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We are interested in the similarities and differences between the quantum-classical (Q-C) and the
noncommutative-commutative (NC-Com) correspondences. As one useful platform to address this issue we
derive the superstar Wigner-Moyal equation for noncommutative quantum mechanics (NCQM). A superstar
F-product combines the usual phase space ∗ star and the noncommutative ? star-product. Having dealt with
subtleties of ordering present in this problem we show that the Weyl correspondence of the NC Hamiltonian has
the same form as the original Hamiltonian, but with a non-commutativity parameter θ-dependent, momentum-
dependent shift in the coordinates. Using it to examine the classical and the commutative limits, we find that
there exist qualitative differences between these two limits. Specifically, if θ 6= 0 there is no classical limit.
Classical limit exists only if θ→ 0 at least as fast as ~→ 0, but this limit does not yield Newtonian mechanics,
unless the limit of θ/~ vanishes as θ→ 0. For another angle towards this issue we formulate the NC version of
the continuity equation both from an explicit expansion in orders of θ and from a Noether’s theorem conserved
current argument. We also examine the Ehrenfest theorem in the NCQM context.

Aim In this program of investigation we ask the ques-
tion whether there is any structural similarity or concep-
tual connection between the quantum-classical (Q-C) and the
noncommutative-commutative (NC-Com) correspondences.
We want to see if our understanding of the quantum-classical
correspondence acquired in the last decade can aid us in any
way to understand the physical attributes and meanings of a
noncommutative space from the vantage point of the ordinary
commutative space. We find that the case of quantum to clas-
sical transition in the context of noncommutative geometry is
quite different from that in the ordinary (commutative) space.
Specifically, if θ 6= 0 there is no classical limit. Classical limit
exists only if θ→ 0 at least as fast as ~→ 0, but this limit does
not yield Newtonian mechanics, unless the limit of θ/~ van-
ishes as θ→ 0. We make explicit this relationship by deriving
a superstar F Wigner-Moyal equation for noncommutative
quantum mechanics (NCQM) and identifying the difference
between the classical and the commutative limits. A super-
star F-product combines the usual phase space ∗ star and the
noncommutative ?-product [1].

In this paper we focus on the nature of the commutative
and classical limits of noncommutative quantum physics. We
point out some subtleties which arise due to the ordering prob-
lem. When these issues are properly addressed we show that
the classical correspondent to the NC Hamiltonian is indeed
one with a θ-dependent, momentum-dependent shift in the co-
ordinates. For another angle towards this issue we formulate
the NC version of the continuity equation both from an ex-
plicit expansion in orders of θ and from a Noether’s theorem
conserved current argument. We also examine the Ehrenfest
theorem in the NCQM context.

I. CRITERIA FOR CLASSICALITY

We open this discussion by examining the quantum to clas-
sical (Q-C) transition issue which is probably more familiar to
us than the noncommutative to commutative (NC-Com) tran-

sition. We begin by listing the criteria related to the Q-C issue
so that we can see the possibilities in how to approach the NC-
Com issue, if there is some analogy we can draw. In fact the
focus of this paper is to ask if any such analogy or parallel
exists, both conceptually and structurally. (The following is
excerpted from [2])

A quick sampling of discussions in quantum mechanics
and statistical mechanics textbooks reveals a variety of
seemingly simple and straightforward criteria and conditions
for classicality. For example, one can loosely associate:
1) ~→ 0
2) WKB approximation, which “gives the semiclassical limit”
3) Ehrenfest Theorem, “quantum expectation follows a
classical equation of motion”
3) Wigner function, “behaves like a classical distribution
function”
4) high temperature limit: “thermal=classical”
5) Uncertainty Principle: a system “becomes classical” when
this is no longer obeyed
6) coherent states: the ‘closest’ to the classical
7) systems with large quantum number n → ∞ (correspon-
dence principle)
8) systems with large number of components 1/N → 0.

Each of these conditions contains only some partial truth
and when taken on face value can be very misleading. Many
of these criteria hold only under special conditions. They can
approximately define the classical limit only when taken to-
gether in specific ways. To understand the meaning of clas-
sicality it is important to examine the exact meaning of these
criteria, the conditions of their validity and how they are re-
lated to each other.

