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Structure behind Mechanics II: Deduction

Toshihiko Ono†

703 Shuwa Daiich Hachioji Residence,
4-2-7 Myojin-cho, Hachioji-shi, Tokyo 192-0046, Japan

Abstract

This paper proves that protomechanics, previously introduced in quant-ph/9909025, deduces both
quantum mechanics and classical mechanics. It does not only solve the problem of the arbitrariness
on the operator ordering for the quantization procedure, but also that of the analyticity at the exact
classical-limit of h̄ = 0. In addition, proto-mechanics proves valid also for the description of a half-spin.

To be Submitted to Found. Phys.

1 INTRODUCTION

Previous paper [1] proposed a basic theory on physical reality, named as Structure behind Mechanics (SbM).1

It supposed that a field or a particle X on the four-dimensional spacetime has its internal-time õP(t)(X)
relative to a domain P(t) of the four-dimensional spacetime, whose boundary and interior represent the
present and the past at ordinary time t ∈ R, respectively. The classical action SP(t)(X) realizes internal-
time õP(t)(X) in the following relation:

õP(t)(X) = eiSP(t)(X). (1)

It further considered that object X also has the external-time õ∗P(t)(X) relative to P(t) which is the internal-

time of all the rest but X in the universe. Object X gains the actual existence on P(t) if and only if the
internal-time coincides with the external-time:

õP(t)(X) = õ∗P(t)(X). (2)

This condition discretizes or quantizes the ordinary time passing from the past to the future, and realizes the
mathematical representation of Whitehead’s philosophy. It also shows that object X has its actual reality
only when it is related with or exposed to the rest of the world. The both sides of relation (2) further obey
the variational principle as

δõP(t)(X) = 0 , δõ∗P(t)(X) = 0. (3)

These equations produce the equations of motion in the deduced mechanics.
SbM provided a foundation for quantum mechanics and classical mechanics, named as protomechanics

[1], originated by the past work [2]. The sapce M of all the objects over present hypersurface ∂P(t) had
an mapping ot : TM → S1 for the position (xt, ẋt) ∈ TM in the cotangent space TM corresponding to an
object X ∈ M̃ :

ot (xt, ẋt) = õP(t) (X) . (4)

† e-mail: BYQ02423@nifty.ne.jp or tono@swift.phys.s.u-tokyo.ac.jp
1Consult the letter [3] on the overview of the present theory.
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For the velocity field vt ∈ X(M) such that vt (xt) = dxt

dt , we will introduce a section ηt ∈ Γ [E(M)] and call
it synchronicity over M :

ηt(x) = ot (x, vt(x)) ; (5)

thereby, synchronicity ηt has an information-theoretical sense, as defined for the collective set of the objects
X that have different initial conditions from one another. On the other hand, the emergence-frequency
ft (ηt) represent the frequency that object X satisfies condition (2) on M , and the true probability measure
νt on TM representing the ignorance of the initial position, defined the emergence-measure µt (ηt) as follows:

dµt (ηt) (x) = dνt (x, vt(x)) · ft (ηt) (x). (6)

The induced Hamiltonian HT∗M
t on T ∗M , further, redefines the velocity field vt and the Lagrangian LTM

t

as follows:

vt(x) =
∂HT∗M

t

∂p
(x, p (ηt) (x)) (7)

LTM
t (x, v(x)) = v(x) · p (ηt) (x) −HT∗M

t (x, p (ηt) (x)) , (8)

where mapping p satisfies the modified Einstein-de Broglie relation:

p (ηt) = −ih̄η−1
t dηt. (9)

The equation of motion is the set of the following equations:

(
∂

∂t
+ Lvt

)
ηt(x) = −ih̄−1LTM

t (x, vt(x)) ηt(x), (10)

(
∂

∂t
+ Lvt

)
dµt (ηt) = 0. (11)

Protomechanics had the statistical description on an ensemble of all the synchronicities ητ
t for the labeling-

time τ defined in the previous paper such that ητ
τ = η. The next section will be devoted to the review of

such statistical description for protomechanics. Sections 3 and 4 will explain how protomechanics deduces
classical mechanics and quantum mechanics, respectively. They will consider the space of the synchronicities
such that

ΓA
k =

{
η

∣∣∣∣ sup
U
pj (η) (x) = h̄Akj ∈ R

}
(12)

which requires A = 0 and A = 1 for classical case and quantum case, respectively. Both cases will consider
a Lagrange foliation p̄ in TM such that it has a synchronicity η̄[k] ∈ ΓA

k

p̄[k] = p (η̄[k]) , (13)

and will separate every synchronicity η[k] ∈ ΓA
k into two parts:

η[k] = η̄[k] · ξ. (14)

where ξ ∈ ΓA
0 . Finally, these sections will compress all the infinite information of back ground ξ to produce

classical mechanics and quantum mechanics. Section 3 will additionally discuss a consequent interpretation
for the half-spin of a particle; a brief statement of the conclusion will immediately follow.

Let me summarize the construction of the present paper in the following diagram.
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classical mechanics (2) quantum mechanics(3)

protomechanics [1]classical part: h̄→ 0

Structure behind Mechanics (SbM) [1]

6

6 6

more elementary →

↓ more fundamental * Numbers in bracket ( ) refer those of sections.

In this paper, c and h denote the speed of light and Planck’s constant, respectively. I will use Einstein’s
rule in the tensor calculus for Roman indices’ i, j, k ∈ NN and Greek indices’ ν, µ ∈ NN , and not for Greek
indices’ α, β, γ ∈ NN , and I further denote the trace (or supertrace) operation of a quantum observable F̂
as 〈F̂ 〉 that is only one difference from the ordinary notations in quantum mechanics, where i =

√
−1.

2 Review on Protomechanics

Let us review the protomechanics in the statistical way for the ensemble of all the synchronicities on M ,
and construct the dynamical description for the collective motion of the sections of E(M). Such statistical
description realizes the description within a long-time interval through the introduced relabeling process so
as to change the labeling time, that is the time for the initial condition before analytical problems occur.
In addition, it clarifies the relationship between classical mechanics and quantum mechanics under the
assumption that the present theory safely induces them, and that will be proved in the following sections.2

For mathematical simplicity, the discussion below suppose that M is a N−dimensional manifold for a finite
natural number N ∈ N.

The derivative operator D = h̄dxj∂j : Tm
0 (M) → Tm+1

0 (M) (m ∈ N) for the space T n
0 (M) of all the

(0, n)-tensors on M can be described as

Dnp(x) = h̄n

(
n∏

k=1

∂jk
pj(x)

)
dxj ⊗

(
⊗n

k=1dx
jk
)
. (15)

By utilizing this derivative operator D, the following norm for every p ∈ Λ1(M) endows space Λ1(M) with
a norm topology:

‖p‖ = sup
M

∑

κ∈Z≥0

|Dκp(x)|x , (16)

where | |x is a norm of covectors at x ∈ M . In terms of this norm topology, we can consider the space
C∞

(
Λ1 (M) , C∞(M)

)
of all the C∞-differentiable mapping from Λ1 (M) to C∞(M) = C∞(M,R) and the

2 In another way, consult quant-ph/9906130.

3

http://arXiv.org/abs/quant-ph/9906130


subspaces of the space C(Γ[E(M)]) such that

C (Γ [E (M)]) =
{
p∗F : Γ [E(M)]→ C∞(M) |F ∈ C∞

(
Λ1(M), C∞(M)

)}
. (17)

Classical mechanics requires the local dependence on the momentum for functionals, while quantum mechan-
ics needs the wider class of functions that depends on their derivatives. The space of the classical functionals
and that of the quantum functionals are defined as

Ccl (Γ [E (M)]) = {p∗F ∈ C (Γ [E (M)]) | p∗F (η) (x) = F (x, p(η)(x)) } (18)

Cq (Γ [E (M)]) = {p∗F ∈ C (Γ [E (M)]) | (19)

p∗F (η) (x) = F (x, p(η)(x), ..., Dnp(η)(x), ...) } , (20)

and related with each other as

Ccl (Γ [E (M)]) ⊂ Cq (Γ [E (M)]) ⊂ C (Γ [E (M)]) . (21)

In other words, the classical-limit indicates the limit of h̄→ 0 with fixing |p(η)(x)| finite at every x ∈M , or
what the characteristic length [x] and momentum [p] such that x/[x] ≈ 1 and p/[p] ≈ 1 satisfies

[p]−n−1Dnp(η)(x)≪ 1. (22)

On the other hand, the emergence-measure µ(η) has the Radon measure µ̃(η) for section η ∈ Γ[E(M)]
such that

µ̃(η) (p∗F (η)) =

∫

M

dµ(η)(x)p∗F (η) (x). (23)

Let us assume set Γ (E(M)) is a measure space having the probability measureM such that

M (Γ (E(M))) = 1. (24)

For a subset Cn (Γ (E(M))) ⊂ C (Γ (E(M))), an element µ̄ ∈ Cn (Γ (E(M)))∗ is a linear functional µ̄ :
Cn (Γ [E(M)])→ R such that

µ̄ (p∗F ) =

∫

Γ[E(M)]

dM(η) µ̃(η) (p∗F (η)) (25)

=

∫

Γ[E(M)]

dM(η)

∫

M

dv(x) ρ (η) (x)F (p(η)) (x), (26)

where dµ(η) = dv ρ (η). Let us call mapping ρ : Γ[E(M)] → C∞(M) as the emergence-density. The dual
spaces make an decreasing series of subsets:

Ccl (Γ (E(M)))∗ ⊃ Cq (Γ (E(M)))∗ ⊃ C (Γ (E(M)))∗ . (27)

Let us summarize how the relation between quantum mechanics and classical mechanics in the following
diagram.
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Cq (Γ)

Ccl (Γ)

Cq (Γ)∗

Ccl (Γ)
∗
.

