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Quantum gambling — a secure remote two-
party protocol which has no classical counterpart
— is demonstrated through optical approach. A
photon is prepared by Alice in a superposition
state of two potential paths. Then one path
leads to Bob and is split into two parts. The se-
curity is confirmed by quantum interference be-
tween Alice’s path and one part of Bob’s path.
It is shown that a practical quantum gambling
machine can be feasible by this way.

As a kind of game, gambling plays an im-
portant role in the society and nature which
are full of conflict, competition and coopera-
tion. Up to now, game theory has been inves-
tigated with mathematical methods [1] and
applied to study economy, psychology, ecol-
ogy, biology and many other fields [2, 3].

One might wonder why games like gam-
bling can have anything to do with quan-
tum physics. After all, game theory is about
numbers that entities are efficiently acting
to maximize or minimize. However, if linear
superpositions of the actions are permitted,
games will be generalized into quantum do-
main [4, 5|. Quantizing games may be inter-
esting in several fields [4], such as foundation
of game theory, games of survival and quan-
tum communication [6]. Moreover, quantum
mechanics may assure the fairness in remote
gambling [7].

In this letter, we present a quantum gam-
bling machine composed of optical elements.

We may firstly investigate the simplest
classical gambling machine: one particle and
two boxes A and B. During a game, the
casino (Alice) stores the particle in A or
B randomly, then the player (Bob) guesses
which box the particle is in. For the two
parties do not trust each other, even a third
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party, a remote classical gambling is impossi-
ble. Whereas in the quantum domain, Alice
may prepare the particle in a superposition
state of |a) (the particle in A) and |b) (the
particle in B). If she generate the equal su-
perposition state

W) = %(@ 1) (1)

and a prescribed box (e.g. B) is sent to Bob,
a remote fair gambling may be carried out.
For simplicity, the bet in a single game is
taken to be one coin. If Bob finds the particle
in box B (state |b)), he wins one coin, other-
wise he loses the bet. Obviously, the proba-
bility for Bob to win is exactly 50%. More-
over, Bob cannot cheat by claiming that he
found the particle when he did not, for Alice
can verify by opening box A.

In order to decrease the probability for
the particle in box B, Alice may prepare a bi-
ased superposition state (she gets no advan-
tage using an ancilla or other complex strat-

egy [7])
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instead of |Wg), where € is the preparation pa-
rameter, with 0 < e < % However, the quan-
tum principle assures that Bob has a chance
to find out the difference and win her R coins,
which is the punishment the two parties agree
on before the game.

Bob’s strategy is to split out part of the
state |b) and convert it to state |b') by per-
forming a unitary operation, i.e.,

b) = /1 =n[b) +/nlt), (3)

Where [0') is orthogonal to |a) and |b) and 7 is
the splitting parameter. After the splitting, if
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Bob does not find the particle in box B, Alice
will send box A to him for verification. In this
case the state of the particle is reduced to

|ba) = ‘/Fln (|a> + \/ﬁ|b')), if Alice prepare
the particle in the equal superposition state
|Wo). Therefore, the verification of Bob is
to measure the particle under the basis |¢,)
and its orthogonal basis |¢,). If Alice prepare
the biased superposition state |Ug), he may
find the particle in state |¢,) with a certain
probability and win R coins.

There exists an equilibrium for the two
parties in this protocol [7]. Alice can en-
sure her expected gains no less than zero by
preparing the equally distributed state |¥o).
Bob can ensure his expected gains no less
than a particular value only depending on R
by selecting an optimal splitting parameter
n = 7 (R). In fact, this protocol is a zero-
sum game, and the strategies of Alice and
Bob are represented by different choices of €
and 7, respectively.

In the experiment, a linear-polarized pho-
ton is employed as the particle. Similar to the
simulation of quantum logic [8], two potential
paths of the photon may serve as boxes A and
B. |t} are distinguished from |a) and |b) by
the polarization of the photon.

Figure 1

The setup of the optical quantum gam-
bling machine is shown in Figure 1. A virtue
of this machine is that all the detections are
carried out automatically by the machine,
which may help to eliminate the classical
communication between the parties and pre-
vent their cheating.

Initially, the photon is generated in a def-
inite linear polarization state (such as ver-
tical |V') or horizontal |H)) by a polarizer.
Then the state is transferred to a superpo-
sition state of |V) and |H) with half wave-
plate (HWP) a according to the preparation
parameter € chosen by Alice. The prepara-
tion is accomplished by swapping the location
and polarization states of the photon with po-
larizing beamsplitter (PBS) 1 and the fixed
HWP o,. After the state swapping, the po-
larization is horizontal while the location is
prepared in the required state |\W).

