symmetric-key
settings, as long as the underlying scheme provides entropic-KDM security.

It should be mentioned that in our approach the amplification is achieved by modifying the
encryption algorithm, rather than the key-generation algorithm as in BGK. This minor difference
turns to have a considerable effect on the amplification-gap. First, it allows to use fresh randomness
in every application of the encryption algorithm, and so the linkage between functions in Fext to
functions in Fbasic can be randomized. Indeed, this is exactly what allows us to exploit the power
of randomized encoding. In contrast, the BGK approach tweaks the key-generation algorithm
and so the relation between Fext to Fbasic is bounded to be deterministic. In addition, since our
modification happens in the encryption (and decryption) phases, we can let the function class Fext

grow not only with the security parameter but also with the size of the messages. This leads to
the strong notion of length-dependent security, and in addition allows to achieve KDM(t) where the
number of keys t grows both with the message length and the security parameter.

In contrast, the family Fext of BGK cannot grow with the message length, and it can only contain
a polynomial number of functions. This limitation prevents it from being used in applications which
require KDM security wrt larger functions classes (e.g., secure realization of symbolic protocols with
axiomatic proofs of security). Furthermore, amplification for large number of keys can be achieved
only at the expense of putting more restrictions on the underlying scheme (i.e., simulatable KDM
security). On the other hand, assuming these additional properties, the BGK approach can get
KDM(t) for arbitrary unbounded t with respect to some concrete function families (e.g., constant
degree polynomials), whereas in our approach t is always bounded by some fixed polynomial (in
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the security parameter and message length).3 Finally, it is important to mention that the BGK
reduction treats Fext in a black-box way, while the randomized encoding approach treats this class
in a non-black-box way.

1.3.2 The BHHI reduction

The BHHI approach relies on a novel connection between homomorphic encryptions and KDM
security. First, it is observed that in order to obtain KDM security with respect to Fext it suffices
to construct a scheme which provides both cyclic-security (i.e., KDM security with respect to the
identity function) and homomorphism with respect to a function family Fext, i.e., it should be
possible to convert a ciphertext C = Encpk(M) into C ′ = Encpk(f(M)) for every f ∈ Fext. Indeed,
the homomorphism property can be used to convert a ciphertext Encpk(sk) into a the ciphertext
Encpk(f(sk)), and so cyclic-security is amplified to Fext-KDM security.

BHHI construct such an encryption scheme by combining a two-party secure computation pro-
tocol with two messages (i.e., Yao’s garbled circuit technique [35]) with a strong version of oblivious
transfer which satisfies an additional cyclic-security property. The latter primitive is referred to
as targeted encryption (TE). The basic idea is to view the homomorphic property as a secure-
computation task in which the first party holds the message M and the second party holds the
function f . The cyclic nature of the TE primitive allows to implement this homomorphism even
when the input M is the secret-key. Finally, BHHI show that TE can be constructed based on
affine-KDM secure encryption scheme which satisfies a strong notion of simulation: There exists a
simulator which given the public-key pk can simulate a ciphertext Encpk(f(sk)) in a way which is
indistinguishable even for someone who holds the secret-key.

The BHHI construction seems conceptually different from our RE approach (i.e., homomorphism
vs. encoding). Moreover, the construction itself is not only syntactically different, but also relies
on different building blocks (e.g., TE). Still, the RE construction share an important idea with
BHHI: The use of secure-computation techniques. It is well known that REs are closely related to
secure multiparty-computation (MPC) protocols4, and, indeed, the role of REs in our reduction
resembles the role of MPC in BHHI. In both solutions at some point the security reduction applies
the RE/MPC to the function f in Fext. Furthermore, both works achieve strong KDM security by
instantiating the RE/MPC with Yao’s garbled circuit (GC) — a tool which leads to both: stand-
alone RE construction [5] and, when equipped with an OT, to a two-party secure-computation
protocol.

It should be emphasized, however, that the actual constructions differ in some important as-
pects. While we essentially encrypt the whole GC-based encoding under the underlying KDM
encryption scheme, BHHI tweak the GC protocol with a cyclic-secure OT (i.e., TE). Pictorially,
our underlying KDM-secure scheme “wraps” the GC encoding, whereas in BHHI the KDM-secure
primitive is “planted inside” the GC protocol. This difference affects both generality and simplicity
as follows.