←− dual −→

←− dual −→

↑
classical-limit

|

↑
classical-limit

|

|
quantization

↓

|
quantization

↓

To investigate the time-development of the statistical state discussed so far, we will introduce the related
group. The group D(M) of all the C∞-diffeomorphisms of M and the abelian group C∞ (M) of all the
C∞-functions on M construct the semidirect product S(M) = D(M)×semi. C

∞(M) of D(M) with C∞(M),
and define the multiplication · between Φ1 = (ϕ1, s1) and Φ2 = (ϕ2, s2) ∈ S(M) as

Φ1 · Φ2 = (ϕ1 ◦ ϕ2, (ϕ
∗
2s1) · s2), (28)

for the pullback ϕ∗ by ϕ ∈ D(M). The Lie algebra s(M) of S(M) has the Lie bracket such that, for
V1 = (v1, U1) and V2 = (v2, U2) ∈ s(M),

[V1, V2] = ([v1, v2], v1U2 − v2U1 + [U1, U2]) ; (29)

and its dual space s(M)∗ is defined by natural pairing 〈 , 〉. Lie group S(M) now acts on every C∞ section
of E(M) (consult APPENDIX). We shall further introduce the group Q(M) = Map (Γ [E(M)] , S(M)) of
all the mapping from Γ [E(M)] into S(M), that has the Lie algebra q(M) = Map (Γ [E(M)] , s(M)) and its
dual space q(M)∗ = Map (Γ [E(M)] , s(M)∗).

Let us consider the time-development of the section ητ
t (η) ∈ Γ[E(M)] such that the labeling time τ

satisfies ητ
τ (η) = η. It has the momentum pτ

t (η) = −ih̄ητ
t (η)−1dητ

t (η) and the emergence-measure µτ
t (η) such

that
dM (η) µ̃τ

t (η) = dM (ητ
t (η)) µ̃t (ητ

t (η)) : (30)

µ̄t (p∗Ft) =

∫

Γ[E(M)]

dM(η) µ̃t(η) (p∗Ft(η)) (31)

=

∫

Γ[E(M)]

dM (η) µ̃τ
t (η) (p∗F (ητ

t (η))) (32)

=

∫

Γ[E(M)]

dM (η)

∫

M

dv(x) ρτ
t (η)(x)Ft (pτ

t (η)) (x). (33)

The introduced labeling time τ can always be chosen such that ητ
t (η) does not have any singularity within

a short time for every η ∈ Γ [E(M)]. The emergence-momentum J τ
t ∈ q (M)∗ such that

J τ
t (η) = dM (ητ

t (η)) (µ̃t (ητ
t (η)) ⊗ pτ

t (η), µ̃t (ητ
t (η))) (34)

= dM(η) (µ̃τ
t (η)⊗ pτ

t (η), µ̃τ
t (η)) (35)
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satisfies the following relation for the functional Ft : q (M)
∗ → R:

Ft (J τ
t ) = µ̄t (p∗Ft) , (36)

whose value is independent of labeling time τ . The operator F̂ τ
t = ∂Ft

∂J (J τ
t ) is defined as

d

dǫ

∣∣∣∣
ǫ=0

Ft (J τ
t + ǫK) =

〈
K, F̂ τ

t

〉
, (37)

i.e.,
F̂ τ

t =
(
Dρτ

t (η)Ft (pτ
t (η)) ,−pτ

t (η) · Dρτ
t (η)Ft (pτ

t (η)) + Ft (pτ
t (η))

)
, (38)

where the derivative DρF (p) can be introduced as follows excepting the point where the distribution ρ
becomes zero:

DρF (p) (x) =
∑

(n1,...,nN)∈NN

1

ρ(x)





N∏

i

(−∂i)
ni


ρ(x)p(x) ∂F

∂
{(∏N

i ∂ni

i

)
pj

}





∂j . (39)

Thus, the following null-lagrangian relation can be obtained:

Ft (J τ
t ) = 〈J τ

t , F̂
τ
t 〉, (40)

while the normalization condition has the following expression:

I (J τ
t ) = 1 for I (J τ

t ) =

∫

Γ[E(M)]

dM(η) µt(η)(M). (41)

For Hamiltonian operator Ĥτ
t = ∂Ht

∂J (J τ
t ) ∈ q (M) corresponding to Hamiltonian p∗Ht (η) (x) = HT∗M

t (x, p (η)),
equations (10) of motion becomes Lie-Poisson equation

∂J τ
t

∂t
= ad∗

Ĥτ
t

J τ
t , (42)

which can be expressed as

∂

∂t
ρτ

t (η)(x) = −√−1
∂j

(
∂HT∗M

t

∂ pj
(x, pτ

t (η) (x)) ρτ
t (η)(x)

√)
, (43)

∂

∂t
(ρτ

t (η)(x)pτ
tk(η)(x)) = −√−1∂j

(
∂HT∗M

t

∂ pj
(x, pτ

t (η) (x)) ρτ
t (η)(x)pτ

tk(η)(x)
√)

−ρτ
t (η)(x)pτ

tj(η)(x)∂k
∂HT∗M

t

∂ pj
(x, pτ

t (η) (x))

+ρτ
t (η)(x)∂k

(
pτ

t (η)(x) · ∂H
T∗M
t

∂ p
(x, pτ

t (η) (x)) (44)

−HT∗M
t (x, pτ

t (η)(x))
)
. (45)

Equation (42) will prove in the following sections to include the Schrödinger equation in canonical quantum
mechanics and the classical Liouville equations in classical mechanics.

For Uτ
t ∈ Q (M) such that

∂Uτ
t

∂t ◦ (Uτ
t )−1 = Ĥτ

t (η) ∈ q(M), let us introduce the following operators:

H̃τ
t (η) = Ad−1

Uτ
t
Ĥτ

t (η)
(
= Ĥτ

t (η)
)
, and F̃ τ

t (η) = Ad−1
Uτ

t
F̂ τ

t (η). (46)
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Lie-Poisson equation (42) is equivalent to the following equation:

∂

∂t
F̃ τ

t =
[
H̃τ

t , F̃
τ
t

]
+

˜(∂F τ
t

∂t

)
. (47)

The general theory for Lie-Poisson systems certificates that, if a group action of Lie group Q(M) keeps the
Hamiltonian Ht : q(M)∗ → R invariant, there exists an invariant charge functional Q : Γ [E(M)] → C(M)
and the induced function Q : q(M)∗ → R such that

[
Ĥτ

t , Q̂
τ
]

= 0. (48)

3 DEDUCTION OF CLASSICAL MECHANICS

In classical Hamiltonian mechanics, the state of a particle on manifold M can be represented as a position
in the cotangent bundle T ∗M . In this section, we will reproduce the classical equation of motion from the
general theory presented in the previous section. Let us here concentrate ourselves on the case where M is
N -dimensional manifold for simplicity, though the discussion below would still be valid if substituting an
appropriate Hilbert space when M is infinite-dimensional ILH-manifold[4].

3.1 Description of Statistical State

Now, we must be concentrated on the case where the physical functional F ∈ C∞
(
Λ1(M), C∞(M)

)
does

not depend on the derivatives of the C∞ 1-form p (η) ∈ Λ1(M) induced from η ∈ Γ [E(M)], then it has the
following expression:

p∗F (η) (x) = FT∗M (x, p (η) (x)) . (49)

Let us choose a coordinate system (Uα,xα)α∈ΛM
for a covering {Uα}α∈ΛM

over M , i.e., M =
⋃

α∈ΛM
Uα.

Let us further choose a reference set U ⊂ Uα such that v(U) 6= 0 and consider the set ΓUk [E(M)] of the C∞

sections of E(M) having corresponding momentum p (η) the supremum of whose every component pj (η) in
U becomes the value kj for k = (k1, ..., kN ) ∈ RN :3

ΓUk [E(M)] =

{
η ∈ Γ [E(M)]

∣∣∣∣ sup
U
pj (η) (x) = kj

}
. (50)

Thus, every section η ∈ Γ [E(M)] has some k ∈ RN such that η = η[k] ∈ ΓUk [E(M)]. Notice that
ΓUk [E(M)] can be identified with ΓU ′k [E(M)] for every two reference sets U and U ′ ∈M , since there exists
a diffeomorphism ϕ satisfying ϕ (U) = U ′; thereby, we will simply denote ΓUk [E(M)] as Γk [E(M)].

On the other hand, let us consider the space L (T ∗M) of all the Lagrange foliations, i.e., every element
p̄ ∈ L (T ∗M) is a mapping p̄ : RN → Λ1(M) such that each q ∈ T ∗M has a unique k ∈ RN as

q = p̄[k] (π(q)) . (51)

For every p̄ = p ◦ η̄ ∈ L (T ∗M) such that η̄[k] ∈ Γk [E(M)], it is possible to separate an element η[k] ∈
Γk [E(M)] for a ξ ∈ Γ0 [E(M)] as

η[k] = η̄[k] · ξ, (52)

or to separate momentum p (η[k]) as
p (η[k]) = p̄[k] + p (ξ) ; (53)

3 To substitute ΓUk [E(M)] =
{

η ∈ Γ [E(M)]
∣∣ ∫

U
dv(x) pj (η) (x) = kjv (U)

}
for definition (50) also induces the similar

discussion below, while there exist a variety of the classification methods that produce the same result.
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thereby, we can express the emergence-density ρ : Γ[E(M)]→ C∞ (M) in the following form for the function
̺ (ξ) ∈ C∞ (T ∗M,R) on T ∗M :

ρ (η[k]) (x)
√

= ̺ (ξ) (x, p (η[k]) (x)) . (54)

We call the set B [E(M)] = Γ0 [E(M)] the back ground of L (T ∗M). For the Jacobian-determinant

σ[k] = det
(

∂p̄τ
ti[k]

∂kj

)
, we will define the measure N on B [E(M)] for the σ-algebra induced from that of

Γ [E(M)]:
dM (η[k]) dv(x) = dNkdN (ξ) dv(x) σ[k](x) . (55)

For separation (53), the Radon measure µ̃(η) induces the measure ωN on T ∗M in the following lemma such
that ωN = φUα∗d

Nx ∧ dNk for dNx = dx1 ∧ ...dxN and dNk = dk1 ∧ ...dkN .

