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Abstract.

It is shown that, for a harmonic oscillator in the ground state, Bohmian
mechanics and quantum mechanics predict values of opposite sign for certain
time correlations.

The discrepancy can be explained by the fact that Bohmian mechanics has
no natural way to accomodate the Heisenberg picture, since the local expec-
tation values that define the beables of the theory depend on the Heisenberg
time being used to define the operators.

Relations to measurement are discussed, too, and shown to leave no loophole
for claiming that Bohmian mechanics reproduces all predictions of quantum
mechanics exactly.
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1 Introduction

Since its inception by BOHM [6] and its popularization by BELL [3], the
pilot wave theory, or causal interpretation of quantum mechanics — now often
called Bohmian mechanics — has been regarded by a number of people as a in
some respects bizarre but otherwise viable ontology for quantum mechanics.
Books and proceedings appeared that discuss the features of the theory in
detail, c¢f. HOLLAND [20], BouM & HILEY [7], CUSHING et al. [9], good
introductory surveys are available, cf. BERNDL et al. [4], DURR et al. [14],
and accounts for the lay reader exist, cf. ALBERT [1], GOLDSTEIN [18].

On the other hand, Bohmian mechanics has remained a minority view, since,
from its beginnings, it had been critically viewed by most of the influen-
tial quantum physicists. The main early arguments against it are stated in
HOLLAND [20, Sections 1.5.3 and 6.5.3]; they are usually argued away by
some mathematical analysis accompanied by statements such as “classical
prejudice” (BELL [3, Chapter 14]),“to our knowledge no serious technical
objections have ever been raised against” it (HOLLAND [20, Section 1.5.3]),
or “Bohmian mechanics accounts for all of the phenomena governed by non-
relativistic quantum mechanics” (DURR et al. [14]). The arguments on both
sides usually rest on one’s unwillingness or readiness to accept counterintu-
itive consequences of the Bohmian picture, since none of the phenomena in
question are observable.

More recent counterintuitive implications of Bohmian mechanics (ENGLERT
et al. [15], GRIFFITHS [19]) met with similar responses (DURR et al. [13],
DEWDNEY et al. [11]). In particular, Diirr et al. write, “an open-minded
advocate of quantum orthodoxy would presumably have preferred the clearer
and stronger claim that BM is incompatible with the predictions of quantum
theory, so that, despite its virtues, it would not in fact provide an explanation
of quantum phenomena. The authors are, however, aware that such a strong
claim would be false.”

The purpose of this paper is to demonstrate — independent of the arguments
in [15, 19, 20] — that such a strong claim is valid indeed. Specifically, Bohmian
mechanics contradicts the predictions of quantum mechanics at the level of
time correlations. Since time correlations can be observed experimentally
via linear response theory (see, e.g., REICHL [27, Chapter 15.H]), Bohmian
mechanics and quantum mechanics cannot be both valid.

Concerning discrepancies between Bohmian mechanics and quantum me-
chanics involving multiple times, see also REDINGTON et al. [26] for Bohmian
hydrogen atoms, and GHOSE [17] for histories of indistinguishable particles.



There are similar problems with multiple times in NELSON’s [25] stochas-
tic quantum mechanics; however, there they can be overcome by a specific
procedure for state reduction under measurement, see BLANCHARD et al.
[5]. Bohmian mechanics does not seem to have such an option to rescue their
case since in the orthodox Bohmian interpretation state reduction is a purely
dynamical phenomenon.
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2 Background

Quantum mechanics. A one-dimensional quantum particle without spin
in an external potential V'(¢) is described by the Hamiltonian

p2

H(p,q) = om Vi(q) (1)

(see, e.g., MESSIAH [24, (2.20)]), where the position operator ¢ and the mo-
mentum operator p satisfy the canonical commutation relations

lq,p] =il (2)

[24, (5.53)]. In the Schrodinger picture, observables are associated with Her-
mitian operators A. The dynamics of a quantity A is given in the Heisenberg
picture by one-parameter families of operators A(t) satisfying

inA(t) = [A(t), H(p(t), (1)) (3)

[24, (8.40)]; the identification with the Schrédinger picture is obtained by
specifying the initial condition A(0) = A at some reference time ¢ = 0.