Bob’s splitting is realized by adjusting the
HWP b, according to the parameter 7 he se-
lects. Then [0') (split out by Bob) is sep-
arated from |b) via PBS 2 and superposed

with |a) via PBS 3. The verification is imple-
mented with HWP b; and PBS 4. HWP b, is
adjusted according to 1 so as to assure that
|pa) and |¢p) are transmitted and reflected by
PBS 4 respectively. In order to obtain the re-
sult of the gambling, three detectors Dy, D,
and D3 are adopted to detect the photon in
the state |b), |¢,) and |¢y), respectively.

single game of gambling with this ma-
chine is described as follows. After Bob put
in his bet — one coin, the machine will in-
form Alice and Bob to select the parameter
¢ (adjusting HWP a) and 7 (adjusting HWP
by and by simultaneously). Then a photon is
generated from the polarizer and distributed
to three parts. If the detector D; or Ds re-
sponds, Bob win one or R coins; if Dy re-
sponds, Bob loses the bet (then the bet will
be conserved for Alice automatically).

To demonstrate the performance of the
optical gambling machine, a beam (composed
of independent identical photons) is gener-
ated instead of a single photon during the
experiment, namely, a well polarized He-Ne
laser (3mW at 632.8nm) is utilized as the
light source. The results are shown in Figure
2, where P; and P; denote the probabilities
that Bob win one and R coins, P, denotes the
probability that Bob lose the bet. The prob-
abilities are determined by the relative light
intensities measured by the three detectors.

Figure 2

In order to illustrate Bob’s strategies, we
suppose that Alice and Bob agree on R = 5
at the beginning of the gambling. The ex-
pected gains of Bob are shown in Figure 3.
Obviously, there exists an optimal splitting
parameter 77 (5) = 0.27 to assure his expected
gains no less than a particular value despite
Alice’s choice.

Figure 3

Optical approach has many advantages.
By making use of two different freedom de-
grees of the photon (location and polariza-
tion), an optical quantum gambling machine
may be realized conveniently with several
HWPs, PBSes and detectors. Particularly,
the decoherence of all-optical system is rela-
tively low [9], while the protocol is very sen-
sitive to the errors caused by the device and
environment. As discussed by Goldenberg et



al. [7], for a successful realization of quantum
gambling, the error rate has to be lower than

\/2/R3. Since the error rate in the experi-

. 1 .
ment is only about 45, a practical quantum

gambling may be carried out with this optical
machine under the condition R < 14.4.

Our experiment has shown that quantum
gambling and quantum games have real phys-
ical counterpart, and a practical quantum
gambling machine can be realized with sim-
ple optical devices. It can be expected that
quantum mechanics may bring other interest-
ing results in game theory.
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Figure captions:

Figure 1. The optical setup for quantum

gambling machine.

The PBSes transmit the horizontal and re-
flect the vertical component of the photons.
HWP o, is fixed at 45°. HWP a is used for
Alice to adjust € for preparation. HWP by
is adopted for Bob to adjust n for splitting.
HWP by is utilized to accomplish the verifi-
cation. The phase difference between the two
paths from PBS 1 to PBS 3 are tuned to zero
in advance. If the photon is detected by Dy
or D3, Bob wins one or R coins, respectively.
If it is detected by D5, Bob loses one coin.

Figure 2. Performance of the machine.

P, P, and P3 denote the probabilities that
Bob wins one, loses one and wins R coins,
respectively. With a certain preparation pa-
rameter €, the probabilities vary with the
splitting parameter 7. The experimental data
are denoted by scattered dots. The solid di-
amond, open downtriangle, solid uptriangle,
solid circle and open square represent the
cases that ¢ = 0, 0.19, 0.34, 0.47 and 0.5,
respectively. The corresponding lines are the-
oretical predictions.

Figure 3. Expected gains of Bob varying
with e and n.

Experimental results are denoted by scat-
tered dots. The cross (), downtriangle, cross
(+), diamond, square represent the case that
e =0, 0.19, 0.34, 0.47 and 0.5, respectively.
The corresponding lines are theoretical pre-
dictions. The lower bound of all possible val-
ues is denoted by the dashed line. It is shown
that the optimal parameter 7 (5)=0.27 be-
cause at this value the maximum of the lower
bound is accessed.
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