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Cosmological Models of Universe with Variable Deceleration Parameter in Lyra’s Manifold
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FRW models of the universe have been studied in the cosmological theory based on Lyra’s manifold. A
new class of exact solutions has been obtained by considering a time dependent displacement field for variable
deceleration parameter from which three models of the universe are derived (i) exponential (ii) polynomial and
(iii) sinusoidal form respectively. The behaviour of these models of the universe are also discussed. Finally
some possibilities of further problems and their investigations have been pointed out.
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I. INTRODUCTION

Einstein proposed his general theory of relativity, in which
gravitation is described in terms of geometry, and it motivated
the geometrization of other physical fields. One of the first
attempts in this direction was made by Weyl [1] who pro-
posed a more general theory in which gravitation and elec-
tromagnetism is also described geometrically. However, this
theory was never considered seriously as it was based on the
non-integrability of length transfer. Later Lyra [2] suggested a
modification of Riemannian geometry by introducing a gauge
function which removes the non-integrability condition of the
length of a vector under parallel transport. Subsequently, Sen
[3] & Sen and Dunn [4] proposed a new scalar tensor theory of
gravitation. They constructed an analog of the Einstein field
equations based on Lyra’s geometry which in normal gauge
may be written as

Ri j− 1
2

gi jR+
3
2

φiφ j− 3
4

gi jφkφk =−8πGTi j, (1)

where φi is the displacement vector and other symbols have
their usual meaning as in Riemannian geometry.

Halford [5] pointed out that the constant displacement vec-
tor field φi in Lyra’s geometry plays the role of a cosmological
constant in the normal general relativistic treatment. Halford
[6] showed that the scalar-tensor treatment based on Lyra’s
geometry predicts the same effects, within observational lim-
its, as in Einstein’s theory. Several authors [7] have studied
cosmological models based on Lyra’s geometry with a con-
stant displacement field vector. However, this restriction of
the displacement field to be a constant is a coincidence and
there is no a priori reason for it. Singh et al. [8] have stud-
ied Bianchi type I, III, Kantowski-Sachs and a new class of
models with a time dependent displacement field and have
made a comparative study of Robertson-Walker models with
a constant deceleration parameter in Einstein’s theory with a
cosmological terms and in the cosmological theory based on
Lyra’s geometry. Recently Pradhan et al. [9] and Rahaman et
al. [10] have studied cosmological models based on Lyra’s
geometry with constant and time time dependent displace-
ment field in different context.

The Einstein’s field equations are a coupled system of
highly nonlinear differential equations and we seek physical

solutions to the field equations for their applications in cos-
mology and astrophysics. In order to solve the field equa-
tions we normally assume a form for the matter content or
that space-time admits killing vector symmetries [11]. Solu-
tions to the field equations may also be generated by applying
a law of variation for Hubble’s parameter which was proposed
by Berman [12]. In simplest case the Hubble law yields a con-
stant value for the deceleration parameter. It is worth observ-
ing that most of the well-known models of Einstein’s theory
and Brans-Dicke theory with curvature parameter k = 0, in-
cluding inflationary models, are models with constant decel-
eration parameter. In earlier literature cosmological models
with a constant deceleration parameter have been studied by
several authors [9, 13]. But redshift magnitude test has had
a chequered history. During the 1960s and the 1970s, it was
used to draw very categorical conclusions. The deceleration
parameter q0 was then claimed to lie between 0 and 1 and thus
it was claimed that the universe is decelerating. Today’s situ-
ation, we feel, is hardly different. Observations (Knop et al.
[14]; Riess et al. [15]) of Type Ia Supernovae (SNe) allow to
probe the expansion history of the universe. The main conclu-
sion of these observations is that the expansion of the universe
is accelerating. So we can consider the cosmological models
with variable cosmological term and deceleration parameter.
The readers are advised to see the papers by Vishwakarma and
Narlikar [16] and Virey et al. [17] and references therein for
a review on the determination of the deceleration parameter
from Supernovae data.