Lemma 1 The following relation holds:

µ̄ (p∗F ) =

∫

T∗M

ωN(q) ρT∗M (q)FT∗M (q) , (56)

where

ρT∗M (q) =

∫

B[E(M)]

dN (ξ) ̺ (ξ) (q) . (57)

Proof . The direct calculation based on separation (53) shows

µ̄ (p∗F ) =

∫

Γ[E(M)]

dM (η) µ̃ (η) (p∗F (η))

=

∫

Γ[E(M)]

dM (η[k])

∫

M

dv(x) ̺ (ξ) (x, p (η[k]) (x))FT∗M (x, p (η[k]) (x))

=

∫

RN

dNk

∫

B[E(M)]

dN (ξ)

∫

M

dv(x) σ[k](x)

× ̺ (ξ) (x, p (η[k]) (x))FT∗M (x, p (η[k]) (x))

=

∫

RN

dNk

∫

B[E(M)]

dN (ξ)

∫

M

dv(x) σ[k](x)

× ̺ (ξ) (x, p̄[k](x) + p (ξ) (x))FT∗M (x, p̄[k](x) + p (ξ) (x)) (58)

=

∫

B[E(M)]

dN (ξ)
∑

α∈ΛM

∫

φUα (Aα)

dNk ∧ dNx φ∗Uα
̺ (ξ) (x, k)φ∗Uα

FT∗M (x, k)

=

∫

B[E(M)]

dN (ξ)

∫

T∗M

ωN (q) ̺ (ξ) (q)FT∗M (q) , (59)

where T ∗M =
⋃

α∈ΛM
Aα is the disjoint union of Aα ∈ B (OT∗M ) such that (1) π (Aα) ⊂ Uα and that (2)

Aα ∩Aβ = ∅ for α 6= β ∈ ΛM (consult APPENDIX).
If defining the probability function ρT∗M : T ∗M → R such that

ρT∗M (q) =

∫

B[E(M)]

dN (ξ) ̺ (ξ) (q) , (60)

we can obtain this lemma.
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3.2 Description of Time-Development

Let us consider the time-development of the functional µ̄t : C1 (Γ (M) , C (M))→ R for pτ
t (η[k]) = p̄τ

t [k] +

p (ξ). For the Jacobian-determinant στ
t [k] = det

(
∂p̄τ

ti[k]
∂kj

)
, the following relation holds:

µ̄t (p∗Ft) =

∫

T∗M

ωN(q) ρT∗M
t (q)FT∗M (q) (61)

=

∫

RN

dNk

∫

M

dv(x) ρ̄τ
t [k](x)FT∗M (x, p̄τ

t [k](x)) , (62)

where
ρ̄τ

t [k](x)
√

= στ
t [k](x)ρT∗M (x, p̄τ

t [k](x)) . (63)

The Jacobian-determinant στ
t [k] satisfies the following relation:

dM (ητ
t (η))

dM(η)
=
στ

t [k]

σ[k]
. (64)

Thus, we can define the reduced emergence-momentum J̄t ∈ q̄ (M)
∗

= q (M)
∗
/B [E(M)] as follows:

J̄t (η̄[k]) =
(
dNk ∧ dv ρ̄τ

t [k]⊗ p̄τ
t [k], dNk ∧ dv ρ̄τ

t [k]
)
; (65)

and we can define the functional F̄t ∈ C∞
(
q̄ (M)

∗
,R
)

as

F̄t

(
J̄t

)
= µ̄t (p∗Ft) (66)

=

∫

RN

dNk

∫

M

dv(x) ρ̄τ
t [k](x)FT∗M

t (x, p̄τ
t [k](x)) , (67)

which is independent of labeling time τ .
Then, the operator F̂ cl

t = ∂F̄t

∂J̄

(
J̄t

)
satisfies

F̂ cl
t =

(
∂FT∗M

t

∂p
(x, p̄τ

t [k](x)) ,−LF T∗M
t

(
x,
∂FT∗M

t

∂p
(x, p̄τ

t [k](x))

))
, (68)

where

LF T∗M
t

(
x,
∂FT∗M

t

∂p
(x, p)

)
= p · ∂F

T∗M
t

∂p
(x, p)− FT∗M

t (x, p) (69)

is the Lagrangian if function Ft is Hamiltonian Ht. Thus, the following null-lagrangian relation can be
obtained:4

F̄t

(
J̄t

)
= 〈J̄t, F̂

cl
t 〉. (70)

Besides, the normalization condition becomes

Ī
(
J̄t

)
= 1 for Ī

(
J̄t

)
=

∫

RN

dNk

∫

M

dv(x) ρ̄τ
t [k](x). (71)

Theorem 1 For Hamiltonian operator Ĥt = ∂Ht

∂J̄

(
J̄t

)
∈ q̄ (M), the equation of motion becomes Lie-Poisson

equation:
∂J̄t

∂t
= ad∗

Ĥcl
t

J̄t, (72)

4 The Lagrangian corresponding to this Lie-Poisson system is 〈J̄t, Ĥ
cl
t 〉 − Ht

(
J̄t

)
, while the usual Lagrangian is LHT∗M

t .
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that is calculated as follows:

∂

∂t
ρ̄τ

t [k](x) = −√−1
∂j

(
∂HT∗M

t

∂pj
(x, p̄τ

t [k](x)) ρ̄τ
t [k](x)

√)
, (73)

∂

∂t
(ρ̄τ

t [k](x)p̄τ
tk[k](x)) = −√−1

∂j

(
∂HT∗M

t

∂pj
(x, p̄τ

t [k](x)) ρ̄τ
t [k](x)p̄τ

tk[k](x)
√)

−ρ̄τ
t [k](x)p̄τ

tj [k](x)∂k

(
∂HT∗M

t

∂pj
(x, p̄τ

t [k](x))

)

+ρ̄τ
t [k](x)∂kL

HT∗M
t (x, p̄τ

t [k](x)) . (74)

Proof . The above equation can be obtained from the integration of general equations (??) and (??) on the
space ΓU0; thereby, it proves the reduced equation from original Lie-Poisson equation (42).

As a most important result, the following theorem shows that Lie-Poisson equation (72), or the set of
equations (73) and (74), actually represents the classical Liouville equation.

Theorem 2 Lie-Poisson equation (72) is equivalent to the classical Liouville equation for the probability
density function (PDF) ρT∗M

t ∈ C∞(T ∗M,R) of a particle on cotangent space T ∗M :

∂

∂t
ρT∗M

t = {ρT∗M
t , HT∗M}, (75)

where the Poisson bracket { , } is defined for every A, B ∈ C∞(M) as

{A,B} =
∂A

∂pj

∂B

∂xj
− ∂B

∂pj

∂A

∂xj
. (76)

Proof . Classical equation (75) is equivalent to the canonical equations of motion through the local expression
such that φUα

(qt) = (xt, pt) for the bundle mapping φUα
: π−1(Uα)→ Uα ×RN :

dpjt

dt
= −∂H

T∗M

∂xj
(xt, pt)

dxj
t

dt
=
∂HT∗M

∂pj
(xt, pt). (77)

If qt = (xt, p̄
τ
t [k](xt)) satisfies canonical equations of motion (77), the above equation of motion induces

∂p̄τ
tk

∂t
[k](x) = −∂H

T∗M

∂xk
(x, p̄τ

t [k](x))− ∂HT∗M

∂pj
(x, p̄τ

t [k](x)) ∂j p̄
τ
tk[k](x), (78)

then relation (63) satisfies the following equation:

∂

∂t
ρ̄τ

t [k](x) =
√−1

∂j

(
στ

t [k](x)
∂HT∗M

∂pj
(x, p̄τ

t [k](x))

)
ρT∗M

t (x, p̄τ
t [k](x))

+
√−1στ

t [k](x)
∂ρT∗M

t

∂t
(x, p̄τ

t [k](x))

−√−1στ
t [k](x)

∂HT∗M

∂xj
(x, p̄τ

t [k](x))
∂ρT∗M

t

∂pj
(x, p̄τ

t [k](x))

−√−1
στ

t [k](x)
∂HT∗M

∂pj
(x, p̄τ

t [k](x))

×∂j p̄tk[k](x)
∂ρT∗M

t

∂pk
(x, p̄τ

t [k](x))

= −√−1∂j

(
∂HT∗M

∂pj
(x, p̄τ

t [k](x)) ρτ
t [k](x)

√)
. (79)
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Equations (78) and (79) lead to the following equation:

∂

∂t
{ρ̄τ

t [k](x)p̄τ
tk[k](x)} = −p̄tk[k](x)

√−1
∂j

(
∂HT∗M

∂pj
(x, p̄τ

t [k](x)) ρ̄τ
t [k](x)

√)

−ρ̄τ
t [k](x)

∂HT∗M

∂xk
(x, p̄τ

t [k](x))

−ρ̄τ
t [k](x)

∂HT∗M

∂pj
(x, p̄τ

t [k](x)) ∂j p̄
τ
tk[k](x)

= −√−1
∂j

(
∂HT∗M

∂pj
(x, p̄τ

t [k](x)) ρ̄τ
t [k](x)p̄τ

tk[k](x)
√)

−ρ̄τ
t [k](x)

{
p̄τ

tj [k](x)∂k

(
∂HT∗M

∂pj
(x, p̄τ

t [k](x))

)

+∂kL
H (x, p̄τ

t [k](x))
}
. (80)

Equations (79) and (80) are equivalent to equations (73) and (74); thereby, canonical equation (75) is equiv-
alent to Lie-Poisson equation (72).

The above discussion has a special example of the following Hamiltonian:

HT∗M
t (x, p) = gij(x) (pi +Ai) (pj +Aj) + U(x), (81)

where corresponding Hamiltonian operator Ĥt is calculated as

Ĥt[k] =
(
gji (p̄ti[k] +Ai) ∂j ,−gjip̄tj [k]p̄ti[k] + gjiAjAi + U

)
; (82)

thereby, equation (72) is described for special Hamiltonian (81) as

∂

∂t

(
ρ̄τ

t [k](x)p̄τ
tj [k](x)

)
= −√−1

∂i

{
gik(x) (p̄τ

tk[k](x) +Ak(x)) ρ̄τ
t [k](x)p̄τ

tj [k](x)
√}

−ρ̄τ
t [k](x)

(
∂jg

ik(x)
)
p̄τ

ti[k](x)p̄
τ
tk[k](x)

−
(
∂jg

ik(x)Ak(x)
)
ρ̄τ

t [k](x)p̄τ
ti[k](x)

−ρ̄τ
t [k](x)∂j

{
U(x) + gik(x)Ai(x)Ak(x)

}
, (83)

∂

∂t
ρ̄τ

t [k](x) = −√−1∂i

{
gik(x) (p̄tk[k](x) +Ak(x)) ρ̄τ

t [k](x)
√}

. (84)

For Ūt ∈ Q̄ (M) such that ∂Ūt

∂t ◦ Ū−1
t = Ĥcl

t ∈ q̄ (M), let us introduce operators

H̃cl
t = Ad−1

Ūt
Ĥcl

t , (85)

F̃ cl
t = Ad−1

Ūt
F̂ cl

t , (86)

which induces the following equation equivalent to equation (72):

∂

∂t
F̃ cl

t =
[
H̃cl

t , F̃
cl
t

]
+

˜(∂Ft

∂t

)cl

. (87)

This expression of the equations of motion coincides with the following Poisson equation because of Theorem
2:

d

dt
FT∗M

t =
{
HT∗M

t , FT∗M
t

}
+
∂FT∗M

t

∂t
. (88)
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As discussed in Section 3, if a group action of Lie group Q(M) keeps the Hamiltonian H̄t : q̄(M)∗ →
R invariant, there exists an invariant charge function QT∗M ∈ C∞(T ∗M) and the induced function Q̄ :
q̄(M)∗ → R such that [

Ĥcl
t , Q̂

cl
]

= 0, (89)

where Q̂cl is expressed as

Q̂cl =

(
∂QT∗M

∂p
(x, p̄τ

t [k](x)) ,−p(η) · ∂Q
T∗M

∂p
(x, p̄τ

t [k](x)) +QT∗M (x, p̄τ
t [k](x))

)
. (90)

Relation (89) is equivalent to the following convolution relation:
{
HT∗M

t , QT∗M
}

= 0. (91)

In the argument so far on the dynamical construction of classical mechanics, the introduced infinite-
dimensional freedom of the background B [E(M)] seems to be redundant, while they appear as a natural
consequence of the general theory on protomechanics discussed in the previous section. In fact, it is really
true that one can directly induce classical mechanics as the dynamics of the Lagrange foliations of T ∗M
in L (T ∗M). In the next section, however, it is observed that we will encounter difficulties without those
freedom if moving onto the dynamical construction of quantum mechanics.