First, BHHI are forced to implement a KDM-secure OT, a primitive which seems much stronger
than standard KDM secure encryption schemes. For example, KDM-secure symmetric-key en-

3In fact, we can achieve a slightly stronger notion. Assuming that the underlying scheme satisfies KDM(t) security
for arbitrary t’s (as in [12, 4]), we get a KDM(t) secure scheme where there exists an unbounded number of keys in
the system, but the arity of the KDM functions available to the adversary is polynomially bounded (in the security
parameter and message length). Still, these functions can be applied to arbitrary subsets of the keys.

4In fact, REs were originally defined as a strong form of non-interactive reductions for MPC [29].
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cryption schemes can be constructed at the presence of a random oracle [11] while OT protocols
cannot [28].5 Moreover, as we already mentioned, although TE can be based on several known
affine-secure KDM schemes (i.e., ones which enable strong simulation), the LPN assumption (with
constant error-rate) is a concrete example under which symmetric-key encryption scheme with
KDM-security wrt affine functions exist, yet OT is not known to exist. Furthermore, since BHHI
send the garbled circuit in the clear, it is not hard to show that the resulting scheme is not CCA-
secure even if the TE provides CCA security. Finally, the modification of the GC protocol leads to
a relatively complicated security proof.

2 Preliminaries

For a positive integer n ∈ N, denote by [n] the set {1, . . . , n}. A function ε(n) is negligible if it
tends to zero faster than 1/nc for every constant c > 0. The term efficient refers to probabilistic
polynomial time.

Efficient functions and randomized functions. A randomized function f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ is a function whose second input is treated as a random input. We write f(x; r) to denote
the evaluation of f on deterministic input x and random input r, and typically assume length
regularity and efficient evaluation as follows: there are efficiently computable polynomials m(n)
and `(n) and an efficiently computable circuit family

{
fn : {0, 1}n × {0, 1}m(n) → {0, 1}`(n)

}
which

computes the restriction of f to n-bit deterministic inputs. If the function is not length regular,
we assume that the circuit family is indexed by a pair of input and output parameters (n, `), and
require evaluation in time poly(n, `). Finally, a deterministic function corresponds to the special
case where m(n) = 0.

Function ensembles. A function ensemble is a collection of functions {fz}z∈Z indexed by an
index set Z ⊆ {0, 1}∗, where for each z the function fz has a finite domain {0, 1}n(z) and a finite
range {0, 1}`(z), where n, ` : {0, 1}∗ → N. (This means that different functions may have different
domains but each fixed function fz is regular.) By default, we assume that ensembles are efficiently
computable, that is, the functions n(z), `(z), as well as the function F (z, x) = fz(x) are computable
in time poly(|z|). Hence n(z), `(z) < poly(|z|). We also assume that |z| < poly(n(z), `(z)).

Randomized encoding of functions. Intuitively, a randomized encoding of a function f(x)
is a randomized mapping f̂(x, r) whose output distribution depends only on the output of f .
We formalize this intuition via the notion of computationally-private randomized encoding of [5],
while adopting the original definition from a non-uniform adversarial setting to the uniform set-
ting where adversaries are modeled by probabilistic polynomial-time Turing machines. Let f ={
fn : {0, 1}n → {0, 1}`(n)

}
be a function and f̂ =

{
f̂n : {0, 1}n × {0, 1}m(n) → {0, 1}s(n)

}
be a ran-

domized function, which are both efficiently computable. We say that f̂ encodes f , if there exist
an efficient recovery algorithms Rec and an efficient simulator Sim that satisfy the following:

5It seems that a similar statement holds even for public-key KDM-secure schemes. See [11, 21].
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• perfect correctness. For every x ∈ {0, 1}n, the error probabilities Pr[Rec(1n, f̂(x,Um(n))) 6=
f(x)] and Pr[Rec(1n, Sim(1n, f(x))) 6= f(x)] are both zero.6

• computational privacy. For every efficient adversary A we have that

Pr[Af̂(·;U)(1n) = 1]− Pr[ASim(f(·))(1n) = 1] < neg(n),

where the oracles are defined as follows: Given x the first oracle returns a sample from
f̂(x; Um(|x|)) and the second oracle returns a sample from Sim(1|x|, f(x)).

