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In spite of its popularity, it has not been possible to vindicate the conven-

tional wisdom that classical mechanics is a limiting case of quantum mechan-

ics. The purpose of the present paper is to offer an alternative point of view

in which quantum mechanics emerges as a limiting case of classical mechanics

in which the classical system is decoupled from its environment.
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I. INTRODUCTION

One of the most puzzling aspects of quantum mechanics is the quantum

measurement problem which lies at the heart of all its interpretations. With-

out a measuring device that functions classically, there are no ‘events’ in

quantum mechanics which postulates that the wave function contains com-

plete information of the system concerned and evolves linearly and unitarily

in accordance with the Schrödinger equation. The system cannot be said to

‘possess’ physical properties like position and momentum irrespective of the

context in which such properties are measured. The language of quantum

mechanics is not that of realism.

According to Bohr the classicality of a measuring device is fundamental

and cannot be derived from quantum theory. In other words, the process

of measurement cannot be analyzed within quantum theory itself. A simi-

lar conclusion also follows from von Neumann’s approach [1]. In both these

approaches the border line between what is to be regarded as quantum or clas-

sical is, however, arbitrary and mobile. This makes the theory intrinsically ill

defined.

Some recent approaches have attempted to derive the classical world from

a quantum substratum by regarding quantum systems as open. Their inter-

action with their ‘environment’ can be shown to lead to effective decoherence

and the emergence of quasi- classical behaviour [2], [3]. However, the very

concepts of a ‘system’ and its ‘environment’ already presuppose a clear cut

division between them which, as we have remarked, is mobile and ambiguous

in quantum mechanics. Moreover, the reduced density matrix of the ‘system’

evolves to a diagonal form only in the pointer basis and not in the other pos-

sible bases one could have chosen. This shows that this approach does not

lead to a real solution of the measurement problem, as claimed by Zurek [4],
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though it is an important development that sheds new light on the emergence

of quasi-classical behaviour from a quantum susbstratum.

The de Broglie-Bohm approach [5], on the other hand, does not accept

the wave function description as complete. Completeness is achieved by in-

troducing the position of the particle as an additional variable (the so-called

‘hidden variable’) with an ontological status. The wave function at a point is

no longer just the probability amplitude that a particle will be found there if a

measurement were to be made, but the probability amplitude that a particle

is there even if no measurement is made. It is a realistic description, and

measurements are reduced to ordinary interactions and lose their mystique.

Also, the classical limit is much better defined in this approach through the

‘quantum potential’ than in the conventional approach. As a result, however,

a new problem is unearthed, namely, it becomes quite clear that classical

theory admits ensembles of a more general kind than can be reached from

standard quantum ensembles. The two theories are really disparate while

having a common domain of application [6].

Thus, although it is tacitly assumed by most physicists that classical

physics is a limiting case of quantum theory, it is by no means so. Most

physicists would, of course, scoff at the suggestion that the situation may

really be the other way round, namely, that quantum mechanics is contained

in a certain sense in classical theory. This seems impossible because quantum

mechanics includes totally new elements like h̄ and the uncertainty relations

and the host of new results that follow from them. Yet, a little reflection

shows that if true classical behaviour of a system were really to result from

a quantum substratum through some process analogous to ‘decoherence’, its

quantum behaviour ought also to emerge on isolating it sufficiently well from

its environment, i.e., by a process which is the ‘reverse of decoherence’. In

practice, of course, it would be impossible to reverse decoherence once it oc-
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curs for a system. Nevertheless, it should still be possible to prepare a system

sufficiently well isolated from its environment so that its quantum behaviour

can be observed. If this were not possible, it would have been impossible ever

to observe the quantum features of any system.

So, let us examine what the opposite point of view implies, namely that

classical theory is more fundamental than quantum theory (in a sense to be

defined more precisely). This would, in fact, be consistent with Bohr’s posi-

tion that the classicality of measuring devices is fundamental (nonderivable),

leading to his preferred solution to the quantum measurement problem. At

the same time, the approach of de Broglie and Bohm coupled with the notion

of decoherence as an environmental effect that can be switched on would fall

into place, but the non-realist Copenhagen interpretation would have to be

abandoned.