Recently Pradhan et al. [18] have studied the universe with
time dependent deceleration parameter in presence of perfect
fluid. Motivated by the recent results on the BOOMERANG
experiment on Cosmic Microwave Background Radiation
(Bernardis [20]), we wish to study a spatially flat cosmologi-
cal model. In this paper, we have investigated spatially non-
flat and flat cosmological models with a time dependent dis-
placement field within the framework of Lyra’s geometry. We
have obtained exact solutions of the field equations of Sen
[3] by taking the deceleration parameter to be variable. This
paper is organized as follows. The metric and the field equa-
tions are presented in Section II. In Section III we deal with
a general solution. The Sections IV, V, and VI deal with the
three different cases for the solutions in exponential, polyno-
mial and sinusoidal forms respectively. Finally in Section VII
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concluding remarks are given.

II. FIELD EQUATIONS

The time-like displacement vector φi in the equation (1) is
given by

φi = (0,0,0,β(t)). (2)

The energy-momentum tensor in the presence of a perfect
fluid has the form

Ti j = (ρ+ p)uiu j− pgi j (3)

together with co-moving coordinates uiui = 1, where ui =
(0,0,0,1). The metric for FRW spacetime is

ds2 = dt2−R2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)
]
, (4)

where, k = 1,−1,0. For this metric, the field equations (1)
with the equations (2) and (3) take the form

3H2 +
3k
R2 −

3β2

4
= χρ, (5)

2Ḣ +3H2 +
k

R2 +
3β2

4
=−χp, (6)

where χ = 8πG and H = Ṙ/R is the Hubble’s function. Equa-
tions (5) and (6) lead to the continuity equation

χρ̇+
3
2

ββ̇+3
[

χ(ρ+ p)+
3
2

β2
]

H = 0. (7)

Assuming an equation of state

p = γρ, 0≤ γ≤ 1. (8)

Eliminating ρ(t) from (5) and (6) we obtain

2Ḣ +3(1+ γ)H2 +(1+3γ)
k

R2 +
3
4
(1− γ)β2 = 0. (9)

Here β2 plays the role of a variable cosmological term Λ(t).
We have two independent equations in three unknowns viz
R(t), ρ(t) and β. Therefore we need one more relation among
the variables in order to obtain a unique solution. Hence, we
consider the deceleration parameter to be time dependent.

III. SOLUTIONS OF THE FIELD EQUATIONS

We consider the deceleration parameter to be variable

q =−RR̈
Ṙ2 =−

(
Ḣ +H2

H2

)
= b (variable). (10)

The equation (10) may be rewritten as

R̈
R

+b
Ṙ2

R2 = 0. (11)

The general solution of Eq. (11) is given by
∫

e
∫ b

R dRdR = t +m, (12)

where m is an integrating constant.

In order to solve the problem completely, we have to choose∫ b
R dR in such a manner that Eq. (12) be integrable.
Without any loss of generality, we consider

∫ b
R

dR = ln L(R), (13)

which does not effect the nature of generality of solution.
Hence from Eqs. (12) and (13), we obtain

∫
L(R)dR = t +m. (14)

Ofcourse, the choice of L(R), in Eq. (14), is quite arbitrary
but, since we are looking for physically viable models of the
universe consistent with observations, we consider the follow-
ing cases:

IV. SOLUTION IN THE EXPONENTIAL FORM

Let us consider L(R) = 1
k1R , where k1 is arbitrary constant.

In this case, on integration of Eq. (14) gives the exact solu-
tion

R(t) = k2ek1t , (15)

where k2 is an arbitrary constant. Using Eqs. (8) and (15)
in (9) and (5) or (6), we obtain expressions for displacement
field β, pressure p and energy density ρ as

β2 =−4(1+ γ)k2
1

(1− γ)
− 4(1+3γ)k

3(1− γ)k2
2e2k1t

, (16)

χp = χγρ =
2γ

(1− γ)

[
3k2

1 +
2k

k2
2e2k1t

]
. (17)

From Eq. (15), since scale factor can not be negative, we
find R(t) is positive if k2 > 0. From Fig. 1, it can be seen
that in the early stages of the universe, i.e., near t = 0, the
scale factor of the universe had been approximately constant
and had increased very slowly. At specific time the universe
had exploded suddenly and expanded to large scale. This is
consistent with Big Bang scenario.