4 DEDUCTION OF QUANTUM MECHANICS

In canonical quantum mechanics, the state of a particle on manifold M can be represented as a position
in the Hilbert space H(M) of all the L2-functions over M . In this section, we will reproduce the quantum
equation of motion from the general theory presented in Section 4. Let us here concentrate ourselves on
the case where M is N -dimensional manifold for simplicity, though the discussion below is still valid if
substituting an appropriate Hilbert space when M is infinite-dimensional ILH-manifold[4].

4.1 Description of Statistical-State

Now, we must be concentrated on the case where the physical functional F ∈ C∞
(
Λ1(M), C∞(M)

)
depends

on the derivatives of the 1-form p (η) ∈ Λ1(M) induced from η ∈ Γ [E(M)], then it has the following
expression:

p∗F (η) (x) = FQ (x, p (η) (x), Dp (η) (x), ..., Dnp (η) (x), ...) . (92)

Let us assume that M has a finite covering M =
⋃

α∈ΛM
Uα for the mathematical simplicity such that

ΛM = {1, 2, ...,Λ} for some Λ ∈ R, and choose a coordinate system (Uα,xα)α∈ΛM
. Let us further choose a

reference set U ⊂ Uα such that v(U) 6= 0 and consider the set Γh̄
Uk [E(M)] of the C∞ sections of E(M) for

k = (k1, ..., kN ) ∈ RN such that5

Γh̄
Uk [E(M)] =

{
η ∈ Γ [E(M)]

∣∣∣∣ sup
U
pj (η) (x) = h̄kj

}
. (93)

As in classical mechanics, we will simply denote Γh̄
Uk [E(M)] as Γh̄

k [E(M)], since Γh̄
Uk [E(M)] can be identified

with Γh̄
U ′k [E(M)] for every two reference sets U and U ′ ⊂M .

For every p̄ = p ◦ η̄ ∈ L (T ∗M) such that η̄[k] ∈ Γh̄
k [E(M)], it is further possible to separate an element

η[k] ∈ Γh̄
k [E(M)] for a ξ ∈ Γh̄

0 [E(M)] as
η[k] = η̄[k] · ξ, (94)

5 As in classical mechanics, to substitute Γh̄
Uk

[E(M)] =
{

η ∈ Γ [E(M)]
∣∣ ∫

U
dv(x) pj (x) = h̄kjv (U)

}
for definition (93)

also induces the similar discussion below, while there exist a variety of the classification methods that produce the same result.
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or to separate momentum p (η[k]) as
p (η[k]) = p̄[k] + p (ξ) . (95)

The emergence density ρ (η[k]) can have the same expression as the classical one (54) for the function
̺ (ξ) ∈ C∞ (T ∗M,R) on T ∗M since Cq (Γ)

∗ ⊂ Ccl (Γ)
∗
:

ρ (η[k]) (x)
√

= ̺ (ξ) (x, p (η[k]) (x)) , (96)

which has only the restricted values if compared with the classical emergence density; it sometimes causes
the discrete spectra of the wave-function in canonical quantum mechanics. We call the set Bh̄ [E(M)] =
Γh̄

0 [E(M)] as the back ground of L (T ∗M) for quantum mechanics. For the measure N on Bh̄ [E(M)] for
the σ-algebra induced from that of Γ [E(M)]:

dM (η[k]) dv(x) = dNkdN (ξ) dv(x) σ[k](x) . (97)

Let us next consider the disjoint union M =
⋃

α∈ΛM
Aα for Aα ∈ B

(
OE(M)

)
such that (1) π (Aα) ⊂ Uα

and that (2) Aα ∩ Aβ = ∅ for α 6= β ∈ ΛM (consult APPENDIX). Thus, every section η ∈ Γ [E(M)] has
some k ∈ RN such that η = η[k] ∈ Γh̄

k [E(M)]; and, it will be separated into the product of a ξ ∈ Bh̄ [E(M)]

and the fixed η̄[k] = e2i{kjxj+ζ} ∈ Γk [E(M)] that induces one of the Lagrange foliation p̄ = p◦ η̄ ∈ L (T ∗M):

η [k] =
∑

α∈Aα

χAα
· e2i{kjxj+ζ} · ξ (98)

=
∏

α∈Aα

(
e2i{kjxj+ζ} · ξ

)χAα

, (99)

where the test function χAα
: M → R satisfies

χAα
(x) =

{
1
0

at x ∈ Aα

at x /∈ Aα
(100)

and has the projection property χ2
Aα

= χAα
.

If defining the window mapping χ∗
Aα

: C∞(M)→ L1
(
RN

)
for any f ∈ C∞(M) such that

χ∗
Aα
f (x) =

{
ϕ∗

αf (x)
0

at x ∈ ϕα (Aα)
at x /∈ ϕα (Aα)

, (101)

we can locally transform the function ρ[k] (ξ) = σ[k]ρ (η [k])
√

into Fourier coefficients as follows:

χ∗
Aα
ρ[k] (ξ) (x) =

∫

RN

dNk′ ˜̺α (ξ)

(
2k + k′

2
,
2k − k′

2

)
eik′

x
j

, (102)

where introduced function ˜̺α should satisfies

˜̺α (ξ) (k, k′)∗ = ˜̺α (ξ) (k′, k), (103)

for the value ρ[k] (ξ) (x) is real at every x ∈M ; thereby, the collective expression gives

ρ [k] (ξ) =
∑

α∈Aα

χAα
·
∫

RN

dNk′ ˜̺α (ξ)

(
2k + k′

2
,
2k − k′

2

)
eik′xj

(104)

=

∫

RN

dNk′ ˜̺(ξ)

(
2k + k′

2
,
2k − k′

2

)
· η
[
k − k′

2

]− 1
2

η

[
k +

k′

2

] 1
2

, (105)
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where

˜̺(ξ)

(
2k + k′

2
,
2k − k′

2

)
=
∏

α∈Aα

(
˜̺α (ξ)

(
2k + k′

2
,
2k − k′

2

))χAα

. (106)

Let us introduce the ketvector |k〉 and bravector 〈k| such that

|k〉 =
∏

α∈ΛM

|k, α〉 , 〈k| =
∏

α∈ΛM

〈k, α| , (107)

where the local vectors |k, α〉 and 〈k, α| satisfy

〈x |k, α 〉 = e2i{kjxj+ζ}χAα
√− 1

2 , 〈k, α |x〉 = e2i{−kjxj+ζ}χAα
√− 1

2 . (108)

We can define the Hilbert space H (M) of all the vectors that can be expressed as a linear combination of
vectors {|k〉}k∈R. Now, let us construct the density matrix in the following definition.

Definition 1 The density matrix ρ̂ is an operator such that

ρ̂ =

∫

Bh̄[E(M)]

dN (ξ)

∫

RN

dNn

∫

RN

dNn′ ˜̺(ξ) (n, n′) ξ
1
2 |n〉 〈n′| ξ− 1

2 (109)

=

∫

Bh̄[E(M)]

dN (ξ)

∫

RN

dNk ρ̂[k] (ξ) , (110)

where

ρ̂ [k] (ξ) =

∫

RN

dNk′ ˜̺(ξ)

(
k +

k′

2
, k − k′

2

)
ξ

1
2

∣∣∣∣k +
k′

2

〉〈
k − k′

2

∣∣∣∣ ξ
− 1

2 . (111)

Let O (M) be the set of all the hermite operators acting on Hilbert space H (M), which has the bracket

〈 〉 : O (M)→ R for every hermite operator F̂ such that

〈
F̂
〉

=

∫

RN

dNk

∫

M

dv(x)
〈
x
∣∣∣F̂
∣∣∣x
〉
. (112)

Set O (M) becomes the algebra with the product, scalar product and addition; thereby, we can consider the

commutation and the anticommutaion between operators Â, B̂ ∈ O (M):

[
Â, B̂

]
±

= ÂB̂± B̂Â. (113)

Consider the momentum operator p̂ that satisfies the following relation for any |ψ〉 ∈ H (M):

〈x |p̂|ψ〉 = −iD 〈x |ψ 〉 , (114)

whereD = h̄dxj∂j is the derivative operator (15). Further, the function operator f̂ induced from the function
f ∈ C∞(M) is an operator that satisfies the following relation for any |ψ〉 ∈ H (M):

〈
x
∣∣∣f̂
∣∣∣ψ
〉

= f(x) 〈x |ψ 〉 . (115)

The following commutation relation holds:

[
p̂j , f̂

]
−

=
h̄

i
∂̂jf . (116)

Those operators f̂ and p̂ induces a variety of operators in the form of their polynomials.
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Definition 2 The hermite operator F̂ is called an observable, if it can be represented as the polynomial of
the momentum operators p̂ weighted with function operators f̂ j

n independent of k such that

F̂ =

∞∑

n=0

[
f̂ j
n, p̂

n
j

]
+
. (117)

The following lemma shows that every observable has its own physical functional.