We can divide the above conditions into four groups, ac-
cording to the different issues behind these criteria:
a) quantum interference,
b) quantum and thermal fluctuations,
c) choice of special quantum states,
d) meaning of the large n and N limits.
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The first two groups of issues were discussed in [2] using
the paradigm of quantum open systems. The first set of is-
sues a) was discussed in the context of quantum cosmology
by Habib and Laflamme [3]. They asserted that decoherence
is needed for the WKB Wigner function to show a peak in
phase space indicating the correlation between the physical
variables and their canonical conjugates which defines a clas-
sical trajectory. This clarifies the loose connection of WKB,
Wigner function and classicality. For issue b), for ordinary
systems the time for thermal fluctuations to overtake quantum
fluctuations is also related to the time of decoherence. But
a decohered system is not necessarily classical. There is a
quantum statistical regime in between. This set of issues was
addressed by Hu and Zhang [4]. (See also [5, 6].) They de-
rived an uncertainty principle for a quantum open system at
finite temperature which interpolates between the (zero tem-
perature) quantum Heisenberg relation and the high tempera-
ture result of classical statistical mechanics. This was useful
for clarifying the sometimes vague notions of quantum, ther-
mal and classical.

In our current investigation we wish to use what was
learned in the last decade in Q-C to inquire about a simple
yet important issue, namely, under what conditions is the or-
dinary commutative space a bona fide limit of NC space, or,
what is the nature of the NC-Com transition?

Recall for QM:

[x̂i, p̂ j] = i~δi
j (1)

whereas for NC geometry, two spatial coordinates xi,x j satisfy
the relation

[x̂i, x̂ j] = iθi j (2)

We will refer to θi j or simply θ as the non-commutativity pa-
rameter.

From (2), we can see that the non-commutativity parameter
θ has the dimension of length squared. If the geometry of
space-time at a fundamental level is to be noncommutative
then one possible candidate for

√
θ is the Planck length. This

is how quantum gravity is linked with NCG, which also bears
a close relation to matrix models, quantum groups, M-theory
and string theory [7–13].

Here we will actually work around the simplest criterion
1) ~→ 0 limit in QM and ask the parallel question how the
θ → 0 limit would be different, and how these two limits re-
late to each other. The place where both Q-C and NC-Com
share some nontrivial point of contact, at least formally, is the
Weyl correspondence between operators and c-functions, the
star product, the Wigner distribution, and the Wigner-Weyl
equation. This is the domain of semiclassical or semiquantal
physics. We will use this equation and the Wigner-Weyl cor-
respondence to explore the NC-Com and the Q-C transition.

II. QUANTUM-CLASSICAL CORRESPONDENCE

The Wigner distribution function has found applications in
kinetic theory and has been instrumental in studying quantum

coherence and quantum to classical transitions. Star product
arises from considering the implications of Weyl transforma-
tion of quantum canonical operators. (A good introduction
to these topics can be found in [14]. A succinct treatment of
Moyal Bracket can be found in an Appendix of [15]. Readers
familiar with these topics can skip to the next section.)

For simplicity, in what follows, we consider one dimen-
sional motion. The phase space canonical coordinates are de-
noted by q and p respectively for position and momentum dy-
namical variables and their corresponding quantum mechani-
cal operators are denoted by q̂ and p̂.

A. Weyl correspondence

Weyl [18] proposed that all dynamical variables be writ-
ten in terms of members of the Lie algebra of transformations
given by:

Û(λ,µ) = ei(λq̂+µp̂)/~ (3)

Let us define the set of phase-space operators as the set of all
operators whose operator properties solely depends on q̂ and
p̂. Throughout this article, a member of this set will be called
a phase-space operator. One can show that for such operators
we can give the following representation:

Â(q̂, p̂) =
Z

dλdµ α(λ,µ)ei(λq̂+µp̂)/~ (4)

α(λ,µ) can be projected back to (q, p) space by the inverse
transformation:

α(λ,µ) =
1

2π~

Z
dq d p AW (q, p)e−i(λq+µp)/~ (5)

where AW is called the Weyl correspondence of Â. We can
combine equations (4) and (5) to obtain:

Â(q̂, p̂) =
1

(2π~)2

Z
dqd p dλdµ AW (q, p)ei

(
λ(q̂−q)+µ(p̂−p)

~
)

(6)

The relationship defines a mapping from the set of functions
of phase-space variables to the set of phase-space operators.
By multiplying both sides of (6) by U†(λ′,µ′), taking the trace
of both sides and making use of the fact that the U transfor-
mations can be inverted since

Tr[U(λ,µ)U†(λ′,µ′)] = 2π~ δ(λ−λ′) δ(µ−µ′)ei λµ−λ′µ′
2~ ,

(7)

we can find the inverse of the above mapping [19]. The result
is

AW (q, p) =
1

2π~

Z
ei(λq+µp)/~ Tr[U†(λ,µ)Â(q̂, p̂)] dλdµ

(8)

