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Soliton Dynamics of Magnetization Driven by a Magnetic Field in
Uniaxial Anisotropic Ferromagnet
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We study the nonlinear magnetic excitation in an anisotropic ferromagnet with a magnetic field. In the long
wave approximation, the Landau-Lifschitz equation with easy axis anisotropy is transformed into the nonlinear
Schrödinger type. By means of a straightforward Darboux transformation we obtain the one- and two-soliton
solutions of uniaxial anisotropic ferromagnet. From a careful analysis for the asymptotic behavior of two-
soliton solution we find that the collision between two magnetic solitons is elastic. This will be very helpful to
understand the significant nature of the interactions between solitons in the future.
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The Heisenberg model of spin-spin interactions can be
considered as the starting point for understanding the com-
plex magnetic structures in solid physics. In particular, it
explains the existence of ferromagnetism and antiferromag-
netism at temperature below the Curie temperature. This
model has attracted considerable attentions in nonlinear sci-
ence and condensed-matter physics [1]. The concept of soli-
ton in spin chain which exhibits both coherent and chaotic
structures depending on the nature of the magnetic interac-
tions [1–3] has been studied for decades. In the present
time soliton in quasi one-dimensional magnetic systems is
no longer a theoretical concept but can be probed by neutron
inelastic scattering [4], nuclear magnetic resonance [5], and
electron spin resonance [6]. The magnetic soliton [7], which
describes localized magnetization, is an important excitation
in the classical Heisenberg spin chain. In particular, the con-
tinuum limit for the nonlinear dynamics of magnetization in
the classical ferromagnet is governed by the Landau-Lifschitz
(L-L) equation [8]. This equation governs a classical non-
linear dynamically system with novel properties. In a one-
dimensional case, some types of L-L equation is complete in-
tegrable. The isotropic case has been studied in various as-
pects [9, 10], and the construction of soliton solutions of L-L
equation with an easy axis is also discussed [11]. It is worth
to noted that the inverse scattering transformation [10, 12] is
a useful method to solve the L-L equation. On the other hand
great efforts [13] are also devoted to construct the soliton so-
lution by means of the Darboux transformation [14–17].

In the recent years, considerable attentions have been de-
voted to the study of soliton interactions in nonlinear science.
However, the soliton collisions in spin chain is not fully ex-
plored. In this paper, we investigate soliton interactions of
uniaxial anisotropic ferromagnet with an external magnetic
field. By transforming the L-L equation with an easy-axis into
an equation of the nonlinear Schrődinger (NLS) type we ob-
tain the one- and two-soliton solutions by using the Darboux
transformation.

In the classical limit, the dynamics of spin chain is gov-
erned by the magnetization vector M = (Mx,My,Mz). The
energy function including the exchange energy, anisotropic

energy and the Zeeman energy can be written as [7]

E =
1
2

∫ [
α

(
∂M

∂x

)2

−βM2
z −M ·B

]
d3x, (1)

where α is the exchange constant and β is the uniax-
ial anisotropic constant, β > 0 corresponds to easy-axis
anisotropy while β < 0 corresponds to easy-plane type. The
dynamics of the magnetization vector M(x, t) is determined
by the following equation

∂M

∂t
=

2µ0

~
M × δE

δM
, (2)

where µ0 is Bohr magneton. Substituting Eq. (1) into Eq. (2),
we can get the L-L equation

~
2µ0

∂M

∂t
=−αM × ∂2M

∂x2 −βM×e3(M ·e3)−µ0M×B,

(3)
where e3 is the unit vector along the z-axis, and B =
(0,0,B(t)). Taking into account the integral of motion M 2 ≡
M2

0 = constant, and introducing a single function Ψ, instead
of two independent components of M ,

Ψ = mx + imy, mz =
√

1−|Ψ|2, (4)

where m≡(mx,my,mz)= M/M0, M0 is the equilibrium mag-
netization. Thus Eq. (3) becomes

i~
2µ0

∂Ψ
∂t
−αM0

(
mz

∂2

∂x2 Ψ−Ψ
∂2

∂x2 mz

)

= − [βM0mz +B(t)]Ψ. (5)

In ground state, vector M directs along the anisotropy axis e3.
Now we consider the low excitation, namely, the small devia-
tions of M from e3 which correspond to the values |Ψ| ¿ 1,
then mz≈ 1−1/2 |Ψ|2. In the long-wavelength approximation
and the case β > 0, Eq. (5) may be simplified by keeping only
the nonlinear terms of the order of the magnitude of |ψ|2 ψ.
As a result, we have the following dimensionless Schrödinger
equation:
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i
∂Ψ
∂t
− 1

2
∂2Ψ
∂x2 −|Ψ|

2 Ψ+2
[

1+
B(t)
βM0

]
Ψ = 0. (6)

For the convenience we have rescaled the space x and the time
t by the 2l0 and 1/ω0, where l0 =

√
α/β is the characteris-

tic magnetic length and ω0 = βµ0M0/~ is the homogeneous
ferromagnetic resonance frequency.