Lemma 2 Every observable F̂ has a corresponding functional F : Γ[E]→ C∞(M):

µ̄ (p∗F ) =
〈
ρ̂ F̂

〉
. (118)

Proof . There are corresponding functionals gj
nl : Λ1(M)→ C(M) (l ∈ {1, 2, ..., n}) such that

〈
ρ̂
[
f̂ j
n, p̂

n
j

]
+

〉
=

∫

Bh̄[E(M)]

dN (ξ)

∫

RN

dNn

∫

RN

dNn′ ˜̺(ξ) (n, n′)

〈
n′

∣∣∣∣ ξ
− 1

2

[
f̂ j
n, p̂

n
j

]
+
ξ

1
2

∣∣∣∣n
〉

=

∫

Bh̄[E(M)]

dN (ξ)

∫

RN

dNk

∫

RN

dNk′

×
∑

α∈ΛM

∫

Uα

dNx ˜̺(ξ)

(
k − k′

2
, k +

k′

2

)
eik′

jxj

{
n∑

l=0

gj
nl (p (η[k])) (x)k′lj

}

=

∫

Bh̄[E(M)]

dN (ξ)

∫

RN

dNk

∫

RN

dNk′

×
∑

α∈ΛM

∫

Uα

dNx ˜̺(ξ)

(
k − k′

2
, k +

k′

2

)
eik′

jxj

{
n∑

l=0

(
−h̄ ∂

∂xj

)l

gj
nl (p (η[k])) (x)

}

=

∫

Bh̄[E(M)]

dN (ξ)

∫

RN

dNk

∫

M

dv(x) ρ (η[k]) (x) p∗Fn
j (η[k]) (x)

=

∫

Γ[E(M)]

dM(η)

∫

M

dv(x) ρ(η)(x) p∗Fn
j (η)(x)

= µ̄
(
p∗Fn

j

)
. (119)

where

p∗Fn
j (η[k]) (x) =

n∑

l=0

{(
−h̄ ∂

∂xj

)l

gj
nl (p (η[k])) (x)

}
. (120)

4.2 Description of Time-Development

Now, we can describe a ητ
t (η[k]) ∈ ΓUk [E(M)] as

ητ
t (η[k]) =

∑

α∈Aα

χAα
· e2i{kαjxj+ζτ

t [k]} · ξ (121)

=
∏

α∈Aα

(
e2i{kαjxj+ζτ

t [k]} · ξ
)χAα

, (122)

where the function ζτ
t [k] ∈ C∞ (M) labeled by labeling time τ ≤ t ∈ R satisfies

ζτ
τ [k] = ζ : independent of k; (123)
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thereby, the momentum pτ
t (η[k]) = p̄τ

t [k]+p (ξ) ∈ Λ1(M) for p̄τ
t = pτ

t ◦ η̄ ∈ L (T ∗M) satisfies the Einstein-de
Broglie relation:6

p̄τ
t [k] = −i h̄

2
η̄τ

t [k]−1dη̄τ
t [k]. (124)

The density operator ρ̂τ
t [k] (ξ) is introduced as

ρ̂τ
t [k] (ξ) =

∫

RN

dNk′ ˜̺τ
t (ξ)

(
k +

k′

2
, k − k′

2

)
ξ

1
2

∣∣∣∣k +
k′

2

〉〈
k − k′

2

∣∣∣∣ ξ
− 1

2 , (125)

which satisfies the following lemma.

Lemma 3

ρ̂t =

∫

ΓU

dN (ξ)

∫

RN

dNk U τ
t [k]ρ̂τ

t [k] (ξ)U τ
t [k]−1, (126)

where
U τ

t [k] = ei{ζτ
t [k]−ζ}. (127)

Proof . The direct calculation shows for the observable F̂t corresponding to every functional F

〈
ρ̂t F̂t

〉
= µ̄t (p∗Ft)

=

∫

Γ[E(M)]

dM(η)

∫

M

dv ρτ
t (η) (x) p∗Ft (ητ

t (η))

=

∫

B[E(M)]

dN (ξ)

∫

RN

dNk

∫

M

dv(x) ρτ
t [k] (ξ) (x) p∗F (ητ

t [k]) (x)

=

∫

B[E(M)]

dN (ξ)

∫

RN

dNk

∫

M

dv(x) ρτ
t [k] (ξ) (x) p∗F

(
η[k] · ei{ζτ

t [k]−ζ}.
)

(x)

=

∫

B[E(M)]

dN (ξ)

∫

RN

dNk

∫

M

dv(x)

〈
x

∣∣∣∣
1

2

[
U τ

t [k]ρ̂τ
t [k] (ξ)U τ

t [k]−1 , F̂t

]
+

∣∣∣∣x
〉

=

〈{∫

B[E(M)]

dN (ξ)

∫

RN

dNk U τ
t [k]ρ̂τ

t [k] (ξ)U τ
t [k]−1

}
F̂t

〉
. (128)

Relation (126) represents relation (30):

µ̃t(η) =
dM(η)

dM
(
ητ −1

t (η)
) · µ̃τ

t

(
ητ −1

t (η)
)
. (129)

Emergence-momentum J τ
t = J (ητ

t ) ∈ q(M)∗ has the following expression:

J τ
t = dNkdN (ξ) dv (ρτ

t [k] (ξ) pτ
t (η[k]) , ρτ

t [k] (ξ)) (130)

= dN (ξ) dNk ∧ dv
(

1

2

〈
x
∣∣[ρ̂τ

t [k] (ξ) , p̂τ
t [k]]+

∣∣ x
〉
, 〈x |ρ̂τ

t [k] (ξ)|x〉
)
, (131)

where the momentum operator p̂τ
t [k] satisfies

p̂τ
t [k] = U τ

t [k]−1 p̂ U τ
t [k]. (132)

6 Relation (124) is the most crucial improvement from the corresponding relation in previous letter [2].
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The following calculus of the fourier basis for 2kj = nj +mj justifies expression (131):

e−i{njx
j+ζτ

t [k]}de+i{mjx
j+ζτ

t [k]} − e+i{mjx
j+ζτ

t [k]}de−i{njx
j+ζτ

t [k]} =

e−i{njx
j+ζτ

t [k]}d
{
e+i{(mj+nj)x

j+2ζτ
t [k]} · e−i{njx

j+ζτ
t [k]}

}
− e+i{mjx

j+ζτ
t [k]}de−i{njx

j+ζτ
t [k]} =

e−i(nj−mj)x
j · e−i{(nj+mj)x

j+2ζτ
t [k]}de+i{(nj+mj)x

j+2ζτ
t [k]}. (133)

For Hamiltonian operator Ĥτ
t = ∂Ht

∂J̄

(
J̄ τ

t

)
∈ q (M), the equation of motion is the Lie-Poisson equation

∂J τ
t

∂t
= ad∗

Ĥt
J τ

t , (134)

that is calculated as follows:

∂

∂t
ρτ

t [k] (ξ) (x) = −√−1
∂j

(
∂HT∗M

t

∂pj
(x, pτ

t (η[k]) (x)) ρτ
t [k] (ξ) (x)

√)
, (135)

∂

∂t
(ρτ

t [k] (ξ) (x)pτ
tk (η[k]) (x)) = −√−1

∂j

(
∂HT∗M

t

∂pj
(x, pτ

t (η[k]) (x)) ρτ
t [k] (ξ) (x)pτ

tk (η[k]) (x)
√)

−ρτ
t [k] (ξ) (x)pτ

tj (η[k]) (x)∂k

(
∂HT∗M

t

∂pj
(x, pτ

t (η[k]) (x))

)

+ρτ
t [k] (ξ) (x)∂kL

HT∗M
t (x, pτ

t (η[k]) (x)) . (136)

Notice that the above expression is still valid even if Hamiltonian HT∗M
t has the ambiguity of the operator

ordering such as that for the Einstein gravity.
To elucidate the relationship between the present theory and canonical quantum mechanics, we will

concentrate on the case of the canonical Hamiltonian having the following form:

HT∗M
t (x, p) =

1

2
hij (pi +Ati) (pj +Atj) + Ut(x), (137)

where dhij = 0. Notice that almost all the canonical quantum theory including the standard model of the
quantum field theory, that have empirically been well-established, really belong to this class of Hamiltonian
systems. For Hamiltonian (137), we will define the Hamiltonian operator Ĥt as

Ĥt =
1

2
(p̂i +Ati)h

ij (p̂j +Atj) + Ut, (138)

or 〈x|Ĥt|ψ〉 = Ht〈x|ψ〉 where

Ht =
1

2
(−ih̄∂i + Ati(x)) h

ij (−ih̄∂j +Atj(x)) + Ut(x). (139)

Lemma 4 Lie-Poisson equation (134) for Hamiltonian (137) induces the following equation:

ih̄
∂

∂t
〈x |ρ̂τ

t [k] (ξ)|x〉 = −
〈
x

∣∣∣∣
[
ρ̂τ

t [k] (ξ) , Ĥτ
t [k]

]
−

∣∣∣∣x
〉

(140)

ih̄
∂

∂t

〈
x

∣∣∣∣
1

2
[ρ̂τ

t [k] (ξ) , p̂τ
t [k]]+

∣∣∣∣x
〉

= −
〈
x

∣∣∣∣∣

[
1

2

[
ρ̂τ

t [k] (ξ) , Ĥτ
t [k]

]
−
, p̂τ

t [k]

]

+

∣∣∣∣∣x
〉

. (141)
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Proof . If we define the operators:

Ĥ(0) =
1

2
hijp̂τ

ti[k]p̂
τ
tj [k]

/
ih̄ (142)

Ĥ(1) =
1

2
{Âih

ijp̂τ
tj [k] + p̂τ

ti[k]h
ijÂj}

/
ih̄ (143)

Ĥ(2) =

(
Û +

1

2
hijÂiÂj

)/
ih̄, (144)

then Hamiltonian operator Ĥt can be represented as

Ĥt

/
ih̄ = Ĥ(0) + Ĥ(1) + Ĥ(2). (145)

Thus, for density operator ρ̂τ
t [k] (ξ) defined as equation (125),

−1

2ih̄

〈
x

∣∣∣∣∣

[ [
ρ̂τ

t [k] (ξ) , Ĥτ
t [k]

]
−
, p̂τ

t [k]

]

+

∣∣∣∣∣x
〉

= term(1)

(
Ĥ(0)

)
+term(1)

(
Ĥ(1)

)
+term(1)

(
Ĥ(2)

)
, (146)

where

term(1)

(
Ĥ(0)

)
=
−1

2ih̄

〈
x

∣∣∣∣∣

[
1

2

[
ρ̂τ

t [k] (ξ) , Ĥ(0)

]
−
, p̂τ

t [k]

]

+

∣∣∣∣∣ x
〉

term(1)

(
Ĥ(1)

)
=
−1

2ih̄

〈
x

∣∣∣∣∣

[
1

2

[
ρ̂τ

t [k] (ξ) , Ĥ(1)

]
−
, p̂τ

t [k]

]

+

∣∣∣∣∣ x
〉

term(1)

(
Ĥ(2)

)
=
−1

2ih̄

〈
x

∣∣∣∣∣

[
1

2

[
ρ̂τ

t [k] (ξ) , Ĥ(2)

]
−
, p̂τ

t [k]

]

+

∣∣∣∣∣ x
〉

.