In what follows we show that every phase-space operator de-
noted by Â(q̂, p̂) can be written as the mapping represented
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by (6). First we note that every such operator is completely
determined by its matrix elements taken with respect to any
complete basis. Let the set of position eigenstates be such
a basis. One can fully represent the operator in question as
〈x1|Â|x2〉. Introduce the following change of variables

x1 = X +∆, x2 = X−∆ (9)

with inverse

X =
x1 + x2

2
, ∆ =

x1− x2

2
(10)

one can define

A(X ,∆)≡ 〈x1|Â|x2〉 (11)

Every operator can be written in such a way. Next, we use the
Fourier theorems to write:

〈x1|Â|x2〉=
1

2π~

Z
d pAW (X , p)e−i∆p/~ (12)

where the use of index W and the connection with the Weyl
correspondence will be clarified shortly. Inserting an integral
over additional variable, q

〈x1|Â|x2〉 =
1

2π~

Z
d pdqδ(X −q)AW (q, p)e−i∆p/~ (13)

=
1

(2π~)2

Z
d pdqdλeiλ(X−q)/~AW (q, p)e−i∆p/~

we get

〈x1|Â|x2〉=
1

(2π~)2

Z
d pdqdλAW (q, p)eiλ

(
−q+ x1+x2

2

)
/~ei(x1−x2)( λ

2−p)/~ (14)

Now insert another integral over
δ(x1 − x2 − µ) to eliminate (x1 − x2). This latter Dirac
delta function can be written as 〈x1|x2 + µ〉 which is equal
to 〈x1|eiµp̂/~|x2〉. Once the position eigen kets are inserted,

one can write factors like
(

eiλx1/~〈x1|
)

as
( 〈x1|eiλq̂/~ )

.
Combining all of the above we have

〈x1|Â|x2〉=
1

(2π~)2

Z
d pdqdλdµAW (q, p)e−i(λq+µp)/~〈x1|e

iλq̂
2~ eiµp̂/~e

iλq̂
2~ |x2〉 (15)

Now we know that the |x1〉 and |x2〉 were arbitrary. If the op-
erator properties of Â solely depends on p̂ and q̂, that is, if
the collection of all the matrix elements of the type (11) can
fully describe the operator Â, then the aforementioned state
kets can be omitted from both sides of the equation. Then
we can use the Baker-Campbell-Hausdorff lemma to combine
operators inside the bra-ket into e(λq̂+µp̂)/~ and therefore show
that any phase-space operator can be written as (6). That is
to say, for every phase-space operator, there is a function of
the phase-space variables such that the relationship (6) holds.
Thus the Weyl correspondence represented by (6) is an onto
mapping from the space of functions into the space of phase-
space operators. Furthermore one can show that the Weyl cor-
respondence is a one-to-one mapping. To see that let us as-
sume there are two different functions, namely AW (q, p) and
A′W (q, p) that map to a single operator. That is

Z
dqd pdλdµ AW (q, p)ei

(
λ(q̂−q)+µ(p̂−p)

~
)

(16)

=
Z

dqd p dλdµA′W (q, p)ei
(

λ(q̂−q)+µ(p̂−p)
~

)

Now one can use (7) to reverse both sides and by using
the properties of the Fourier transformation can show that
AW (q, p) and A′W (q, p), are indeed identical. Therefore the
Weyl correspondence is a one-to-one and onto mapping from
the set of functions over the phase-space variables to the set
of phase-space operators as defined at the beginning of this
subsection.

B. Wigner Function

Wigner distribution functions W (q, p) in quantum systems
are meant to play the corresponding role of classical distri-
butions in classical kinetic theory. For a classical system
in kinetic theory and a positive-definite distribution function
P(q, p) of the canonical variables q, p in classical phase space,
we have [17]:

〈A〉classical =
Z

A(q, p)P(q, p)dqd p (17)
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Let us assume that the quantum system is described by the
wave function ψ(x) = 〈x|ψ〉. One can define

A(q, p) = 2
Z

dx e2ixp/~ 〈q− x|Â(q̂, p̂)|q+ x〉 (18)

W (q, p) =
1

π~

Z
dx e−2ixp/~ ψ∗(q− x)ψ(q+ x) (19)

where W (q, p) is called the Wigner function and it can be
shown to have the following main property

〈Â〉quantum =
Z

A(q, p)W (q, p)dqd p (20)

Note here that Â is a phase-space operator. To show that the
transformation defined by Eq. (18) is equivalent to the Weyl
correspondence we use Eq. (8) to obtain

AW (q, p) =
1

2π~

Z
dλdµ ei(λq+µp)/~ Tr[U†(λ,µ)Â]. (21)

The factor involving the trace can be rewritten as,

Tr[U†(λ,µ)Â] =
Z

dq′〈q′|e−iλq̂/~e−iµp̂/~eiλµ/2~A|q′〉

=
Z

dq′e−iλq′/~eiλµ/2~〈q′|e−iµp̂/~A|q′〉

=
Z

dq′e−iλq′/~eiλµ/2~〈q′−µ|A|q′〉
(22)

which can be substituted back in Eq. (21) to obtain

AW (q, p)