II. THE HAMILTON-JACOBI THEORY

Our starting point is the non-relativistic Hamilton-Jacobi equation

∂Scl/∂t+
(∇Scl)

2

2m
+ V (x) = 0 (1)

for the action Scl of a classical paticle in an external potential V , together

with the definition of the momentum

p = m
dx

dt
= ∇Scl (2)

and the continuity equation

∂ρcl(x, t)

∂t
+ ∇ . ( ρcl

∇Scl

m
) = 0 (3)

for the position distribution function ρcl(x, t) of the ensemble of trajectories

generated by solutions of equation (1) with different initial conditions (posi-

tion or momentum). Suppose we introduce a complex wave function
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ψcl (x , t ) = Rcl (x , t ) exp (
i

h̄
Scl) (4)

into the formalism by means of the equation

ρcl (x , t ) = ψ∗
cl ψcl = R2

cl . (5)

What is the equation that this wave function must satisfy such that the fun-

damental equations (1) and (3) remain unmodified? The answer turns out to

be the modified Schrödinger equation [6]

ih̄
∂ψcl

∂t
=

(

− h̄2

2m
∇2 + V (x)

)

ψcl −Qcl ψcl (6)

where

Qcl = − h̄2

2m

∇2Rcl

Rcl

(7)

Thus, a system can behave classically in spite of it having an associated wave

function that satisfies this modified Schrödinger equation.

Notice that the last term in this equation is nonlinear in |ψcl|, and is

uniquely determined by the requirement that all quantum mechanical effects

such as superposition, entanglement and nonlocality be eliminated. It is there-

fore to be sharply distinguished from certain other types of nonlinear terms

that have been considered in constructing nonlinear versions of quantum me-

chanics [7]. An unacceptable consequence of such nonlinear terms (which are,

unlike Qcl, bilinear in the wave function) is that superluminal signalling us-

ing quantum entanglement becomes possible in such theories [8]. Since Qcl

eliminates quantum superposition and entanglement, it cannot imply any such

possibility. Usual action-at-a-distance is, of course, implicit in non-relativistic

mechanics, and can be eliminated in a Lorentz invariant version of the theory,

as we will see later.

Deterministic nonlinear terms with arbitrary parameters have also been

introduced in the Schrödinger equation to bring about collapse of quantum
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correlations [9] for isolated macroscopic systems. Such terms also imply su-

perluminal signals via quantum entanglement. The term Qcl is different from

such terms as well in that it has no arbitrary parameters in it and eliminates

quantum correlations for all systems deterministically, irrespective of their

size.

Most importantly, it is clear from the above analysis that none of the

other types of nonlinearity can guarantee strictly classical behaviour described

by equations (1) and (3).

Let us now consider the classical version of the density matrix which must

be of the form

ρcl(x, x
′

, t) = Rcl(x, t)exp

(

i

h̄
Scl(x, t)

)

Rcl(x
′

, t)exp

(

i

h̄
Scl(x

′

, t)

)

(8)

= R2(x, t)δ3(x− x
′

) (9)

in order to satisfy the Pauli master equation. The absence of off-diagonal

terms is a consequence of the absence of quantum correlations between spa-

tially separated points. This implies that the classical wave function can be

written as

ψcl(x, t) =
1√
π3

lim
ǫ→0

√

ǫ

(x− x(t))2 + ǫ2
exp(

i

h̄
Scl) . (10)

Such a function has only point support on the particle trajectory x = x(t)

determined by equation (2). It can also be written as a linear superposition

of the delta function and its derivatives [11]. All this ensures a classical phase

space.

The wave function ψcl is therefore entirely dispensable and “sterile” as

long as we consider strictly classical systems. Conceptually, however, it ac-

quires a special significance in considering the transition between quantum

and classical mechanics, as we will see.

The wave function ψ of a quantum mechanical system, on the other hand,

must of course satisfy the Schrödinger equation
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i h̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ . (11)

Using a polar representation similar to (4) for ψ in this equation and separat-

ing the real and imaginary parts, one can now derive the modified Hamilton-

Jacobi equation

∂S/∂t+
(∇S)2

2m
+Q+ V = 0 (12)

for the phase S of the wave function, where Q is given by

Q = − h̄2

2m

∇2R

R
, (13)

and the continuity equation

∂ρ(x, t)

∂t
+ ∇ . ( ρ

∇S

m
) = 0 (14)

These differential equations ((12) and (14)) now become coupled differential

equations which determine S and ρ = R2. Note that the phase S of a quan-

tum mechanical system satisfies a modified Hamilton-Jacobi equation with an

additional potential Q called the “quantum potential”. Its properties are there-

fore different from those of the classical action Scl which satisfies equation (1)

. Applying the operator ∇ on equation (12) and using the definition of the

momentum (2), one obtains the equation of motion

dp

dt
= m

d2 x

dt2
= −∇ (V +Q) (15)

for the quantum particle. Integrating this equation or, equivalently equation

(2), one obtains the Bohmian trajectories x(t) of the particle corresponding

to different initial positions. The departure from the classical Newtonian

equation due to the presence of the “quantum potential” Q gives rise to all the

quantum mechanical phenomena such as the existence of discrete stationary

states, interference phenomena, nonlocality and so on. This agreement with

quantum mechanics is achieved by requiring that the initial distribution P
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of the particle is given by R2(x(t) , 0 ). The continuity equation (14) then

guarantees that it will agree with R2 at all future times. This guarantees

that the averages of all dynamical variables of the particle taken over a Gibbs

ensemble of its trajectories will always agree with the expectation values of the

corresponding hermitian operators in standard quantum mechanics. This is

essentially the de Broglie-Bohm quantum theory of motion. For further details

about this theory and its relationship with standard quantum mechanics, the

reader is referred to the comprehensive book by Holland [6] and the one by

Bohm and Hiley [5].