First term results

term(1)

(
Ĥ(0)

)
= −∂j

{
hijpti (η[k]) ρτ

t [k] (ξ) ptk (η[k])
}
dxk (147)

from the following computations:

〈
x
∣∣∣ p̂τ

tk[k] ρ̂τ
t [k] (ξ) Ĥ(0)

∣∣∣ x
〉

=
1

2

∫

RN

dNk′ ρ̃τ
t (ξ)

(
k +

k′

2
, k − k′

2

)
eik′·x

{
(148)

(
ptk (η[k]) + h̄

k′k
2

)
hij

(
pti (η[k])− h̄ k

′
i

2

)(
ptj (η[k])− h̄

k′j
2

)
(149)

+ih̄

(
ptk (η[k]) + h̄

k′k
2

)
hij∂j

(
pti (η[k])− h̄k

′
i

2

)}
; (150)

〈
x
∣∣∣ Ĥ(0) ρ̂

τ
t [k] (ξ) p̂τ

tk[k]
∣∣∣ x
〉

=
1

2

∫

RN

dNk′ ρ̃τ
t (ξ)

(
k +

k′

2
, k − k′

2

)
eik′·x

{
(151)

(
ptk (η[k])− h̄ k

′
k

2

)
hij

(
pti (η[k]) + h̄

k′i
2

)(
ptj (η[k]) + h̄

k′j
2

)
(152)

−ih̄
(
ptk (η[k])− h̄ k

′
k

2

)
hij∂j

(
pti (η[k]) + h̄

k′i
2

)}
; (153)
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〈
x
∣∣∣ ρ̂τ

t [k] (ξ) Ĥ(0) p̂τ
tk[k]

∣∣∣ x
〉

=
1

2

∫

RN

dNk′ ρ̃τ
t (ξ)

(
k +

k′

2
, k − k′

2

)
eik′·x

{
(154)

(
ptk (η[k])− h̄ k

′
k

2

)
hij

(
pti (η[k])− h̄ k

′
i

2

)(
ptj (η[k])− h̄

k′j
2

)
(155)

+ih̄

(
ptk (η[k])− h̄ k

′
k

2

)
hij∂i

(
ptj (η[k])− h̄

k′j
2

)
(156)

−h̄2hij∂k∂i

(
ptj (η[k])− h̄

k′j
2

)
(157)

+ih̄ hij∂k

{(
pti (η[k])− h̄ k

′
i

2

)(
ptj (η[k])− h̄

k′j
2

)}}
; (158)

〈
x
∣∣∣ p̂τ

tk[k] Ĥ(0) ρ̂
τ
t [k] (ξ)

∣∣∣x
〉

=
1

2

∫

RN

dNk′ ρ̃τ
t (ξ)

(
k +

k′

2
, k − k′

2

)
eik′·x

{
(159)

+

(
ptk (η[k]) + h̄

k′k
2

)
hij

(
pti (η[k]) + h̄

k′i
2

)(
ptj (η[k]) + h̄

k′j
2

)
(160)

−ih̄
(
ptk (η[k]) + h̄

k′k
2

)
hij∂i

(
ptj (η[k]) + h̄

k′j
2

)
(161)

−h̄2hij∂k∂i

(
ptj (η[k]) + h̄

k′j
2

)
(162)

−ih̄ hij∂k

{(
pti (η[k]) + h̄

k′i
2

)(
ptj (η[k]) + h̄

k′j
2

)}}
. (163)

Further,

term(1)

(
Ĥ(1)

)
= −

{
∂i

(
hijAjρ

τ
t [k] (ξ) ptk (η[k])

)

+ρτ
t [k] (ξ)

(
∂kh

ijAj

)
pti (η[k])

}
dxk; (164)

term(1)

(
Ĥ(2)

)
= −ρτ

t [k] (ξ) ∂k

(
U +

1

2
hijAiAj

)
dxk. (165)

Thus, second equation (141) in this lemma becomes

∂

∂t
{ρτ

t [k] (ξ) ptk (η[k])} = −∂j

{
hij (pti (η[k]) +Aj) ρ

τ
t [k] (ξ) ptk (η[k])

}
(166)

+ρτ
t [k] (ξ) ptj (η[k])

(
∂kh

ijAi

)
(167)

−ρτ
t [k] (ξ) ∂k

(
U +

1

2
hijAiAj

)
, (168)

which is equivalent to equation (136) for Hamiltonian (137).
On the other hand,

−1

ih̄

〈
x

∣∣∣∣
[
ρ̂τ

t [k] (ξ) , Ĥτ
t [k]

]
−

∣∣∣∣x
〉

= term(2)

(
Ĥ(0)

)
+ term(2)

(
Ĥ(1)

)
+ term(2)

(
Ĥ(2)

)
, (169)

where

term(2)

(
Ĥ(0)

)
=
−1

ih̄

〈
x

∣∣∣∣
[
ρ̂τ

t [k] (ξ) , Ĥ(0)

]
−

∣∣∣∣x
〉
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term(2)

(
Ĥ(1)

)
=
−1

ih̄

〈
x

∣∣∣∣
[
ρ̂τ

t [k] (ξ) , Ĥ(1)

]
−

∣∣∣∣x
〉

term(2)

(
Ĥ(2)

)
=
−1

ih̄

〈
x

∣∣∣∣
[
ρ̂τ

t [k] (ξ) , Ĥ(2)

]
−

∣∣∣∣x
〉
.

Each term can be calculated as follows:

term(2)

(
Ĥ(0)

)
=
−1

2ih̄

∫

RN

dNk′ ρ̃τ
t (ξ)

(
k +

k′

2
, k − k′

2

)
eik′·x

{
(170)

hij

(
pti (η[k])− h̄ k

′
i

2

)(
ptj (η[k])− h̄

k′j
2

)
(171)

+ih̄hij∂j

(
pti (η[k])− h̄ k

′
i

2

)
(172)

−hij

(
pti (η[k]) + h̄

k′i
2

)(
ptj (η[k]) + h̄

k′j
2

)
(173)

−ih̄hij∂j

(
pti (η[k])− h̄ k

′
i

2

)}
(174)

= −∂j

(
ρτ

t [k] (ξ)hijpti (η[k])
)

(175)

term(2)

(
Ĥ(1)

)
= −∂ih

ij (Ajρ
τ
t [k] (ξ)) ;

term(2)

(
Ĥ(2)

)
= 0. (176)

Thus, first equation (141) in this lemma becomes

∂

∂t
ρτ

t [k] (ξ) = −∂j

{
hij (pti (η[k]) +Aj) ρ

τ
t [k] (ξ)

}
, (177)

which is equivalent to equation (135) for Hamiltonian (137).
Therefore, Lie-Poisson equation (134) proved to be equivalent to the equation set (140) and (141) in this

lemma.

The above lemma leads us to one of the main theorem in the present paper, declaring that Lie-Poisson
equation (134) for Hamiltonian (137) is equivalent to the quantum Liouville equation.

Theorem 3 Lie-Poisson equation (134) for Hamiltonian (137) is equivalent to the following quantum Li-
ouville equation:

∂

∂t
ρ̂t =

[
ρ̂t, Ĥ

]
−
/(−ih̄). (178)

Proof . The following computation proves this theorem based on the previous lemma:

∂

∂t

〈
ρ̂t F̂t

〉
=

∂

∂t

〈
ρ̂τ

t F̂t

〉

=

∫

ΓU

dN (ξ)

∫

RN

dNk

∫

M

dv(x) ×
{〈
x
∣∣∣F̂τ

t [k] ρ̂τ
t [k] (ξ) Ĥτ

t [k]
∣∣∣ x
〉
−
〈
x
∣∣∣Ĥτ

t [k] ρ̂τ
t [k] (ξ) F̂τ

t [k]
∣∣∣x
〉

+ 〈x | ρ̂τ
t [k] (ξ) |x〉 ∂p

τ
t [k](x)

∂t
· DFt (ητ

t [k]) (x)
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+ 〈x | ρ̂τ
t [k] |x〉 p∗∂Ft

∂t
(ητ

t [k]) (x)

}

=

∫

ΓU

dN (ξ)

∫

RN

dNk

∫

M

dv(x) ×
{〈

x

∣∣∣∣
[
ρ̂τ

t [k] (ξ) , Ĥτ
t [k]

]
−

∣∣∣∣ x
〉
p∗Ft (ητ

t [k]) (x)

+

(
∂

∂t

〈
x

∣∣∣∣
1

2
[ ρ̂τ

t [k] (ξ) , p̂τ
t [k]]+

∣∣∣∣x
〉)
· DFt (ητ

t [k]) (x)

−
〈
x

∣∣∣∣
∂ρ̂τ

t [k] (ξ)

∂t

∣∣∣∣x
〉
pτ

t [k](x) · DFt (ητ
t [k]) (x)

+ 〈x | ρ̂τ
t [k] |x〉 p∗∂Ft

∂t
(ητ

t [k]) (x)

}

=

∫

ΓU

dN (ξ)

∫

RN

dNk

∫

M

dv(x) ×
{〈

x

∣∣∣∣∣

[
1

2
[ ρ̂τ

t [k] (ξ) , p̂τ
t [k]]+ , Ĥτ

t [k]

]

−

∣∣∣∣∣x
〉
· DFt (ητ

t [k]) (x)

〈
x

∣∣∣∣
[
ρ̂τ

t [k] (ξ) , Ĥτ
t [k]

]
−

∣∣∣∣ x
〉
{p∗Ft (ητ

t [k]) (x)− pτ
t [k](x) · DFt (ητ

t [k]) (x)}

+ 〈x | ρ̂τ
t [k] |x〉 p∗∂Ft

∂t
(ητ

t [k]) (x)