This notion is naturally extended to functions fn,` which are not length-regular and are indexed
by both input and output lengths. However, we always assume that privacy is parameterized
only with the input length (i.e., the adversary’s running-time/distiunguishing-probability should
be polynomial/negligible in the input length.) Note that, without loss of generality, we can assume
that the relevant output length `, is always known to the decoder and simulator.

Encryption schemes (syntax). An encryption scheme consists of three probabilistic-polynomial
time algorithms (Gen,Enc, Dec), where Gen is a key generation algorithm which given a security
parameter 1k outputs a pair (sk, pk) of decryption and encryption keys; Enc is an encryption algo-
rithm that takes a message M ∈ {0, 1}∗ and an encryption key pk and outputs a ciphertext C; and
Dec is a randomized decryption algorithm that takes a ciphertext C and a decryption key sk and
outputs a plaintext M ′. We also assume that both algorithms take the security parameter 1k as an
additional input, but typically omit this dependency for simplicity. Correctness requires that the
decryption error

max
M∈{0,1}∗

Pr
(pk,sk)

R←Gen(1k)

[Decsk(Encpk(M)) 6= M ],

should be negligible in k, where the probability is taken over the randomness of Gen, Enc and Dec.
For security parameter k, let Kk denote the space from which decryption keys are chosen. Without
loss of generality, we always assume that Kk = {0, 1}k.

Following Goldreich [23], we note that the above definition corresponds to both public-key and
symmetric-key encryption schemes where the latter correspond to the special case in which the
decryption key sk and encryption key pk are equal. As we will see, the difference between the two
settings will be part of the security definitions.

3 KDM-Security

Let (Gen, Enc, Dec) be an encryption scheme with key space K = {Kk}. Let t : N→ N be a function.
A t-ary KDM function ensemble is an efficient ensemble of functionsF =

{
fk,z : Kt(k)

k → {0, 1}∗
}

(k,z)
.

We let Fk denote the set
{

fk,z : Kt(k)
k → {0, 1}∗

}
z
. We define KDM-CCA security in the public-key

setting with respect to F via a game that takes place between a challenger and an adversary A,
and is indexed by the security parameter k. The game is defined in Figure 1.

6Previous definitions require only that the first quantity is zero, however, all known constructions (of perfectly-
correct randomized encoding) satisfy the current (stronger) definition.
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• Initialization. The challenger randomly chooses a bit b
R← {0, 1} and t = t(k) key-

pairs (sk1, pk1) . . . , (skt, pkt) by invoking Gen(1k) for t times. The adversary A can
send a “public-key” query and ask to see all the encryption keys (pk1, . . . , pkt).

• Queries. The adversary A may adaptively make polynomially-many queries of the
following types:

– Encryption (KDM) queries. A makes a query of the form (i, f) where i ∈ [t]
and f ∈ Fk. The challenger computes M = f(sk1, . . . , skt) and outputs

C
R←

{
Enc(pki,M) if b = 1,

Enc(pki, 0|M |) if b = 0.

– Decryption queries. A can also make queries of the form (i, C) where i ∈ [t], as
long as C was not given as an answer of a previous encryption query of the form
(i, f) for some f ∈ Fk. The challenger responds with M = Decski(C) regardless
of the value of b.

• Final phase. The adversary attempts to guess b and outputs a bit b′ ∈ {0, 1}.

Figure 1: The KDM game with respect to the function ensemble F = {Fk}. The notion of public-
key query captures the public-key setting (as opposed to the symmetric-key setting).

By restricting the power of the adversary in the above game we get other KDM settings.
Specifically, the symmetric-key setting corresponds to adversaries of type sym who do not ask
public-key queries, and the CPA setting corresponds to adversaries of type CPA who do not make
decryption queries. Hence, we can classify KDM adversaries into one of the following four types:
(pub,CCA), (pub, CPA), (sym, CCA), and (sym, CPA).

Definition 3.1. (KDM-secure encryption) Let T ∈ {pub, sym} × {CCA, CPA}. An encryption
scheme is T -KDM secure with respect to a function ensemble F if every polynomial-time attacker
A of type T has at most negligible advantage in guessing the value of the bit b in the KDM game,
where the running time and the advantage are measured as functions of the security parameter k.