In the position representation, pure ensemble states are given by wave func-
tions 1o(x) satisfying [ |[¢o(x)|*dx = 1, on which ¢ acts as multiplication by
x and p acts as the differential operator %V. The expectation of a Heisenberg
operator family A(t) in a pure ensemble is defined by

(Ao = [ U@ AW (x)da (@)



[24, (4.22)]. If one defines a time-dependent wave function ¢ (z,t) as the
solution of the initial-value problem

S (et = Ho(e, 1), d(e,0) = vola) )

[24, (2.29)], one can rewrite the expectation in the equivalent Schrodinger
picture as

(A(t))g = / U (1) (A) (2, 1) da (6)

[24, (4.22)]. In particular, the expectation of a function of position is

(a®e = [ f@l(. 0P ds g

[24, (4.13)], so that
P(x,t) = [¢(x, )] (8)

[24, (4.2)] behaves as a probability density. For Hamiltonians of the form
(1), the probability density satisfies an equation of continuity,

%P +div/ =0 (9)
[24, (4.11)], with the probability current
. R

[24, (4.9)]. Thus an ensemble behaves like a flow of noninteracting particles.

Bohmian mechanics. Bohmian mechanics tries to give reality to this pic-
ture of an ensemble as a flow of particles with classical-like properties.

Following HOLLAND [20, Section 3.1], ensembles are interpreted in Bohmian
mechanics as classical ensembles of particles characterized by a solution
(x,t) of Schrodinger’s wave equation (5) and a trajectory xz(t) obtained
by solving the initial value problem

i(t) = %VS(:E, ol (11)

x=x(t)

where the phase S(x,t) of ¢ is defined by

(x,t) = eSE P (x, 1)]. (12)



The probability that a particle in the ensemble lies between the points x and
x+dz at time ¢ is given by |1 (z, t)|*dz. (Holland discusses the 3-dimensional
case and hence has a volume element in place of dz. It would be trivial
to rewrite the present discussion in three dimensions without changing the
conclusion. Similarly, as in many expositions of Bohmian mechanics, spin is
ignored, but incorporating it would not change anything essential.)

To indicate the flow of individual particles in an ensemble described by a
fixed solution v (z,t) of the Schrédinger equation, we refine the notation and
write x¢(t) for the position of a particle that is in position £ at time ¢ = 0,
so that z¢(0) = & The associated probability measure is then du(§) =
|10(€)|?d€. Ensemble expectations of some real property A¢ that a particle
— characterized by its wave function 1)y (asumed fixed) and its position £ at
time ¢ = 0 — has are therefore given by averaging the values of A over the
ensemble,

(A)p = / Acltol€) e, (13)

Since

J(x(t),t) = P(x(t), t)i(t) (14)

[20, (3.2.29)], the continuity equation (10) implies that expectations of func-
tions A(x(t),t) are invariant under a shift of the reference time ¢ = 0. (Note
that other authors use the equation

w(t) = J(2(t),t)/P(x(t),1) (15)

in place of (11) to define the trajectories; because of (14), this is indeed
equivalent and has the advantage of being directly motivated by time shift
invariance.)

Local expectation values. To calculate expectation values of quantum
mechanical operators, HOLLAND [20, (3.5.4)] defines the local expectation
value of a Hermitian operator A in the Schrédinger picture as the real number

(AY) (. t)
Az, t) = Re - 07 16
=Ry 1o
The local expectation values evaluated along a trajectory,
Ag(t) = Alze(t), 1), (17)

are considered to be the real properties of a particle. Indeed, Holland men-
tions in [20, Section 3.7.2] that the local expectation value “might, following



the common parlance, be termed the ‘hidden variable’ associated with the
corresponding physical variable”. With this definition of real properties,
Bohmian mechanics achieves agreement with simple quantum mechanical
predictions since, as is easily checked,