In the following, we use the Darboux transformation to get
exact soliton solutions of Eq. (6). By employing Ablowitz-
Kaup-Newell-Segur technique one can construct the lax rep-
resentation for Eq. (6) as follows

∂
∂x

ψ = Lψ,
∂
∂t

ψ = Mψ, (7)

where ψ =
(

ψ1 ψ2
)T , the superscript “T ” denotes the ma-

trix transpose. The lax pairs L and M are given in the forms

L = λJ +P,

M =
[
−iλ2 +α2 (t)

]
J− iλP+

1
2

i
(

P2 +
∂
∂x

P
)

J,

with

J =
(

1 0
0 −1

)
, P =

(
0 Ψ
−Ψ 0

)
,α2 (t) = i

(
1+

B
βM0

)
,

where the overbar denotes the complex conjugate. Thus the
Eq. (6) can be recovered from the compatibility condition
∂
∂t L− ∂

∂x M + [L,M] = 0. Based on the Lax pair (7), we can
obtain the general one- and two-soliton solution by using a
straightforward Darboux transformation [18, 19].

Consider the following transformation

ψ [1] = (λI−S)ψ, S = KΛK−1, Λ = diag(λ1,λ2) , (8)

where K satisfies

∂
∂x

K = JKΛ+PK. (9)

Letting

∂
∂x

ψ [1] = L1ψ [1] , (10)

where L1 = λJ + P1, P1 =
(

0 Ψ1
−Ψ1 0

)
, and with the help

of Eqs. (7), (8) and (9), we obtain the Darboux transformation
for Eq. (6) from Eq. (10) in the form

Ψ1 = Ψ+[J,S] . (11)

It is easy to verify that, if ψ =
(

ψ1 ψ2
)T is a eigenfunc-

tion of Eq. (7) corresponding to the eigenvalue λ = λ1,
then

( −ψ2 ψ1
)T is also the eigenfunction, while with the

eigenvalue −λ1. Hence if taking the following notations

K =
(

ψ1 −ψ2
ψ2 ψ1

)
,Λ =

(
λ1 0
0 −λ1

)
, (12)

which ensures that Eq. (9) is held, we can obtain

Ssl =−λ1δsl +
(

λ1 +λ1

) ψsψl
ψT ψ

, s, l = 1,2, (13)

where ψT ψ = |ψ1|2 + |ψ2|2 , and Eq. (11) becomes

Ψ1 = Ψ+2
(

λ1 +λ1

) ψ1ψ2
ψT ψ

, (14)

where ψ is the eigenfunction of Eq. (7) corresponding to the
eigenvalue λ1 for the solution Ψ. Thus by solving the Eq. (7)
which is a first-order linear differential equation, we can gen-
erate a new solution Ψ1 of the Eq. (6) from a known solution
Ψ which is usually called “seed” solution.

To obtain exact N-order solution of Eq. (6), we firstly
rewrite the Darboux transformation in Eq. (14) as in the form

Ψ1 = Ψ+2
(

λ1 +λ1

) ψ1 [1,λ1]ψ2 [1,λ1]
ψ [1,λ1]

T ψ [1,λ1]
, (15)

where ψ [1,λ] = (ψ1 [1,λ] ,ψ2 [1,λ])T denotes the eigenfunc-
tion of Eq. (7) corresponding to eigenvalue λ. Then repeating
above the procedure for N times, we can obtain the exact N-
order solution

ΨN = Ψ+2
N

∑
n=1

(λn +λn)
ψ1[n,λn]ψ2[n,λn]
ψ[n,λn]T ψ[n,λn]

, (16)

where

ψ [n,λ] = (λ−S [n−1]) · · ·(λ−S [1])ψ [1,λ] ,

Ssl
[

j′
]
=−λ j′δsl +

(
λ j′ +λ j′

) ψs
[

j′,λ j′
]

ψl
[

j′,λ j′
]

ψ
[

j′,λ j′
]T ψ

[
j′,λ j′

] ,

here ψ [ j′,λ] is the eigenfunction corresponding to λ j′ for
Ψ j′−1 with Ψ0 ≡ Ψ and s, l = 1,2, j′ = 1,2, · · · ,n− 1, n =
2,3, · · · ,N. Thus if choosing a “seed” as the basic initial solu-
tion, by solving linear characteristic equation system (7), one
can construct a set of new solutions for Eq. (6) by employing
the formula (16).