Interesting KDM functions ensembles. For every t = t(k) and for every type T we consider
the following ensembles:

• Constants, selectors, and projections. If Fk contains all constant functions {fM :
(sk1, . . . , skt) 7→ M}M , then, as observed in [12], KDM security implies standard security
(with respect to the type T ) as fixed KDM functions can emulate a standard encryption ora-
cle. If the ensemble contains in addition all selector functions {fj : (sk1, . . . , skt) 7→ skj}j∈[t],
we get the notion of clique security [12] (which is stronger than circular security [15]), that is,
the scheme is secure even if the adversary sees encryptions of the form Encpki

(skj) for every
i, j ∈ [t]. Another elementary class, that slightly generalizes the previous ones, is the class
of all functions f : (~sk) 7→ v in which each output bit depends on (at most) single bit of
the input ~sk. Namely, the j-th output bit vj is either fixed to a constant or copies/flips an
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original bit of one of the keys, i.e., vj ∈ {0, 1, ski,q, 1− ski,q}, where ski,q is the q-th bit of the
i-th secret key. We refer to this class as the class of projections and let Projtk,` denote the
restriction of this class to functions of input length kt and output length `(k). Note that this
is a subclass of the class of affine functions L : Fkt

2 → F`(k)
2 .

• Polynomial-size circuits [9]. For polynomials p(·) and `(·), let Ct
k,`,p denote the class of all

circuits C : {0, 1}kt → {0, 1}`(k) of size at most p(k)+p(`). Security with respect to this class
is denoted by (p, `)-bounded circuit-size KDM security. A slightly stronger notion of security is
p-length-dependent KDM security which means that the scheme is KDM secure with respect
to Ct

k,`,p for every polynomial `. While, ultimately one would like to have KDM security
with respect to all polynomial-size circuits (for arbitrary polynomial), it seems that p length-
dependent security, say for quadratic p, may be considered to be almost as powerful since it
allows the adversary to use larger circuits by encrypting longer messages. In particular, one
can represent essentially any polynomial-time computable function via padding. That is, if a
function f is not in the class since its circuit is too large, then a “padded” version f ′ of f in
which the output is padded with zeroes does fall into the ensemble. Furthermore, in [9] it was
shown that if p is sufficiently large (e.g., the quadratic polynomial) then length-dependent
security is sufficient for axiomatic-security applications (i.e., it gives the ability to securely
instantiate symbolic protocols with axiomatic proofs of security).

The above definitions become stronger when the arity t grows. At one extreme, one may consider
a single scheme which satisfies any of the above definitions for an arbitrary polynomial t(k), and at
the other extreme one may consider the case of t = 1, which is still non-trivial even for projection
functions.

Reductions among KDM-ensembles. We say that a KDM function ensemble Fext KDM-
reduces to another KDM function ensemble Fbasic (in symbols Fext ≤KDM Fbasic) if there exists a
transformation which converts an encryption scheme PKC that is KDM secure wrt to Fbasic into an
encryption scheme P̂KC which is KDM secure wrt to Fext. Formally, such a (black-box) reduction
is composed of (1) (construction) an encryption scheme P̂KC which is given an oracle access to the
scheme PKC; and (2) (security reduction) an efficient algorithm B such that for any adversary A
that α-breaks the KDM-security of the scheme PKC wrt to Fbasic, the adversary BA,PKC breaks the
scheme P̂KC wrt to Fext with similar probability (up to a negligible loss). This definition can be
instantiated with respect to all four different types. We say that the reduction is type-preserving
if BA,PKC always ask the same type of queries that A asks in the KDM game. Type preserving
reduction extend KDM-security while being insensitive to the concrete setting which is being used.
Formally,

Lemma 3.2 (KDM-reductions). Suppose that the KDM function ensemble Fext KDM-reduces to
the ensemble Fbasic via a type-preserving reduction (P̂KC,B). Then, for every T ∈ {pub, sym} ×
{CCA, CPA}, if the encryption scheme PKC is T -KDM secure with respect to Fbasic, then the en-

cryption scheme P̂KC
PKC

is T -KDM secure with respect to Fext.
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4 Reductions and Completeness results

4.1 KDM reductions via randomized encoding

Let F = {fk,z} and G = {gk,w} be a pair of KDM function ensembles with the same arity t = t(k).
We say that F is encoded by G if functions in F have a randomized encoding, such that for every
function f(x) ∈ Fext the encoding f̂(x; r), restricted to any fixed random string r, is in Fbasic. More
formally, the evaluation function Fk(z, x) of F should have a randomized encoding F̂k((z, x); r)
such that for every fixing of r and index z, the function F̂k,z,r(x) = F̂ (k, z, x; r) corresponds to a
function gk,w in G, where the mapping from (z, r) to w should be efficiently computable in poly(k)
time. Note that this means that the simulator and decoder are universal for all indices z, and
depend only in the value of k.7

Theorem 4.1 (main theorem). Suppose that the KDM function ensemble Fbasic encodes the KDM
function ensemble Fext. Then, Fext KDM-reduces to Fbasic via a type-preserving reduction.