=
1

2π~

Z
dλ dµ dq′ eiλ(q−q′+µ/2)/~eiµp〈q′−µ|A|q′〉

=
Z

dµ dq′ δ(q′−q−µ/2)eiµp〈q′−µ|A|q′〉

=
Z

dµ eiµp〈q−µ/2|A|q+µ/2〉. (23)

With a slight change of variable to x = µ/2 we have

AW (q, p) = 2
Z

ei2xp/~〈q− x|A|q+ x〉dx, (24)

which proves the equivalence of the two mappings.
Note that the above transformation has the following property

Z
dqd p A(q, p) = 2π~Tr[Â(q̂, p̂)] (25)

and that the Wigner distribution function is actually the Weyl
transformation of the density matrix operator ρ̂ = |ψ〉〈ψ|

ρW (q, p) = 2π~W (q, p)

= 2
Z

ei2q̄p/c〈q− q̄|ψ〉〈ψ|q+ q̄〉dq̄ (26)

Unlike the classical case, where a probabilistic interpretation
of the distribution function is possible, the Wigner function
cannot be interpreted as a probability distribution because in
general it is not everywhere positive. Let |p〉 and |q〉 be the
eigenkets of operators p̂ and q̂ with eigenvalues p and q re-
spectively. Assuming the system is in the state denoted by
|ψ〉, it can be easily shown that the Wigner function has the
following properties:

Z
W (q, p)dq = 〈p|ψ〉〈ψ|p〉,

Z
W (q, p)d p = 〈q|ψ〉〈ψ|q〉

(27)

For completeness we note that for a mixed state the Wigner
function can be defined as

W (q, p) =
1

π~

Z
dx e−2ixp/~ ρ(q− x,q+ x) (28)

C. Phase space ∗-product and Wigner-Moyal equation

Consider two dynamical variables A and B in a classical
system. The statistical average of their product is obtained by
weighting it with the distribution function P(q, p) given by

〈AB〉classical =
Z

A(q, p)B(q, p)P(q, p)dqd p. (29)

If A and B are quantum mechanical operators, because of their
functional dependence on the non-commuting operators q̂ and
p̂ a different rule of multiplication, the star product, is needed.
The star product satisfies the following property [1]

〈ÂB̂〉=
Z

AW (q, p)∗BW (q, p)W (q, p)dqd p (30)

Alternatively,

C(q, p) = (ÂB̂)W (q, p) = AW (q, p)∗BW (q, p) (31)

where the symbol ( . )W for products of operators, stands for
the Weyl transformation of the enclosed operator inside. How
is the star product related to the ordinary algebraic product?
To find out we first use the Weyl analysis for the solution

C(q, p) =
1

2π~

Z
ei(λq+µp)/~ Tr[U†(λ,µ)ÂB̂] dλ dµ

(32)

We substitute for Â and B̂ from (6) and use the fact that
AW (q, p) = A(q, p) , BW (q, p) = B(q, p) to write
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C(q, p) =
1

(2π~)4

Z
A(q′, p′)ei λ′(q−q′)+µ′(p−p′)

~ e
−i
2~ (λ′µ′′−λ′′µ′)ei λ′′(q−q′′)+µ′(p−p′′)

~ B(q′′, p′′) dq′d p′dq′′d p′′dλ′dλ′′dµ′dµ′′

(33)

where we have made use of (7) and

U†(λ,µ)U(λ′,µ′) = U†(λ−λ′,µ−µ′)ei(λµ′−λ′µ)/2~. (34)

The above relationship can be written as:

C(q, p) = A(q, p)∗B(q, p)

= A(q, p)ei~2 (
←−
∂

∂q

−→
∂

∂p−
←−
∂

∂p

−→
∂
∂q )B(q, p) (35)

This procedure for combining two functions defines the phase
space ∗-product. Another way of writing it is

A(q, p)∗B(q, p) =

e
i~
2 ( ∂

∂q
∂

∂p′−
∂

∂p
∂

∂q′ )A(q, p)B(q′, p′)
∣∣
(q′,p′)→(q,p) (36)

Using these three entities, namely, Wigner function, Weyl
transformation and the star product, we can construct the
Wigner-Moyal-Weyl-Groenwood formalism. This formalism
has been well developed long before the recent activities in
NC geometry and been used widely for the study of semi-
classical physics (see, e.g., [14–16]). The state of a quantum
system can be represented by a real valued function of the
canonical coordinates, the Wigner function. We notice that
the star-squared of a Wigner function (for a pure state) is pro-
portional to itself.