}

=
〈
ad∗

Ĥτ
t

J τ
t , F̂

τ
t

〉
+

〈
Jt,

∂F̂t

∂t

〉
. (179)

Now, the density matrix ρ̂t becomes the summation of the pure sates
∣∣∣ψ(l;±)

t

〉〈
ψ

(l;±)
t

∣∣∣ for the set
{∣∣∣ψ(l;±)

t

〉}
l∈RN

of the orthonormal wave vectors such that
〈
ψ

(l′;s′)
t

∣∣∣ψ(l;s)
t

〉
= δ(l′ − l)δs,s′ :

ρ̂t =

∫

Λ

dP+(l)
∣∣∣ψ(l;+)

t

〉〈
ψ

(l;+)
t

∣∣∣−
∫

Λ

dP−(l)
∣∣∣ψ(l;−)

t

〉〈
ψ

(l;−)
t

∣∣∣ , (180)

where P± is a corresponding probability measure on the space Λ of a spectrum and the employed integral
is the Stieltjes integral [5]. If the system is open and has the continuous spectrum, then it admits Λ be
the continuous superselection rules (CSRs). The induced wave function has the following expression for a

L2-function ψ
(l;±)
t =

〈
x
∣∣∣ψ(l;−)

t

〉
∈ L2(M):

χ∗
αψ

(l;±)
t (x) =

∫

RN

dNk ψ̃
(l;±)
α t (k)ei{kjx

j+ζt(x)}. (181)

The existence of the probability measure P− would be corresponding to the existence of the antiparticle for
the elementary quantum mechanics.

For example, the motion of the particle on a N-dimensional rectangle box [0, π]N needs the following
boundary condition on the verge of the box:

if xj = 0 or π for some j ∈ {1, ..., N}, then 〈x |ρ̂t|x〉 = 0,
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Density matrix ρ̂t is the summation of integer-labeled pure states:

ρ̂t =
∑

(n,n′)∈Z2N

ρ̃t
t(n

′, n) |n; t〉 〈n′; t| . (182)

Let us now concentrate on the case where ρ̂t is a pure state in the following form:

ρ̂t = |ψt〉 〈ψt| ; (183)

there exists a wave function ψt ∈ L2(M)

ψt(x) =

∫

RN

dNk ψ̃t(k)e
i{kjx

j+ζt(x)}, (184)

where
ρ̃t

t(k, k
′) = ψ̃t(k)

∗ψ̃t(k
′). (185)

Theorem 3 introduces the Schrödinger equation as the following collorary.

Collorary 1 Lie-Poisson equation (134) for Hamiltonian (137) becomes the following Schrödinger equation:

ih̄∂tψt = Hψt, (186)

where

H =
1

2m

√−1
(−ih̄∂i +Ati(x)) g

ij(x)
√

(−ih̄∂j +Atj(x)) + Ut(x). (187)

Therefore, the presented theory induces not only canonical, nonrelativistic quantum mechanics but also
the canonical, relativistic or nonrelativistic quantum field theory if proliferated for the grassmanian field
variables. In addition, Section 7 will discuss how the present theory also justifies the regularization procedure
in the appropriate renormalization.

On the other hand, if introducing the unitary transformation Ût = eitĤt , Theorem 3 obtains the Heisen-
berg equation for Heisenberg’s representations H̃t = ÛtĤtÛ

−1
t and F̃t = ÛtF̂tÛ

−1
t :

∂

∂t
F̃t =

[
H̃t, F̃t

]
−
/(−ih̄) +

˜(∂Ft

∂t

)
, (188)

since ρ̂t = Û−1
t ρ̂0Ût.

As discussed in Section 3, if a group action of Lie group Q(M) keeps the Hamiltonian Ht : q(M)∗ → R

invariant, there exists an invariant charge functional Q : Γ [E(M)] → C(M) and the induced function
Q : q(M)∗ → R such that [

Ĥt, Q̂
]

= 0, (189)

where Q̂ is expressed as

Q̂ =
(
Dρ(η)Q (p(η)) ,−p(η) · Dρ(η)Q (p(η)) +Q (p(η))

)
. (190)

Suppose that functional p∗Q : Γ [E(M)]→ C(M) has the canonical form such that

QT∗M (x, p) = Aijpipj +B(x)ipj + C(x), (191)

then the corresponding generator is equivalent to the observable:

Q̂ = Aij p̂ip̂j + B̂ip̂j + p̂jB̂i + Ĉ. (192)
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In this case, relation (189) has the canonical expression:
[
Ĥt, Q̂

]
= 0. (193)

Those operators can have the eigen values at the same time.
As shown so far, protomechanics successfully deduced quantum mechanics for the canonical Hamiltonians

that have no problem in the operator ordering, and proves still valid for the noncanonical Hamiltonian that
have the ambiguity of the operator ordering in the ordinary quantum mechanics. In the latter case, the
infinitesimal generator F̂tr

t corresponding to F̂ ∈ q(M) is not always equal to observable F̂t:

F̂t 6= F̂tr
t . (194)

If one tries to quantize the Einstein gravity, he or she can proliferate the present theory in a direct way by
utilizing Lie-Poisson equation (134). But, some calculation method should be developed for this purpose
elsewhere.

4.3 Interpretation of Spin

It has been known that a half-spin in quantum mechanics does have a classical analogy as a rigid rotor in
classical mechanics [6].7 Such a model represents the motion of a particle on the three-dimensional orthogonal
group SO(3). A spinor is corresponding to an element of the Lie-algebra so(3) of SO(3), which is equivalent
to a right-(or left-)invariant vector field over SO(3). This section reviews such an interpretation of a spin in
terms of the Euler angles or the coordinates over a three-dimensional special orthogonal group SO(3); and
thus, it proves that the present theory is applicable for the description of a half-spin, too.

Now, let us consider the particle motion in a three-dimensional Euclidean space R3 with the polar
coordinates x = (r, θ, φ) ∈ [0,+∞) × [0, 2π) × (0, π). Lie group SO(3) acts on Jt = (ρτ

t p
τ
t , ρ

τ
t ) by the

coadjoint action, where an infinitesimal generator M = M jL̂j ∈ so(3) ⊂ q (M) (Mj ∈ R, j ∈ {1, 2, 3}) has

an corresponding operator M̂ = M jL̂j ∈ su(2,C) that satisfies

〈
ad∗

M̂
Jt, F̂

〉
= −ih̄−1

〈[
ρ̂t, M̂

]
−

F̂

〉
. (195)

Infinitesimal generator L̂j has the following expression:

L̂1 = −sinφ ∂
∂θ
− cot θ cosφ

∂

∂φ
, (196)

L̂2 = cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ
, (197)

L̂3 =
∂

∂φ
; (198)

It has an corresponding operator M̂ = M jL̂j ∈ su(2,C) acting on the Hilbert space H(S2) of all the single-
or double-valued L2 functions over S2:

〈
θ, φ

∣∣∣L̂j

∣∣∣ψ
〉

=
h̄

i
L̂j 〈θ, φ |ψ 〉 , (199)

where |ψ〉 ∈ H(S2). Notice that these operators are hermite or self-conjugate, L̂
†
j = L̂j , and induces the

angular momentum or the integer spin of the particle:

|ψt〉 =

l∑

m=−l

clm(t) |l,m〉 (200)

for 〈θ, φ |l;m〉 = Y m
l (θ, φ), (201)

7 The ignorance on this fact may have prevented quantum mechanics from the realistic interpretation in general.
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where
L̂ · L̂ |l,m

〉
= h̄2l(l + 1) |l;m〉 , L̂3 |l,m

〉
= h̄m |l;m〉 . (202)

If the Hamiltonian for the motion in the three-dimensional Euclid space has the following form in a
central field of force, it is invariant under the rotation about z-axis:

H (x, p) = p2 + x · (p×B) + U(r), (203)

where r =
√
x2 + y2 + z2 6= 0. Since this Hamiltonian has the canonical form, the corresponding infinitesimal

generator is equivalent to the following quantum observable [7]:

Ĥ = P̂r

2
+

L̂ · L̂
r2

+
1

2

{
L̂ · B +B · L̂

}
+ U(r), (204)

where 〈
θ, φ, r

∣∣∣P̂r

∣∣∣ψ
〉

= − h̄
ir

∂

∂r
r 〈θ, φ, r |ψ 〉 . (205)

To realize the representation for a half-spin, let us consider the Hilbert spaces H(SO(3)) of all the single-
or double-valued L2 functions over S2 which can be reduced to H(S2). On the classical level, an infinitesimal
generator N = N jSj of SO(3) is equivalent to a left-(or right-)invariant vector field:

Ŝ1 = L̂1 +
h̄

i
· cosφ

sin θ

∂

∂χ
, (206)

Ŝ2 = L̂2 +
h̄

i
· sinφ
sin θ

∂

∂χ
, (207)

Ŝ3 = L̂3 . (208)

Notice that infinitesimal generator N = N jSj is also an element of the semidirect product SO(3)×C∞(M)
of SO(3) with the space C∞(S2) of all the C∞ functions over S2 excepting poles θ = 0, π. The corresponding
operators Sj in quantum mechanics to generators Sj become

〈
θ, φ, χ

∣∣∣Ŝ1

∣∣∣ψ
〉

=

{
h̄

i
L̂1 +

h̄

i
· cosφ

sin θ

∂

∂χ

}
〈θ, φ, χ |ψ 〉 , (209)

〈
θ, φ, χ

∣∣∣Ŝ2

∣∣∣ψ
〉

=

{
h̄

i
L̂2 +

h̄

i
· sinφ
sin θ

∂

∂χ

}
〈θ, φ, χ |ψ 〉 , (210)

〈
θ, φ, χ

∣∣∣Ŝ3

∣∣∣ψ
〉

=
h̄

i
L̂3 〈θ, φ, χ |ψ 〉 . (211)

which has the following reduced expression:

〈
θ, φ

∣∣∣Ŝ1

∣∣∣ψ
〉

=

{
h̄

i
L̂1 +

h̄

2
· cosφ

sin θ

}
〈θ, φ |ψ 〉 , (212)

〈
θ, φ

∣∣∣Ŝ2

∣∣∣ψ
〉

=

{
h̄

i
L̂2 +

h̄

2
· sinφ

sin θ

}
〈θ, φ |ψ 〉 , (213)