To prove the theorem we need to describe a construction and a security reduction. From now
on, let Sim and Rec be the universal simulator and recovery algorithm which establish the encoding
of Fext by Fbasic.

Construction 4.2. Given an oracle access to the encryption scheme PKC = (Gen,Enc, Dec), we
define the scheme P̂KC as follows

Ĝen(1k) = Gen(1k) Êncpk(M) = Encpk(Sim(M)) D̂ecsk(C) = Rec(Decsk(C)),

where all algorithms (i.e., encryption, decryption, simulator and recovery) get the security param-
eter 1k as an additional input.

It is not hard to show that P̂KC satisfies the syntactic requirements of encryption schemes,
namely correctness.

Lemma 4.3 (correctness). The decryption error of the scheme P̂KC is the same as the decryption
error of PKC, and so it is negligible.

Proof. The probability that a message M is incorrectly decrypted is bounded by

Pr
(pk,sk)

R←Gen(1k),M ′ R←Sim(M)

[Decsk(Encpk(M ′)) 6= M ′] + Pr[Rec(M ′) 6= M ],

since the second term is 0, due to the (perfect) correctness of the encoding, we can bound the above
by maxM ′∈{0,1}∗ Pr[Decsk(Encpk(M ′)) 6= M ′], where (pk, sk) R← Gen(1k).

Next, We show that the security of P̂KC can be based on those of PKC.
7In fact, the encoding itself may access in a black-box manner to the underlying encryption scheme PKC (or any

cryptographic primitive which can be based on it via a black-box reduction, e.g., one-way function). More precisely,
our results hold (i.e., lead to black-box KDM reduction/construction) even if the simulator and decoder use such a
BB access, as well as in the case that such access is needed to compute the mapping from an index/randomness pair
(z, r) to the index w of the function gk,w = F̂k,z,r(x).
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Reduction 4.4. Given an oracle access to an adversary A that KDM-attacks PKC wrt Fbasic we
define an adversary B that KDM-attacks P̂KC wrt Fext as follows:

• Initialization: B invokes A. If A asks for the encryption keys then B makes a similar query
and passes the answer to A.

• Encryption query: If A makes an encryption query (i, f), for i ∈ [t] and f ∈ Fext, then
B does the following: She uniformly chooses randomness r for the randomized encoding f̂ of
f , and asks the encryption query (i, g) where g(·) = f̂(·, r) which, by our assumption, is in
Fbasic. The answer of the challenger is being sent to A.

• Decryption query: If A makes a decryption query (i, C), then B checks that it is legal (by
inspecting all previous encryption queries), and if so, (1) passes the same decryption query
to the challenger, (2) applies the recovery algorithm Rec to the result, and (3) sends it back
to A.

• Termination: B terminates with the same output of A.

Note that the above reduction is indeed type-preserving. Before we formally prove the correct-
ness of the reduction, observe that, intuitively, the difference between the emulated view of A and
the view of A in the actual game, is only due to the difference in the way encryption queries are
answered when the challenger is in the “real-mode”, i.e., where the challenge bit b equal to 1. In
the real game, encryptions are computed properly as Êncpki

(f(~sk)) = Encpki
(Sim(f(~sk))), whereas

in the emulated game they are computed by Encpki
(f̂(~sk, U)). However, this difference should not

be noticeable due to the privacy of the randomized encoding. Formally, we prove the following
lemma.

Lemma 4.5. If A is an efficient adversary that breaks P̂KC wrt Fext with advantage α(k), then
the adversary BA,PKC breaks PKC wrt Fbasic with advantage α(k)− neg(k).