W ∗W =
1
~

W (37)

The Weyl transformation of the Dirac bracket of two operators
can be shown to be equal to their commutator with respect to
the star product:

[Â, B̂]W = [A,B]∗ ≡ A∗B−B∗A (38)

It can be shown that using the Weyl transformation of the
eigenvalue equation for the density operator, corresponding
to an energy eigen state, we obtain:

H ∗Wn = EnWn (39)

The eigenvalue equation is thus formulated as a “star-gen
value” equation.

The time evolution of the system’s state is governed by the
Wigner-Moyal equation. For a Hamiltonian of the form

H(x, p) =
p2

2m
+V (x)

The Wigner-Moyal equation is written as

∂W
∂t

= −2
~

W sin
~
2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)
H (40)

=
2
~

(H ∗W −W ∗H) (41)

Or, equivalently, from (Eq. 38),

~
2

∂W
∂t

= [H,W ]∗ (42)

So far we have discussed everything in one space dimen-
sion. The extension to N dimensional space is straightforward.
The commutation relation takes the form:

[qi, p j] = i~δi j (43)

The star product is associative, that is

[( f ∗g)∗h] = [ f ∗ (g∗h)] , (44)

The complex conjugate (c) of the star product of two functions
is given by

( f ∗g)c = gc ∗ f c (45)

Finally the star product of functions under integration exhibits
the cyclic property:

R
( f1 ∗ f2 ∗ · · · ∗ fn)(x)dNqdN p =R
( fn ∗ f1 ∗ · · · ∗ fn−1)dNqdN p (46)

In particular, for two functions in a 2N-dimensional phase
space (N dimensional configuration space), we have

Z
( f ∗g)(x)dNqdN p =

Z
(g∗ f )(x)dNqdN p

=
Z

( f ·g)(x)dNqdN p (47)

The last equation states that for two functions of phase space
coordinates ( where [q̂i, p̂ j] = i~δi

j ), the integral of the star-
product over all phase space gives the same result as that ob-
tained by using the ordinary product. (For an introduction to
the properties of time-independent Wigner functions see [20].
Our notation in this section follows [17]).

III. NONCOMMUTATIVE GEOMETRY

Noncommutative geometry (NCG) has appeared in the lit-
erature ever since Heisenberg and Snyder studied it with the
hope of resolving the ultraviolet infinity problem [21]. Later
on it was applied to the Landau model of electrons in a mag-
netic field, where considering certain limits (the lowest energy
levels) the space of the coordinates becomes a noncommuta-
tive space. Recent interest in noncommutative physics, how-
ever, stems from the discovery of NCG in the context of string
theory and M theory [8, 9]. NCG has been considered as a
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candidate for Plank scale geometry. Hence, a successful the-
ory of quantum gravity may reveal the necessity or desirability
of some form of noncommutative geometry.

There are various approaches to formulate noncommuta-
tive geometry. Early attempts using a more mathematical
approach were proposed by Alain Connes and John Madore
[22, 23]. In this phase, a differential NC geometry was devel-
oped and the concept of distance and differential forms were
defined. Later progress focused more around the Wigner-
Moyal formalism, described in the last section. Almost all
current work on the subject of fields in noncommutative
spaces relies on using star product and its properties. This
is the approach pursued here.

A. Noncommutative ?-star product

To introduce non-commutativity, one replaces the normal
product between two functions with the ?-product defined as

f (x)?g(x) = f (x) e
iθi j

2

←−
∂

∂xi

−→
∂

∂x j g(x) (48)

The ?-product inherits all the properties of its phase space
counterpart, the ∗-product.

In the previous section we used q as the canonical variable
for position. From now on we denote it by x. In what follows,
we also use the beginning letters of the Latin alphabet, a,b
to denote the coordinate indices rather than the middle letters
i, j. With this we can expand the ?-product as

f (x)?g(x) = f (x)g(x)+ ∑
n=1

(
1
n!

)(
i
2

)n

×

θa1b1 . . .θanbn∂a1 . . .∂ak f (x)∂b1 . . .∂bk g(x) (49)

In the interest of brevity, sometimes we put the lower limit of
the sum as n = 0 to replace the first term in the above, i.e., the
n = 0 term is f (x)g(x), without derivatives or θ dependence.

B. Noncommutative Quantum Mechanics

Using the non-relativistic limit of noncommutative quan-
tum field theory (NCQFT) (see [12, 25] for a review), one can
obtain the Schrödinger equation for noncommutative quantum
mechanics (NCQM) as follows [24, 26]:

i~
∂
∂t

ψ =−∇2

2m
ψ+V ?ψ. (50)

Here we are studying the quantum mechanics of a particle
in an external potential. As is well-known, using the form
of ?−product, one can write the noncommutative part as
V

(
x̂i− p̂ jθi j/(2~)

)
ψ(x). However one must pay attention to

the ordering issues that can arise. To be consistent with the
definition of a ?-product, the ordering here is such that all mo-
mentum operators stand to the right of the rest of the potential
and operate directly on the wave function.