〈
θ, φ

∣∣∣Ŝ3

∣∣∣ψ
〉

=
h̄

i
L̂3 〈θ, φ |ψ 〉 . (214)

These operators induce the half-spin:

|ψt〉 = c+(t) |+〉+ c−(t) |−〉 , (215)
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where the eigen states have the following expression:

〈θ, φ, χ |+〉 =
1√
2π
e

i
2 (φ+χ) cos

θ

2
, 〈θ, φ, χ |−〉 = 1√

2π
e−

i
2 (φ−χ) sin

θ

2
. (216)

whose reduced version is

〈θ, φ |+〉 =
1√
2π
e−isei φ

2 cos
θ

2
, 〈θ, φ |−〉 = 1√

2π
e−ise−i φ

2 sin
θ

2
. (217)

They satisfy

Ŝ · Ŝ |±
〉

=
3

4
h̄2 |±〉 , Ŝ3 |±

〉
= ± h̄

2
|±〉 . (218)

In addition, we can introduce the increasing operator and the decreasing one Ŝ± = Ŝ1 ± iŜ2:

〈
θ, φ, χ

∣∣∣Ŝ±

∣∣∣ψ
〉

= h̄e±iφ

{
± ∂

∂θ
+ icotθ

∂

∂φ
− i

sinθ

∂

∂χ

}
〈θ, φ, χ |ψ 〉 , (219)

which proves the following relations:

Ŝ± |∓〉 = |±〉 , Ŝ± |±〉 = 0. (220)

As in the usual expression [7] originated by Pauli, if ketvectors |±〉 are denoted as

|+〉 =
(

1
0

)
, |−〉 =

(
0
1

)
, (221)

then, Ŝj = h̄
2σj for the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
; (222)

σ+ =

(
0 1
0 0

)
and σ− =

(
0 0
1 0

)
. (223)

A general state of the half-integer spin of a particle has the following expression:

|ψt〉 =
l∑

m=−l−1

cl+1/2
m (t) |l + 1/2,m+ 1/2〉 , (224)

where, for the normalization constant N
m+1/2
l+1/2 ,

〈θ, φ |l+ 1/2;m+ 1/2〉 = N
m+1/2
l+1/2

√
l +m+ 1

2l+ 1
e−isei φ

2 cos
θ

2
Y m

l (θ, φ) (225)

+N
m+1/2
l+1/2

√
l −m
2l + 1

e−ise−i φ

2 sin
θ

2
Y m+1

l (θ, φ); (226)

and the eigen states satisfy

Ŝ · Ŝ |l + 1/2,m+ 1/2
〉

= h̄2(l + 1/2)(l+ 3/2) |l+ 1/2;m+ 1/2〉 , (227)

Ŝ3 |l + 1/2,m+ 1/2
〉

= h̄(m+ 1/2) |l + 1/2;m+ 1/2〉 . (228)
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Let us assume the classical motion of a rigid rotor has the following Hamiltonian:

H = I−1S · S + S ·B. (229)

To elucidate that Hamiltonian (231) has no trouble in the operator-ordering problem, we can introduce

H = I−1r2(p2 + C2p′2) + x · {p× Cp′}+ x · {p× (B − Cp′)} , (230)

where the induced motion preserve the following initial conditions:

x · p = 0 and p′ =
h̄

2
. (231)

For Hamiltonian (231), the infinitesimal generator of motion is equivalent to the following observable:

Ĥ = I−1Ŝ · Ŝ +
1

2

{
Ŝ · B +B · Ŝ

}
, (232)

where

C =
h̄

2

(
x

2 (x2 + y2)
,

y

2 (x2 + y2)
, 0

)
+ x×∇s. (233)

Now, we can investigate the internal structure of such a half-integer spin particle, an quark or lepton as
an electron or a constituted particle as a nucleus, which would have the following spin for the internal
three-dimensional Euclid space:

S(x, p) = x× (p+∇s) +
h̄

2

(
x

2 (x2 + y2)
,

y

2 (x2 + y2)
, 0

)
. (234)

Such an interpretation of half-integer spin allows us to describe the Dirac equation as the equation of the
motion for the following Hamiltonian:

H(x, p, α, β) = α1β ·
(
p− e

c
A
)

+mc2α3 − eA0, (235)

where α and β are the internal spins expressed as relation (234). Since the obtained Hamiltonian is also
canonical as discussed in the previous subsection, it has the following infinitesimal generator:

Ĥ =
(
γ̂j

(
p̂j − e

c
A
)

+mc2
)
γ̂0 − eA0, (236)

where γ̂ is the Dirac matrices. In the same way, the internal freedom like the isospins of a particle can be
expressed as the invariance of motion, if its Lie group is a subset of the infinite-dimensional semidirect-product
group S(M). More detailed consideration on the relativistic quantum mechanics will be held elsewhere.

5 CONCLUSION

The present paper proved that SbM and then protomechanics deduces both classical mechanics and quantum
mechanics in its natural consequence, and supported the rigid-body interpretation of a half-integer spin. The
next paper [8] will discuss the intimate relationships between the present theory and the other quantization
methods known in twentieth century; and it will reveal that the new interpretation of the measurement
process is compatible with reality and causality.
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APPENDIX: INTEGRATION ON MANIFOLD

Let us here determine the properties of the manifold M that is the three-dimensional physical space for the
particle motion in classical or quantum mechanics, or the space of graded field variables for the field motion
in classical or the quantum field theory.

Let (M,OM ) be a Hausdorff space for the family OM of its open subsets, and also a N-dimensional
oriented C∞ manifold that is modeled by the N-dimensional Euclid space RN and thus it has an atlas
(Uα, ϕα)α∈ΛM

(the set of a local chart of M) for some countable set ΛM such that

1. M =
⋃

α∈ΛM
Uα,

2. ϕα : Uα → Vα is a C∞ diffeomorphism for some Vα ⊂ RN and

3. if Uα ∩ Uβ 6= ∅, then gϕ
αβ = ϕβ ◦ ϕ−1

α : Vα ∩ Vβ → Vα ∩ Vβ is a C∞ diffeomorphism.

The above definition would be extended to include that of the infinite-dimensional manifolds called ILH-
manifolds. A ILH-manifold that is modeled by the infinite-dimensional Hilbert space having an inverse-
limit topology instead of RN [4]. We will, however, concentrate ourselves on the finite-dimensional cases
for simplicity. Let us further assume that M has no boundary ∂M = ∅ for the smoothness of the C∞

diffeomorphism group D(M) over M , i.e., in order to consider the mechanics on a manifold N that has the
boundary ∂N 6= ∅, we shall substitute the doubling of N for M : M = N ∪ ∂N ∪N .

Now, manifold M is the topological measure space M = (M,B (OM ) , vol) that has the volume mea-
sure vol for the topological σ-algebra B (OM ). For the Riemannian manifold M , the (psudo-)Riemannian
structure induces the volume measure vol .

Second, we assume that the particle moves on manifold M and has its internal freedom represented by a
oriented manifold F = (F,OF ), whereOF is the family of open subsets of F . Let F = (F,B (OF ) ,mF ) be the
topological measure space with the invariant measure mF under the group transformation GF : g̃∗mF = mF

for g̃ ∈ GF where g̃∗mF (g̃(A)) = mF (A) for A ∈ B (OF ). In this case, the state of the particle can be
represented as a position on the locally trivial, oriented fiber bundle E = (E,M,F, π) with fiber F over M
with a canonical projection π : E →M , i.e., for every x ∈M , there is an open neighborhood U(x) and a C∞

diffeomorphism φU : π−1 (U(x))→ U(x)× F such that π = πU ◦ φU for πU : U(x)× F → U(x) : (x, s)→ x.
Let GF be the structure group of fiber bundle E: the mapping g̃αβ = φUα

◦φ−1
Uβ

: Uα∩Uβ×F → Uα∩Uβ×F
satisfies g̃αβ(x, s) ∈ GF for (x, s) ∈ Uα ∩ Uβ × F and the cocycle condition:

g̃αβ(x, s) · g̃βγ(x, s) = g̃αγ(x, s) for (x, s) ∈ Uα ∩ Uβ ∩ Uγ × F, (A1)

where α, β, γ ∈ ΛM ; and condition (A1) includes the following relations:

g̃αα(x, s) = id. for x ∈ Uα, and g̃αβ(x, s) = g̃βα(x, s)−1 for (x, s) ∈ Uα ∩ Uβ × F. (A2)

Thus, (E,OE) is the Hausdorff space for the family OE of the open subsets of E such that Ũ ∈ OE satisfies

φUα

(
Ũ
)

= Uα × U ′
α for some Uα (α ∈ ΛM ) and U ′

α ∈ OF .

Now, (E,B (OE) ,mE) becomes the topological measure space with the measure mE induced by the
measures vol and mF as follows. For A ∈ B (OE), there exists the following disjoint union corresponding to
the covering M =

⋃
α∈ΛM

Uα such that

1. A =
⋃

α∈ΛM
Aα where π (Aα) ⊂ Uα, and

2. Aα ∩Aβ = ∅ for α 6= β.
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Thus, the measure mE can be defined as

mE(A) =
∑

α∈ΛM

(vol ⊗mF ) ◦ φUα
(Aα). (A3)

Notice that the above definition of mE is independent of the choice of {Aα}α∈ΛM
such that A =

⋃
α∈ΛM

Aα

is a disjoint union since mF is the invariant measure on F for the group transformation of GF .
Let us introduce the spaceM (E) of all the possible probability Radon measures for the particle positions

on E defined as follows:

1. every ν ∈ M (E) is the linear mapping ν : C∞(E) ⊕M → R such that ν(F ) < +∞ for F ∈ C∞(E),
and

2. for every ν ∈ M (E), there exists a σ-additive positive measure P such that

ν(F ) =

∫

E

dP (y) (F (y)) (A4)

and that P (M) = 1, i.e., ν (1) = 1.

For every ν ∈ M (E), the probability density function (PDF) ρ ∈ L1 (E,B(OE)) is the positive-definite, and
satisfies

ν (F ) =

∫

E=∪α∈ΛM
Aα

dmE(y) ρ(y) (F (y)) (A5)

=
∑

α∈ΛM

∫

φUα (Aα)

dvol (x) dmF (ϑ) ρ ◦ φ−1
Uα

(x, ϑ)
(
F ◦ φ−1

Uα
(x, ϑ)

)
, (A6)

where dP = dmE ⊗ ρ.
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