Proof. We show that if the claim does not hold then the privacy of the randomized encoding can
be broken. Formally, let F (z, x) = fz(x) be the uniform evaluation function of Fext = {fz} and
let F̂ (z, x; r) be the encoding of F . We define the following distinguisher D which, given an oracle
access to either F̂ (·;U) or to Sim(F (·)), attempts to distinguish between the two. The adversary
D emulates the challenger: It tosses a coin b, and generates a key vector (ski, pki)i∈[t] by executing
the key-generation algorithm Gen(1k) for t times. Then D invokes A. If A asks for the public-keys,
D passes them to him. If A makes an encryption query (i, fz) then D calls its oracle with the
value F (z, ~sk). Let M denote the answer of the oracle. The distinguisher computes the ciphertext
C = Encpki

(M) if b = 1, and C = Encpki
(0|M |) otherwise. Then D sends the ciphertext C to A. If

A asks for decryption query (i, C), the distinguisher checks that it is legal by inspecting all previous
encryption queries, and if so, sends Decski

(C). The distinguisher halts with output 1 if and only if
A guesses the bit b correctly.

Note that: (1) If D gets an oracle access to Sim(F (·)) then the view of A is distributed exactly as
in the real game and so in this case D outputs 1 with probability α(k); (2) If D gets an oracle access
to F̂ (·; U) then the view of A is distributed exactly as in the above reduction (when B emulates the
game). Hence, by the privacy of the encoding, the distinguisher DF̂ (·;U) outputs 1 with probability
at most α(k)− neg(k), and so the claim follows.
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4.2 Completeness of projections

In [5], it is shown, based on Yao’s garbled circuit technique, that efficiently computable functions
can be encoded by decomposable encoding in which every bit depends on at most single bit of the
deterministic input. By combining this fact with Thm 4.1, we get the following:

Proposition 4.6 (Completeness of projections). For every polynomials p(·), t(·), `(·), there exists
a polynomial q(·) for which

Ct
k,`,p ≤KDM Projtk,q, Ct

k,p ≤KDM Projtk, (1)

where Ct
k,`,p denotes the t-ary ensemble of p-bounded circuits of output length `, Projtk,q denotes the

t-ary ensemble of projections of output length q, Ct
k,p =

⋃
a∈N Ct

k,ka,p, and Projtk =
⋃

a∈N Projtk,ka.
Furthermore, the reductions are type-preserving.

Hence, one can upgrade KDM security from (almost) the weakest KDM function ensemble to
the very powerful notion of p-length dependent KDM security.

Proof. In [5], it was shown that, based on Yao’s garbled circuit technique [35], any efficiently com-
putable circuit family {gk(x)} of circuit complexity a(k) can be encoded by a uniform computationally-
private perfectly-correct encoding {ĝk(x; r)} with the following properties: (1) The simulator and
decoder use a black-box access to a one-time symmetric encryption (equivalently, to a one-way
function); (2) For every fixed randomness r, the resulting function ĝk,r(x) = ĝk(x; r) is a single-bit
operation function of output length a(k)1+ε, where ε > 0 is an arbitrary small constant. (3) Fur-
thermore, the mapping from the circuit of gk to the circuit of ĝk,r is efficiently computable given a
black-box access to the one-time symmetric encryption scheme.

Let {Fk} be the universal (and uniform) circuit family for the mapping (x, z) 7→ y where x ∈
({0, 1}k)t, the string z is a description of a circuit Cz : ({0, 1}k)t → {0, 1}`(k) of size p(k) + p(`(k)),
and the string y ∈ {0, 1}`(k) is Cz(x). By applying the encoding from [5] to {Fk} it follows that
Ct

k,`,p is encoded by Projtk,q where q is polynomial in the circuit size of Fk. The first part of the
proposition now follows from Thm 4.1.

The second part follows similarly, except that now we consider the (non-regular) function {Gk,`}
which computes the same mapping of Fk but for circuits Cz whose output length ` is given as an
additional index, and not as a fixed polynomial in k. Again, by applying the encoding from [5] to
{Gk} it follows that Ct

k,p is encoded by Projtk. Hence, the second part of the proposition follows
from Thm 4.1.8

In the case of CPA KDM security, one can actually derive KDM-security with respect to pro-
jections of arbitrary output length (i.e., Projtk) from single-output projections Projtk,1.

Claim 4.7 (Completeness of single-output projections for CPA-KDM). For every polynomial t(·),
we have Projtk ≤KDM Projtk,1, where the reduction holds for both (sym, CPA) and (pub, CPA) types.