(A = (A (18)

(HoLLAND [20, (3.8.8/9)]). To appreciate what the local expectation val-
ues are in specific cases, Holland calculates explicitly the case of position,
momentum, total energy, and total orbital angular momentum. In particu-
lar, the particle positions (local expectation values of A = ¢) and particle
momenta (local expectation values of A = p) at arbitrary times ¢ are

Ge(t) = we(t),  pe(t) = VS(e(t), 1) (19)

[20, (3.2.18)]. More generally, if A = f(q) then A(z,t) = f(x); thus functions
of position at a fixed time behave classically. But for other operators, this
is not the case; e.g., while p¢(t) = ma¢(t), the kinetic energy K = p?/2m
satisfies

Ke(t) = Tae(t)? + Qae(t). 1)

with an additional ‘quantum potential” Q(z,t).

3 Time correlations in Bohmian mechanics

Particles in the ground state. For any Hamiltonian with a nondegenerate
ground state 1y (satisfying Hiy = Egt)g), this ground state can always be
taken to be real. Indeed, since the complex conjugate v also satisfies Hi5 =
Eypy and the ground state is nondegenerate, ) must be a multiple of vy,
and scaling with the square root of the multiplier leaves a real eigenfunction.

The solution ¢ of the Schrédinger equation (5) corresponding to the ground
state is

(. t) = e My (x).

If a particle can be in position z at time ¢ then [¢)(z,)|> > 0, hence vy # 0.
A comparison with (12) therefore shows that particles in a nondegenerate
ground state have a phase S(z,t) = +tE, independent of x. Thus (11)
implies that x(t) is constant, z¢(t) = & for all ¢. Thus each particle in the
ensemble stands still.



This observation is puzzling and lead Einstein to reject the Bohmian inter-
pretation; see HOLLAND [20, Section 6.5.3] for a discussion and a defense.

The harmonic oscillator. A one-dimensional harmonic oscillator of mass
m, period T" and angular frequency w = 27/T is described by the Hamiltonian

2 2
P wm
H(I%Q):—m+ 5 2

(20)

The canonical commutation relations (2) imply that, for the Hamiltonian
(20), the Heisenberg dynamics (3) of position and momentum are given by

dq(t) p(t)  dp(t) 2
& omo ar - Y ma),

just as in the classical case. In particular, we can solve the dynamics explicitly
in terms of the position operator ¢ and the momentum operator p at time
t=0as
q(t) = qcoswt + P Gin wt,
wm

p(t) = pcoswt — quwm sin wt,

again as in the classical case. In particular, ¢(t + T/2) = —q(t), so that
quantum mechanics predicts the time correlation
(a(t+T/2)a(t))q = —{a(t)*)q <0 (21)

for an ensemble in an arbitrary pure (or even mixed) state. ({q(t)*)g = 0
would be possible only in an eigenstate of ¢(t) to the eigenvalue zero, but
there is no such normalized state.)

On the other hand, interpreting the time correlations in a Bohmian sense,
one finds from (19) and (13) that

(alt +T/2)q(t)) 5 = / et + T/2)ge (1) o €) [de.

For particles in the ground state (which for the harmonic oscillator is nonde-
generate), the discussion above shows that the right hand side is constant,

(gt +T/2)q(t)) s = (a(t)*) 5 = (q(t)*)q > 0. (22)

Comparing (21) and (22), we see that the quantum mechanical time corre-
lation and the Bohmian time correlation have opposite signs.



Measuring time correlations. The fact that, in general, ¢(s)q(t) is not
Hermitian and hence cannot be measured in individual events does not mean
that the expectation on the left hand side of (21) is meaningless and has
no relation to experiment. Indeed, one may define the expectation of an
arbitrary quantity f in orthodox quantum mechanics (where all self-adjoint
operators = observables can be measured, cf. DIRAC [12, p.37]) in terms of
the observables Re f = 3(f + f*) and Im f = 5-(f — f*) by

(flq == (Re flq +i(lm f)q. (23)
This gives unambiguous values to all expectations, and is fully consistent with
orthodox quantum mechanics. Of course, it may not be easy to measure Re f
and Im f, but an operational procedure for measuring arbitrary Hermitian
functions of p and ¢ by a suitable experimental arrangement can be found,
e.g., in LAMB [22]. And quantum optics routinely deals with expectations
and measurements of coherent states, which are eigenstates of nonhermitian
annihilator operators; see, e.g. LEONHARDT [23].