The definition of Wigner function does not change in the
NC settings. However we expect the time evolution of the
Wigner function following the Wigner-Moyal (WM) equation
to be different. To obtain the WM equation for NCQM, one
can start from (50) in a somewhat cumbersome yet straight-
forward manner. An easier way is to apply the Weyl corre-
spondence to the von Neumann equation,

i~
dρ̂
dt

= ρ̂ĤNC− ĤNCρ̂ (51)

where the NC Hamiltonian is written as:

ĤNC =
p̂2

2m
+ ∑

n=0

1
n!

(−1
2~

)n

θa1b1 · · ·θanbn ∂a1 · · ·∂anV p̂b1 · · · p̂bn (52)

We begin with the equation governing the Wigner function as
it is normally defined

−i~
dW
dt

= W ∗HNC
W −HNC

W ∗W (53)

where HNC
W is the Weyl correspondent of the noncommuta-

tive Hamiltonian. To find the Weyl transformation we use the
usual definition:

HNC
W (x, p) = 8

Z
e2iy·p/~〈x− y|Ĥ|x+ y〉d3y (54)

For convenience let us define

A(x)b1...bn = (55)(− 1
2~

)n θa1b1 · · ·θanbn∂a1 · · ·∂anV (x)

Then we have

HNC
W (x, p) =

p2

2m
+8 ∑

n=0

1
n!

(56)

R
e2iy·(p−p′)/~A(x− y)b1...bn p′b1

· · · p′bn
d3 p′d3y
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which can be shown to be equivalent to

HNC
W (x, p) =

p2

2m
+8 ∑

n=0

1
n!

n

∏
k=1

(
pbk −

~
i

∂bk

)
A(x)b1...bn

(57)

But since θab∂a∂bV vanishes, after expanding the product no
derivative survives and we get

HNC
W (x, p) = HW (xa− θab

2~
pb, p) (58)

That is, the Weyl transformation of H(x̂, p̂) has the same
functional form in terms of x and p as the commutative Hamil-
tonian but with position xa shifted by an amount equal to
− θab

2~ pb, where pb is the phase space momentum.

C. A Superstar F Wigner-Moyal equation

With the change of coordinates,

x′a = xa− θab

2~
pb (59)

p′a = pa (60)

we can rewrite the above equation in a more suggestive form
as:

−i~
∂W̃
∂t

= W̃ (x′, p′)FHW (x′, p′)

− HW (x′, p′)FW̃ (x′, p′) (61)

with

W̃ (x′, p′) = W (x′a +
θab

2~
p′b, p′a) (62)

F ≡ e
i~
2

(←−
∂ x′ ·

−→
∂ p′−

←−
∂ p′ ·

−→
∂ x′

)
+ iθab

2

←−
∂

∂x′a
−→
∂

∂x′b (63)

where x, x′,p and p′ are phase space variables, not operators.
This is the main mathematical result of this paper.

In related works, Jing et al [28] had derived an explicit form
for the Wigner functions in NCQM and showed that it sat-
isfies a generalized *-genvalue equation. (We thank Dr. J.
Prata for bringing to our attention this reference.) Dayi and
Kelleyane [29] derived the Wigner functions for the Landau
problem when the plane is noncommutative. They introduced
a generalized *-genvalue equation for this problem and found
solutions for it.

Now we use this equation to examine the classical and com-
mutative limits. In the limit of small ~ the equation(61) be-
comes

∂W̃
∂t

= 1
2

(
∂x′i H ?∂p′iW̃ −∂p′i H ?∂x′iW̃

)−
1
2

(
∂x′iW̃ ?∂p′i H−∂p′iW̃ ?∂x′i H

)
+

1
i~

(
H ?W̃ −W̃ ?H

)
(64)

From this we conclude that if θ is kept 6= 0 the classical limit
(~ → 0) does not exist. In order for the classical limit of
NCQM to exist, θ must be of order ~ or higher, or, if θ→ 0 at
least as fast as ~→ 0. Note, however, that this limit does not
yield Newtonian mechanics, unless the limit of θ/~ vanishes
as θ→ 0.

Comparing with earlier claims on this issue, a different con-
clusion was reached by Acatrinei [31] who proposed a phase-
space path integral formulation of NCQM which ”suggests
that a classical limit always exists” (communication from the
cited author).