Proof. The proof follows by simple concatenation: the new encryption/decryption algorithms en-
crypts/decrypts the message/ciphertext by applying the original encryption/decryption algorithm
in a bit by bit manner. Hence, a KDM encryption query in Projtk,ka for the new scheme can be
emulated by ka KDM encryption queries in Projtk,1 for the original scheme.

8Recall that for non-regular functions the privacy of the encoding is measured as a function of the input length
kt = poly(k), and so Thm 4.1 holds in this setting as well.
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As shown in [8], we can use the standard encrypt-then-MAC transformation to upgrade the
security of a scheme that satisfies (sym, CPA)-KDM security into a scheme that satisfies (sym, CCA)-
security with respect to the same KDM class. A similar result was proven for the public-key setting
by [16] via the Naor-Yung double-encryption paradigm (which relies on the existence of NIZK).
Hence, by Proposition 4.6 and Claim 4.7, we have:

Corollary 4.8 (KDM Collapse). For every polynomials t and p, there exists a Projtk,1-KDM secure
scheme if and only if there exists p-length dependent KDM secure encryption scheme. This holds
unconditionally for every KDM type {(sym, CPA), (sym, CCA), (pub, CPA)}, and for (pub,CCA)
assuming the existence of non-interactive zero-knowledge proof system for NP.

We remark that all the known constructions of affine-KDM secure encryption schemes [12, 4, 13]
can be adopted to yield KDM security with respect to single-output projections, (as shown in
Appendix A) and so, we get p-length dependent (pub, CPA)}-KDM (resp., (sym, CCA)}) based on the
DDH, LWE, or QR assumptions (resp., LPN assumption), which can be boosted into (pub,CCA)}-
KDM assuming the existence of NIZK for NP.

5 On Full KDM Security

In this section, we study the possibility of constructing a scheme which satisfies KDM security for
the class of all functions. In [9] it was shown that such a scheme can be constructed based on
the existence of cyclic-secure fully homomorphic encryption (FHH) [20]. We show that a similar
assumption is inherently required for full KDM security which is also simulatable.

A public-key encryption scheme (Gen, Enc,Dec) is simulatable fully-KDM secure (with arity
n = 1) if there exists a polynomial-time simulator S such that for every circuit f of size poly(k),
the ensemble (sk, S(pk, f)) is indistinguishable from (sk, Encpk(f(sk))), where the ensembles are

indexed by f and (sk, pk) R← Gen(1k).
An FHH allows to translate encryptions of a message M into an encryption of a related message

h(M) for any polynomial-size circuit h. More formally, we say that a public-key encryption scheme
(Gen, Enc,Dec) is fully homomorphic if there exists an efficient algorithm Eval such that for every
circuit h of size poly(k) and message M ∈ {0, 1}poly(k), the ensemble (sk, Eval(pk, h,Encpk(M))) is
computationally indistinguishable from the ensemble (sk, Encpk(h(M))), where the ensembles are

indexed by the security parameter k, the function h and the message M , and where (sk, pk) R←
Gen(1k).

In [9], it was shown that any circular-secure fully-homomorphic simulatable encryption scheme
is simulatable fully-KDM secure. We show that the other direction holds as well, and so the two
notions are equivalent.

Proposition 5.1. Any simulatable fully-KDM secure encryption scheme of type (pub,CPA) is also
fully-homomorphic circular-secure.

Proof. Given a simulatable fully-KDM secure encryption scheme (Gen, Enc, Dec) with simulator
S, we define Eval(pk, h, C) by invoking S on the pair (pk, fh,C) where fh,C is the mapping sk 7→
h(Decsk(C)). Note that the circuit size of fh,C is polynomial in the circuit size of h (since Dec is
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efficient). Also, by definition, we have for every M and h,

(sk, Eval(pk, h, Encpk(M))) ≡ (sk, S(pk, fh,Encpk(M)))
c≡ (sk,Encpk(h(Decsk(Encpk(M)))))
≡ (sk,Encpk(h(M))),

and the proposition follows.

Next, we show that if one removes the simultability requirement then any encryption scheme
(Gen, Enc,Dec) which provides KDM security with respect to a function which is slightly stronger
than its decryption algorithm Dec, is actually fully-KDM secure. This is done by observing that
Gentry’s “bootstrapping technique” can be adopted to the KDM setting.