Taking the spectral parameter λ1 = µ1 + iν1 we get the one-
soliton solution from Eqs. (16) and (4)

mx =
2µ1 cosΦ1

coshΘ1
,my =

2µ1 sinΦ1

coshΘ1
,mz =

√
1− 4µ2

1

cosh2 Θ1
,

(17)
where

Θ1 =−2µ1

(
x+2ν1t− x′0

µ1

)
,

Φ1 = 2ν1[x− 1
ν1

(
µ2

1−ν2
1
)

t

+
1
ν1

∫ (
1+

B(t)
βM0

)
dt− x′′0/ν1].

The parameters x′0/µ1 and x′′0/ν1 represent the initial center
position and initial phase. To show the physical significance
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of our solutions, it is useful to give the parameter depen-
dence of polar angle of the magnetization vector such that
m = (sinθcosϕ,sinθsinϕ,cosθ), namely the z-axis is the po-
lar axis in a spherical coordinate. From Eq. (17) we have that

θ = arccos




√
1− 4µ2

1

cosh2 Θ1


 ,

ϕ = 2ν1[x− 1
ν1

(
µ2

1−ν2
1
)

t

+
1
ν1

∫ (
1+

B(t)
βM0

)
dt− x′′0/ν1]. (18)

The expression (18) describes a magnetization precession
characterized by four real parameters: velocity 2ν1, fre-
quency 1

ν1

[(
µ2

1−ν2
1
)−1−B(t)/(βM0)

]
, initial center posi-

tion x′0/µ1 and initial phase x′′0/ν1. Therefore, we can see that
the external magnetic field contribute to precession frequency
only.

The magnetic soliton collision is an interesting phenom-
enon in spin dynamics. To this purpose we should obtain the
two-soliton solution of Eq. (6). Taking the spectral parameter
λ j = µ j + iν j, j = 1,2, from the expressions (16) and (4) we
obtain the two-soliton solution of magnet as

mx = 2γ
1
∆

[µ2 ( f1 cosΦ2 +g1 sinΦ2)

+µ1 ( f2 cosΦ1−g2 sinΦ1)],

my = 2γ
1
∆

[µ2 ( f1 sinΦ2−g1 cosΦ2) (19)

+µ1 ( f2 sinΦ1 +g2 cosΦ1)],

mz =

√
1−

(
2γ

1
∆

)2

Γ,

where

f1 = (γ−2µ1 cosφ0)coshΘ1, g1 = 2µ1 sinφ0 sinhΘ1,

f2 = (γ−2µ2 cosφ0)coshΘ2, g2 = 2µ2 sinφ0 sinhΘ2,

∆ = γ2 coshΘ1 coshΘ2

−2µ1µ2 [cosh(Θ1 +Θ2)+ cos(Φ1−Φ2)] ,

Γ = µ2
2
(

f 2
1 +g2

1
)
+µ2

1
(

f 2
2 +g2

2
)

+2µ1µ2[( f1 f2−g1g2)cos(Φ1−Φ2)
−( f1g2 + f2g1)sin(Φ1−Φ2)].

where γ =
∣∣∣λ2 +λ1

∣∣∣ ,φ0 = arg
(

λ2 +λ1

)
,and the parameters

Θ j and Φ j, j = 1,2, are defined as

Θ j =−2µ j
(
x+2ν jt− x′0, j/µ j

)
,

Φ j = 2ν j[x− 1
ν j

(
µ2

j −ν2
j
)

t

+
1
ν j

∫
(1+B(t)/(βM0))dt− x′′0, j/ν j].

The solution (19) describes a general scattering process of two
solitary waves with different center velocities 2ν1 and 2ν2,
different phases Φ1 and Φ2. Before collision, they move to-
wards each other, one with velocity 2ν1 and shape variation
frequency Ω1 = 1

ν1

[(
µ2

1−ν2
1
)−1−B(t)/(βM0)

]
and the

other with 2ν2 and Ω2 = 1
ν2

[(
µ2

2−ν2
2
)−1−B(t)/(βM0)

]
.