Also relevant to our finding here are earlier results from per-
turbative noncommutative field theories. For scalar theories,
non-planar diagrams lead to infra-red divergences [32, 33]
which renders the theory singular in the θ → 0 limit. This
situation also arise in gauge theories (e.g., [34]). In studies of
perturbative NC Yang-Mills theory, e.g., Armoni [35] pointed
out that even at the planar limit the θ → 0 limit of the U(N)
theory does not converge to the ordinary SU(N)×U(1) com-
mutative theory. This is due to the renormalization procedure
being incommensurate with noncommutativity. This is also
related to the IR/UV issue in string theory. (There is a huge
literature on NC field theory. For reviews, see, e.g., [12, 25])

IV. CONTINUITY EQUATION AND EHRENFEST
THEOREM

To further explore the classical and commutative (~ ≈ 0 ,
θ ≈ 0) limits, it is instructive to find out the noncommutative
version of the continuity equation and that of the Ehrenfest
theorem in such a context. Noncommutative classical me-
chanics and expectation values of quantum mechanical quan-
tities have been studied in [30] (see earlier references therein).

A. Continuity Equation

From (50) we have

∂(ψ∗ψ)
∂t

+∇ · ~
2im

(ψ∇ψ∗−ψ∗∇ψ) (65)

− 1
i~

(
ψ∗ (V (x)?ψ)− (ψ∗ ?V (x))ψ

)
= 0

To first order in θ, the approximation yields

∂
∂t (ψ∗ψ)+∇ ·(

~
2im

(ψ∇ψ∗−ψ∗∇ψ)+
1

2~
V (x)

(−→
θ ×∇(ψ∗ψ)

))

= 0, (66)

where we have defined (x̂k being the kth unit vector)

−→
θ = θkx̂k (67)
θk = εi jkθi j (68)
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To this order our semi-commutative continuity equation does
suggest the following quantity as the conserved probability
current.

~J(1) =
~

2im
(ψ∇ψ∗−ψ∗∇ψ)

+
1

2~
V (x)

(−→
θ ×∇(ψ∗ψ)

)
(69)

The existence of a continuity equation for all orders of θ can
be inferred as follows. The θ-dependent term is proportional
to

ψ∗ (V (x)?ψ)− (ψ∗ ?V (x))ψ (70)

It can be shown that the difference between A?B and AB is a
total divergence. Using this, we can write:

ψ∗ (V (x)?ψ)− (ψ∗ ?V (x))ψ
= ψ∗ ?V (x)?ψ+∂iQi−ψ∗ ?V (x)?ψ−∂iSi

= ∂i(Qi−Si) (71)

which shows that the θ dependent term is also a total diver-
gence. In fact one can explicitly compute the conserved cur-
rent to all orders. To calculate the nth order term, we consider
the last two terms of (65), where

[(
ψ∗

(
V

(
x
)

?ψ
)
−

(
ψ∗ ?V (x)

)
ψ

)]
nth order

=
(

1
n!

)(
i
2

)n

θa1b1 . . .θanbn∂a1

[(
ψ∗∂a2 · · ·∂anV +(−1)n−1V ∂a2 · · ·∂anψ∗+

n−1

∑
k=2

∂a2 · · ·∂ak ψ∗∂ak+1 · · ·∂anV
)

∂b1 · · ·∂bnψ− (−1)nc.c.
]

+ V
(

∂a1 · · ·∂anψ∗∂b1 · · ·∂bnψ− (−1)n∂a1 · · ·∂anψ∂b1 · · ·∂bnψ∗
)
.

Now the two terms in the last line cancel each other, since we
can swap all a indices with b indices and then bring back the
θ matrices to their original order by multiplying it by (−1)n.

The nth order (n ≥ 2) result in terms of θ for the conserved
current is then given by

Ja1
(n) =

( 1
i~

) (
1
n!

)(
i
2

)n

θa1b1 . . .θanbn × (72)

[(
ψ∗∂a2 · · ·∂anV +(−1)n−1V ∂a2 · · ·∂anψ∗+

n−1

∑
k=2

∂a2 · · ·∂ak ψ∗∂ak+1 · · ·∂anV
)

∂b1 · · ·∂bnψ− (−1)nc.c.
]

In the classical limit all terms must diverge unless θ is of order
~ or higher. One plausible argument is to assume that θ∼ `2

p,
where `p is the Planck length (`p =

√
~G/c3). In that case no

term will diverge, all terms of higher power in θ will vanish
and the first order term will be non-zero and proportional to
G/c3.