Proposition 5.2. Suppose that PKC = (Gen, Enc,Dec) is type T ∈ {(pub, CPA), (sym, CPA)} KDM
secure with respect to single-output projections and in addition with respect to the function family
Fk = {fC1,C2 : sk 7→ NAND(Decsk(C1),Decsk(C2))}C1,C2∈{0,1}p(k), where p(k) is the length of an
encryption of one-bit message under secret-key of length k. Then, PKC is fully KDM secure of the
same type T .

Sketch. Since we restrict our attention to the CPA setting, it suffices to prove full KDM security
with respect to all circuits of single output. We show how to convert an attacker which sends
arbitrary KDM queries into one which uses only queries from Fk. Let h be a circuit of size t, which
is wlog composed of NAND gates, and let hi denote the function computed by the i-th gate of h,
where gates are ordered under some topological ordering. We translate a KDM query for h into t
KDM calls to Fk by traversing the circuit from bottom to top in a gate by gate manner. At the i-th
query we will have a ciphertext Ci such that, if the oracle is in the real mode Ci = Encpk(hi(sk))
and if it is in the fake mode Ci = Encpk(0). This can be achieve directly for the input gates by
making a single KDM query with a single-bit wise operation. To do this, for an internal gate h`

whose input wires are connected to hi and hj for some i, j < `, we use a KDM query to fCi,Cj . It
is not hard to see that the invariant holds, and therefore the claim follows.
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A From affine functions to projections

Converting affine-security to security under single-output projections is immediate if the affine
functions are defined over the binary field F2 (as in the LPN based scheme of [16]), but can also be
established in more general cases, which capture all known schemes, as follows.

Suppose that we have KDM security for affine functions over a ring R (which may, in general,
be a ring family whose size depends on the security parameter). Namely, the scheme encrypts ring
elements, the secret-key consists of n ring elements sk = (ski)i∈[n], and KDM security holds with
respect to affine functions: fa,b : sk 7→ (

∑
i ai · ski) + b. Let 〈sk〉 = (〈sk〉1, . . . , 〈sk〉k) denote the

representation of the secret key sk as a k-bit string. We will show that affine functions can encode
projections and thus, by Thm. 4.1, get a new scheme with bit-operation KDM security. This is
possible as long as the bit representation is “meaningful” in terms of the group R. Formally, we
distinguish between the following two cases.

In the first case, each key element ski is represented by a single bit 〈sk〉i. That is, there exists
a list of non-zero public elements g = (g1, . . . , g`) such that ski = gi · 〈sk〉i (where, for the sake of
ring arithmetics, we think of a bit β as either the zero element or the one element of the ring).
This is the case, for example, in the schemes of [12, 13]. Let us assume that 〈sk〉 is used as the
bit-representation of the key. Then we can use the RE approach to amplify affine security (over R)
into security against projections by showing that the former encodes the latter. Formally, every
single-output bit operation function fi,σ(〈sk〉) = 〈sk〉i⊕σ is encoded by f̂i,σ(〈sk〉; r) = (〈sk〉i−σ)·gi ·r
where r is a randomly chosen non-zero element of R. This encoding enjoys perfect correctness via
a universal decoder (a zero element is decoded to 0 and any other element is decoded to 1) and
perfect privacy via a universal simulator (given an output β of f simulate the corresponding output
of f̂ by multiplying it with a random non-zero element). Moreover, when the randomness is fixed
we get a linear function over R. Hence, by Thm. 4.1, the security of the scheme can be amplified
to hold with respect to single-output projections.

We proceed with the second case. Let us assume that the mapping from sk to each bit of the
representation 〈sk〉 can be computed by a polynomial-size arithmetic branching program (ABP)
(see [10, 19]) over R. (This is possible in a trivial way whenever the ring is of polynomial size, as
in the LWE-based scheme of [4].) Then, the mappings fi,0 : sk 7→ 〈sk〉i and fi,1 : sk 7→ 1 − 〈sk〉i
can also be computed by a polynomial-size ABP. Hence, by [19], there exists a perfect (universal)
RE f̂i,σ(sk; r) such that for every fixed choice of r, f̂r,i,σ(sk) = f̂i,σ(sk; r) is an affine function
over R. Hence, by Thm. 4.1, the security of the scheme can be amplified to hold with respect to
single-output projections.
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