From Eq. (16), it is observed that β2 is a decreasing func-
tion of time. As mentioned earlier the constant vector dis-
placement field φi in Lyra’s geometry plays the role of cosmo-
logical constant Λ in the normal general relativistic treatment
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FIG. 1: The plot of scale factor R(t) vs time with parameters k1 =
0.01, k2 = 0.5, and γ = 0.5

TABLE I: Values of β2 and ρ for dust and radiation exponential mod-
els.

γ β2 ρ
0 −4[k2

1 + k
3k2

2e2k1t ] 2
χ [3k2

1 + 2k
k2

2e2k1t ]
1
3 −4[2k2

1 + k
k2

2e2k1t ] 3
χ [3k2

1 + 2k
k2

2e2k1t ]

and the scalar-tensor treatment based on Lyra’s geometry pre-
dicts the same effects, within observational limits, as the Ein-
stein’s theory. Recent cosmological observations (Garnavich
et al. [20], Perlmutter et al. [21], Riess et al. [22], Schmidt
et al. [23]) suggest the existence of a positive cosmological
constant Λ with the magnitude Λ(G~/c3 ≈ 10−123. These ob-
servations on magnitude and red-shift of type Ia supernova
suggest that our universe may be an accelerating one with in-
duced cosmological density through the cosmological Λ-term.
In our model, it is seen that β plays the same role as cosmo-
logical constant and preserves the same character as Λ-term,
in turn with recent observations.

From Eq. (17), we observe that p > 0 and ρ > 0 for
k > 0. We also see that the energy density decreases to a small
positive value and remains constant thereafter. The expres-
sions for β2 and ρ cannot be determined for the stiff matter
(p = ρ) models. The expressions for β2 and ρ corresponding
to γ = 0,1/3 are given in Table 1.

We can obtain the values of β2 and ρ for flat FRW model
if we set k = 0 in Eqs. (16) and (17).

V. SOLUTION IN THE POLYNOMIAL FORM

Let L(R) = 1
2k3

√
R+k4

, where k3 and k4 are constants. In this
case, on integrating, Eq. (14) gives the exact solution

R(t) = α1t2 +α2t +α3, (18)

where α1, α2 and α3 are arbitrary constants. Using Eqs. (8)
and (18) in (9) and (5) or (6), we obtain the expressions for
displacement field β, pressure p and energy density ρ as

β2 =
16α1[α3 +(2+3γ)α1t2 +(2+3γ)α2t]+4(1+3γ)(α2

2 + k)
3(γ−1)(α1t2 +α2t +α3)2 ,

(19)

χp = χγρ =
4γ[5α2

1t2 +5α1α2t +α2
2 +α1α3 + k]

(1− γ)(α1t2 +α2t +α3)2 . (20)
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FIG. 2: The plot of scale factor R(t) vs time with parameters α1 =
1.00, α2 = 4.00, α3 = 1.00 and γ = 0.5

From Eq. (18), we note that R(t) > 0 for 0 ≤ t < ∞ if α1,
α2 and α3 are positive constants. Figure 2, shows that the
scale factor is a decreasing function of time, implying that
our universe is expanding.

Eq. (19) shows that β2 < 0 for all times as γ− 1 < 0
and is a decreasing function of time, characteristically
similar to Λ in Einstein’s theory of gravitation. In this
model, β plays the role as cosmological constant and it
preserves the same character as Λ-term. This is consistent
with recent observations (Garnavich et al. [20], Perlmutter
et al. [21], Riess et al. [22], Schmidt et al. [23]). A
negative cosmological constant adds to the attractive gravity
of matter; therefore, universe with a negative cosmological
constant is invariably doomed to re-collapse. A positive
cosmological constant resists the attractive gravity of matter
due to its negative pressure. For most of the time, the positive
cosmological constant eventually dominates over the attrac-
tion of matter and drives the universe to expand exponentially.
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The expressions for β2 and ρ cannot be determined for the
stiff matter (p = ρ) models. For dust model (γ = 0), β2 and
ρ(t) are given by