B. Noether’s theorem and Conserved Current

Instead of performing an explicit expansion in order of θ,
one can use a symmetry argument to derive a conserved cur-
rent in NCQM. Conservation is normally linked to continu-
ous symmetries of the Lagrangian through Noether’s theo-
rem. One may try to trace back both the commutative and
noncommutative continuity equations to the symmetries of

a Lagrangian that produces the equations of motion, namely
the Schrödinger equation and its complex conjugate. The La-
grangian for QM can be written as:

L =− ~
2

2m
∇ψ∗ ·∇ψ+

i~
2

(ψ∗ψ̇− ψ̇∗ψ)+V ψψ∗. (73)

This Lagrangian remains invariant under the following trans-
formations

δψ = iεψ (74)
δψ∗ = −iεψ∗ (75)

The usual continuity equation in commutative QM is a conse-
quence of Noether’s theorem.

It can be shown (for example through expanding the star
product and deriving the equations of motion, order by order)
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that the following Lagrangian results in the noncommutative
version of the Schrödinger equation and its complex conjugate
(i.e. eq. (50)).

L =− ~
2

2m
∇ψ∗ ·∇ψ +

i~
2

(ψ∗ψ̇− ψ̇∗ψ) (76)

+ ψ∗ ?V ?ψ

One can see that this noncommutative Lagrangian exhibits the
same symmetry as the commutative Lagrangian, and thus it
admits a conserved current to all orders of θ.

C. The Ehrenfest theorem

Another way to explore the relation between quantum and
classical mechanics is the Ehrenfest theorem. What is its form
in NCQM when θ 6= 0? We begin with the time evolution of
the expectation value of x̂ to lowest non-vanishing order of θ.

This is given by

d〈x̂i〉
dt

=
〈p̂i〉
m

+
θi j

~
〈∂ jV 〉 (77)

One can calculate this equation to all orders of θ Intuitively
one can see that the form of Ehrenfest’s theorem for position
follows simply from the assumption that the noncommutative
Hamiltonian can be thought of as a commutative one in which
the potential function is evaluated at a shifted position, in a
manner that was discussed above (with the appropriate order-
ing). A direct calculation from first principles confirms this
view and we have:

d〈xk〉
dt

= 〈 ∂
p̂k

(
p̂2

2m
+V (x̂a− θab p̂b

2~
)
)
〉 (78)

In fact, generally speaking, one can write the equation of mo-
tion for the expectation value of any function of canonical op-
erators as:

d
dt 〈 f (x̂i, p̂ j)〉= 〈 ∂ f

∂x̂k

∂H(x̂a− θab

2~ p̂b)
∂p̂k

− ∂H(x̂a− θab

2~ p̂b)
∂x̂k

∂ f
∂ p̂k

〉 (79)

From this perspective one says that the system will behave classically if

〈∂V (x̂)
∂x̂a 〉 ≈ ∂V (〈x̂〉)

∂〈x̂a〉 (80)

〈∂a∂a1 · · ·∂anV
θa1b1 p̂b1

2~
· · · θanbn p̂bn

2~
〉 ≈ ∂nV (〈x̂〉)

∂〈x̂a〉∂〈x̂a1〉 · · ·∂〈x̂an〉
(

θa1b1〈p̂b1〉
2~

· · · θanbn〈p̂bn〉
2~

)
(81)

These approximations improve if we consider a typical wave
packet with a spread of ∆x in position space and a spread of
∆p in momentum space, satisfying the following conditions
as ~→ 0:

∆x¿
∣∣∣∣∣V

(
∂V
∂x

)−1
∣∣∣∣∣ (82)

∆p¿
∣∣∣∣∣V

(
∂V
∂p

)−1
∣∣∣∣∣ (83)

Furthermore the uncertainty principle implies that

~
2

< ∆x∆p¿V 2

∣∣∣∣∣
(

∂V
∂x

∂V
∂p

)−1
∣∣∣∣∣ (84)

Going back to (77) we again observe that the classical limit
does not exist unless θ goes to zero at least as fast as ~→
0. Another important observation is that the classical limit is
NOT Newtonian mechanics, unless the ratio θ/~ goes to zero
as θ → 0. In fact, assuming that θ ∼ `2

p, the limit of ~→ 0
gives

d〈x̂i〉
dt

∼ 〈p̂i〉
m

+
G
c3 εi j〈∂ jV 〉. (85)

Summary In this note we have given a derivation of the
Wigner-Moyal equation under a superstar F product, which
combines the phase space ∗ and the noncommutative ? - star
products. We find that the NC-Com (θ → 0) limit is qualita-
tively very different from the classical (~→ 0) limit. If θ 6= 0
there is no classical limit. Classical limit exists only if θ→ 0
at least as fast as ~→ 0, but this limit does not yield New-
tonian mechanics, except when θ/~ vanishes in the limit of
θ→ 0.

A longer paper addressing additional aspects of this issue
is in preparation [36].
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