While the example of the harmonic oscillator is somewhat artificial, it has the
advantage that all calculations can be done explicitly. Significant physical
applications of time correlations are, however, made in statistical mechanics,
where integrals over time correlations in thermodynamic equilibrium states
are naturally linked to linear response functions, and hence are measurable
as susceptibilities. See, e.g., REICHL [27, (15.161) and (15.172)]. Time cor-
relations also arise in the calculation of optical spectra (CARMICHAEL |8,
Lecture 3.3]) and in the context of quantum Markov processes (GARDINER
[16, Section 10.5]). Thus, at least in principle, it is possible to test the valid-
ity of the recipe (23) by experiment, by measuring susceptibilities or spectra
directly, and by comparing the result to that obtained by applying (23) to
measurements of Re f and Im f.

As Arkadiusz Jadezyk (personal communication) pointed out, (23) implies
that due to noncommutativity, the quantum mechanical time correlations
(q(s)q(t))q are complex in most states at most times, while time correlations
computed from Bohm trajectories are always real. Thus an agreement would
be a coincidence.

On the other hand, it is possible to avoid nonhermitian operators completely.
Indeed, the contradiction persists in the following consequence of (21) and
(22):
(a(t +T/2)q(t) + a()a(t + T/2))q = —2{a(t)*)q < 0, (24)
(q(t+T/2)q(t) + q(t)q(t + T/2)) 5 = 2(q(t)*)q > 0. (25)
Note that q(t + T'/2)q(t) + q(t)q(t + T'/2) is Hermitian, and (24) has the
correct classical time correlation as limit when A — 0. Symmetrized time



correlations are discussed in the context of linear response theory in KUBO
et al. [21, pp. 167-169].

In discussions with proponents of Bohmian mechanics, it is claimed that my
interpretation of the Bohmian formalism is erroneous, in that I am not mak-
ing the proper distinction between the ontological "beable” and the epis-
temological ”observable”, and compare the statistics of unobserved Bohm
trajectories with those for quantum observations.

However, quantum mechanics can be used in practice without reference to the
(still ill-defined) measurement mechanism, while Bohmian mechanics resorts
to the latter to justify any discrepancy. This should not be the case if the
‘beables’ were the real entities that Bohmian mechanics claims them to be.
And indeed, the whole purpose of the local expectation values is to show the
equivalence of expectations in Bohmian mechanics with those in quantum
mechanics, without having to refer to measurement.

What else could the meaning of (18) be? The whole discussion in HOLLAND
[20, Section 3.5-3.8] becomes meaningless unless it is accepted that (18) is the
real link between quantum mechanics and Bohmian mechanics, independent
of any measurement questions. The probabilities — Holland discusses these
independent of expectations — follow the rule (18) when A is an orthogonal
projector corresponding to the associated subspaces, and if the expectation
rule fails then associated probabilities also fail.

Thus, one wonders why Bohmian mechanics, which can do calculations of
single-time probabilities without reference to measurement questions, sud-
denly needs the measurement process to calculate probabilities of pair events
occuring at two different times.

It may be noted that there are similar problems with multiple times in NEL-
SON’s [25] stochastic quantum mechanics; BLANCHARD et al. [5] show how
these problems can be overcome by a specific procedure for state reduction
under measurement.

However, Bohmian mechanics does not seem to have such an option to res-
cue its interpretation since in the orthodox Bohmian interpretation, state
reduction is a purely dynamical phenomenon. The suggestion to explain
equivalence to quantummechanical predictions by invoking the measurement
process leads at best to an approximate equivalence since Bohmian theory
discusses measurement only in an approximate way (HOLLAND [20, Chapter
8], Boum & HILEY [7, Chapter 6]). And even then, specific efforts would
be needed to show that the time correlations come out in the right way.