β2 =−16α1[2α1t2 +2α2t +α3]+4α2
2 +4k

(α1t2 +α2t +α3)2 , (21)

χρ =
4[5α2

1t2 +5α1α2t +α2
2 +α1α3 + k]

(α1t2 +α2t +α3)2 (22)

For radiative model (γ = 1
3 ), β2 and ρ(t) are given by

β2 =−8α1[2α1t2 +2α2t +α3]+8α2
2 +8k

(α1t2 +α2t +α3)2 , (23)

χρ =
6[5α2

1t2 +5α1α2t +α2
2 +α1α3 + k]

(α1t2 +α2t +α3)2 (24)

If we set k = 0, in above equations (19) - (24), we get solutions
for flat FRW universe.

VI. SOLUTION IN THE SINUSOIDAL FORM

Let L(R) = 1
β
√

1−R2
, where β is constant.

In this case, on integrating, Eq. (14) gives the exact solution

R = M sin(βt)+N cos(βt)+β1, (25)

where M, N and β1 are constants. Using Eqs. (8) and (25) in
(9) and (5) or (6) , we obtain the expressions for displacement
field β, pressure p and energy density ρ as

β2 =
4[2β2(M2 +N2)+2β2β1(P−β1)−3(1+ γ)Q− (1+3γ)k]

3(1− γ)P2 ,

(26)

χp = χγρ =
2γ[3Q+2k−β2(M2 +N2)−β2β1(P−β1)]

(1− γ)P2 , (27)

where

P = M sinβt +N cosβt +β1,

Q = (M cosβt−N sinβt)2.

From the Figure 3, we note that at early stage of the universe,
the scale of the universe increases gently and then decreases
sharply, and after wards it will oscillate for ever. We must
mention here that the oscillation takes place in positive
quadrant. This has physical meaning.

The expressions for β2 and ρ cannot be determined for the
stiff matter (p = ρ) models. For dust model (γ = 0), β2 and
ρ(t) are given by

β2 =
4[2β2(M2 +N2)+2β2β1(P−β1)−3Q− k]

3P2 , (28)
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FIG. 3: The plot of scale factor R(t) vs time with parameters M =
2.00, N = 1.00, β = 10.00, β1 = 0.2, and γ = 0.5

χρ =
2[3Q+2k−β2(M2 +N2)−β2β1(P−β1)]

P2 , (29)

For radiative model (γ = 1
3 ), β2 and ρ(t) are given by

β2 =
4[β2(M2 +N2)+β2β1(P−β1)−2Q− k]

P2 , (30)

χρ =
3[3Q+2k−β2(M2 +N2)−β2β1(P−β1)]

P2 , (31)

For flat FRW universe, we put k = 0 in above results. Since,
in these cases, we have many alternatives for choosing values
of M, N, β, β1, it is just enough to look for suitable values of
these parameters, such that the physical initial and boundary
conditions are satisfied.

VII. CONCLUSIONS

In this paper we have obtained exact solutions of Sen’s
equations in Lyra geometry for time dependent deceleration
parameter in FRW spacetime. The nature of the displacement
field β(t) and the energy density ρ(t) have been examined for
three cases (i) exponential form (ii) polynomial form and (iii)
sinusoidal form. The solutions obtained in Sections IV, V and
VI are to our knowledge quite new. Here, it is found that the
displacement field plays the role of a variable cosmological
term Λ.

In recent past, there is an upsurge of interest in scalar fields
in general relativity and alternative theories of gravitation in
the context of inflationary cosmology (La and Steinhardt [24];
Ellis [25]; Barrow [26]). Therefore, the study of cosmologi-
cal models in Lyra geometry may be relevant for inflationary
models. Further, the space dependence of the displacement
field β is important for inhomogeneous models for the early
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stages of the evolution of the universe. Besides, the impli-
cation of Lyra’s geometry for astrophysical interesting bodies
is still an open questions. The problem of equation of mo-
tion and gravitational radiation need investigation. Finally, in
spite of very good possibility of Lyra’s geometry to provide a
theoretical foundation for relativistic gravitation, astrophysics
and cosmology, the experimental point is yet to be undertaken.
But still the theory needs a fair trial.
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