In order to understand the nature of two-soliton interaction,
we analyze the asymptotic behavior of two-soliton solution
(19). Asymptotically, the two-soliton waves (19) can be writ-
ten as a combination of two one-soliton waves (17) with dif-
ferent amplitudes and phases. The asymptotic form of two-
soliton solution in limits t →−∞ and t → ∞ is similar to that
of the one-soliton solution (17). In order to analyze the as-
ymptotic behavior of two-soliton solutions (19) we consider
the following asymptotic discussion for Θ1 ∼ 0, Θ2 ∼±∞, as
t →±∞; and (ii) Θ2 ∼ 0, Θ1 ∼∓∞, as t →±∞. This leads to
the following asymptotic forms for the two-soliton solution.

(i) Before collision–namely, the case of limit t →−∞.
(a) Soliton 1 (Θ1 ∼ 0, Θ2 →−∞).

mx → 2µ1
cos(Φ1−φ2)

cosh(Θ1 +χ0)
, my → 2µ1

sin(Φ1−φ2)
cosh(Θ1 +χ0)

,

mz →
√

1− 4µ2
1

cosh2 (Θ1 +χ0)
. (20)

(b) Soliton 2 (Θ2 ∼ 0, Θ1 →+∞).

mx → 2µ2
cos(Φ1−φ1)

cosh(Θ2−χ0)
, my → 2µ2

sin(Φ1−φ1)
cosh(Θ2−χ0)

,

mz →
√

1− 4µ2
2

cosh2 (Θ2−χ0)
. (21)

(ii)After collision–namely, the case of limit t →+∞.
(a) Soliton 1 (Θ1 ∼ 0, Θ2 ∼+∞)

mx → 2µ1
cos(Φ1 +φ2)

cosh(Θ1−χ0)
, my → 2µ1

sin(Φ1 +φ2)
cosh(Θ1−χ0)

,

mz →
√

1− 4µ2
1

cosh2 (Θ1−χ0)
. (22)

(b) Soliton 2 (Θ2 ∼ 0, Θ1 ∼−∞)

mx → 2µ2
cos(Φ1 +φ1)

cosh(Θ2 +χ0)
, my → 2µ2

sin(Φ1 +φ1)
cosh(Θ2 +χ0)

,

mz →
√

1− 4µ2
2

cosh2 (Θ2 +χ0)
, (23)

where the parameters χ0 and φ j, j = 1,2 in equations (20) to
(23) are defined by

φ1 = arctan
−2µ1 (ν1−ν2)(

µ2
2−µ2

1

)
+(ν1−ν2)

2 ,

φ2 = arctan
−2µ2 (ν1−ν2)

µ2
1−µ2

2 +(ν1−ν2)
2 ,

χ0 =
1
2

ln

[
(µ1 +µ2)

2 +(ν1−ν2)
2

(µ1−µ2)
2 +(ν1−ν2)

2

]
.
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From equations (20), (21), (22), and (23) we can see that
there is no amplitude exchange among three components mx,
my and mz for magnetization vector soliton 1 and soliton 2
during collision. However, from Eq. (20) to (23) one can
see that there is a phase change 2φ2 (2φ1) for the components
mx and my of the soliton 1(2), and the center position change
−2χ0 (+2χ0) for the components mz for soliton 1(2) during
collision. This interaction between two magnetic solitons is
called elastic collision. The magnetic soliton solutions in Eqs.
(17) and (19), which describes localized magnetization, is an
important excitation in the Heisenberg spin chain. The sig-
nificant importance of the study for the soliton is that it can
travel over long distances with neither attenuation nor change
of shape, since the dispersion is compensated by nonlinear ef-
fects. This type of the elastic soliton collision shows that the
information held in each soliton will almost not be disturbed
by each other in soliton propagation. These properties may
have potential application in future quantum communication.

In conclusion, by transforming the L-L equation with
an easy-axis into an equation of the nonlinear Schrődinger
type we investigate the nonlinear magnetic excitations in
an anisotropic ferromagnet with a magnetic field. From a
straightforward Darboux transformation the one- and two-
soliton solutions of uniaxial anisotropic ferromagnet with an
external magnetic field are reported. Moreover, by analyzing
carefully the asymptotic behavior of two-soliton solution we
find that the collision between two magnetic solitons is elas-
tic. This is very helpful to understand significant nature of the
interactions between solitons in the future.
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