And the explanation by measurement fails completely if we consider the
universe as a whole which, if supposed to behave deterministically according
to the laws of Bohmian mechanics, has no meaningful way of defining time
correlations apart from (q(s)q(t)) 5.

The ambiguity of local expectation values. To gain a better under-
standing of the problems of Bohmian mechanics from a slightly different
point of view, we look more closely at the local expectation values that are
supposed to define the real properties of particles, and that lie at the heart
of the claim of Bohmian mechanics that all its predictions agree with those
of quantum mechanics.

We first note that the recipe for calculating local expectation values is linear
without restriction; in particular, for a particle in the ground state, where
ge(t) = € and pe(t) = 0, we have A¢(t) = of for any operator A = aqg + Op.
We use this to calculate the local expectation value of the Heisenberg position
operator A = ¢(s) at time s in the ground state of the harmonic oscillator,
and find the remarkable formula

Ag(t) = Ecosws.

Thus the objective value of A = ¢(s) at any time ¢ is £ cosws, corresponding
to our intuition if we regard s as the physical time. It seems that, at least in
the Bohmian picture of the harmonic oscillator, the Heisenberg time s is the
real time while the Schrodinger time t only plays a formal and counterintu-
itive role.

This gives weight to what is called ‘operator realism’ in DAUMER et al. [10],
against the Bohmian program advocated there. And it makes the inter-
pretation of local expectation values as real properties of the system highly
dubious since these values depend on the choice of the Heisenberg time s.

In particular, for multi-time expectations, which are meaningful only in the
Heisenberg picture, there is no distinguished single Heisenberg time, and
hence no natural Bohmian interpretation.

Thus Bohmian mechanics can at best be said to reproduce a subset of quan-
tum mechanics. It contradicts the quantum mechanical predictions about
time correlations if one proceeds in the straightforward way that generalizes
the basic formula (18) that accounts for agreement of single time expectations
and single-time probabilities.

And Bohmian mechanics does not say anything at all about time correlations
if the connection to quantum mechanics is kept more vague and left hidden
behind a measurement process that is inherently approximate in Bohmian
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mechanics. Should this be the real link between quantum mechanics and
Bohmian mechanics, one could claim the predictions of Bohmian mechanics
to be approximately equal onlyto those of quantum mechanics, against the
explicit assertions of many supporters of Bohmian mechanics.

4 Conclusion

In contrast to the claim by DURR et al. [14], Bohmian mechanics does not
account for all of the phenomena governed by nonrelativistic quantum me-
chanics. Indeed, it was shown that for a harmonic oscillator in the ground
state, Bohmian mechanics and quantum mechanics predict values of opposite
sign for certain time correlations. Bohmian mechanics therefore contradicts
quantum mechanics at the level of time correlations. Since time correlations
can be observed experimentally via linear response theory, Bohmian mechan-
ics and quantum mechanics cannot both describe experimental reality.

Due to the complicated form of the Bohmian dynamics, it seems difficult to
compute time correlations for realistic scenarios where a comparison with lin-
ear response theory and hence with experiment would become possible. But
perhaps numerical simulations are feasible. On the other hand, it is unlikely
that, if the predictions of quantum mechanics and Bohmian mechanics differ
in such a simple case, they would agree in more realistic situations.

The time correlations used in statistical mechanics are those from quantum
mechanics and not those from Bohm trajectories. Moreover, they can be
calculated and used without reference to any theory about the measurement
process. If an elaborate theory of quantum observation is needed to reinter-
pret Bohmian mechanics — so that it matches quantum mechanics and thus
restores the connection to statistical mechanics — then Bohmian mechanics
is at best approximately equivalent to quantum mechanics and, I believe,
irrelevant to practice.

It is therefore likely that Bohmian mechanics is ruled out as a possible foun-
dation of physics.
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