Now, let us for the time being assume that quantum mechanics is the

more fundamental theory from which classical mechanics follows in some limit.

Consider a quantum mechanical system interacting with its environment. It

evolves according to the Schrödinger equation

i h̄
∂ψ

∂t
=

(

− h̄2

2m
∇2 + V (x) +W

)

ψ (16)

where W is the potential due to the environment experienced by the system.

For a complex enough environment such as a heat bath, the density matrix

of the system in the position representation quickly evolves to a diagonal

form. In a special model in which a particle interacts only with the thermal

excitations of a scalar field in the high temperature limit, the density matrix

evolves according to the master equation [12]

dρ

dt
= −γ(x− x

′

)(∂x − ∂x
′ )ρ− 2mγkBT

h̄2 (x− x
′

)2ρ (17)

where γ is the relaxation rate, kB is the Boltzmann constant and T the tem-

perature of the field. It follows from this equation that quantum coherence

falls off at large separations as the square of ∆x = (x− x
′

). The decoherence

time scale is given by

τD ≈ τR
h̄2

2mkB(∆x)2
= γ−1

(

λT

∆x

)2

(18)
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where λT = h̄/
√

2mkBT is the thermal de Broglie wavelength and τR = γ−1.

For a macroscopic object of mass m = 1 g at room temperature ( T = 300K)

and separation ∆x = 1 cm, the ratio τD/τR = 10−40 ! Thus, even if the

relaxation time was of the order of the age of the universe, τR ≃ 1017 sec,

quantum coherence would be destroyed in τD ≃ 10−23 sec. For an electron,

however, τD can be much more than τR on atomic and larger scales.

However, the diagonal matrix does not become diagonal in, for example,

the momentum representation, showing that coherence has not really been

destroyed. The FAPP diagonal density matrix does not therefore represent

a proper mixture of mutually exclusive alternatives, the classical limit is not

really achieved and the measurement problem remains [10].

This is not hard to understand once one realizes that a true classical

system must be governed by a Schrödinger equation that is modified by the

addition of a unique term that is nonlinear in |ψ| (equation (6)), and that such

a nonlinear term cannot arise from unitary Schrödinger evolution. On the

contrary, it is not unnatural to expect a linear equation of the Schrödinger type

to be the limiting case of a nonlinear equation like equation (6). It is therefore

tempting to interpret the last term in equation (6) as an ‘effective’ potential

that represents the coupling of the classical system to its environment. It is

important to bear in mind that in such an interpretation, the potential Qcl

must obviously be regarded as fundamentally given and not derivable from a

quantum mechanical substratum, being uniquely and solely determined by the

requirement of classicality, as shown above.

Let us now consider a quantum system which is inserted into a thermal

bath at time t = 0. If it is to evolve into a genuinely classical system after a

sufficient lapse of time ∆t, its wave function ψ must satisfy the equation of

motion
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i h̄
∂ψ

∂t
=

(

− h̄2

2m
∇2 + V (x) − λ(t)Qcl

)

ψ (19)

where λ(0) = 0 in the purely quantum limit and λ(∆t) = 1 in the purely

classical limit. (Here ∆t ≫ τD where τD is typically given by γ−1(λT /∆x)
2

(18).) Thus, for example, if = λ(t) = 1 − exp(−t/τD), a macroscopic system

would very rapidly behave like a true classical system at sufficiently high

temperatures, whereas a mesoscopic system would behave neither fully like a

classical system nor fully like a quantum mechanical system at appropriate

temperatures for a much longer time. What happens is that the reduced

density operator of the system evolves according to the equation

ρ(x, x
′

,∆t) = exp(−i
∫ ∆t

0
λQcldt/h̄)ρ(x, x

′

, 0)exp(i

∫ ∆t

0
λQcldt/h̄) (20)

= R2(x,∆t)δ3(x− x
′

) (21)

during the time interval ∆t during which the nonlinear interaction λQcl com-

pletely destroys all superpositions, so that at the end of this time interval the

system is fully classical and the equation for the density operator reduces to

the Pauli master equation for a classical system.

A variety of functions λ(t) would satisfy the requirement λ = 0 and λ = 1.

This is not surprising and is probably a reflection of the diverse ways in which

different systems decohere in different environments.

It is clear that a system must be extremely well isolated (λ = 0) for it to

behave quantum mechanically. Such a system, however, would inherit only

a de Broglie-Bohm ontological and causal interpretation, not an interpreta-

tion of the Copenhagen type. The practical difficulty is that once a quantum

system and its environment get coupled, it becomes FAPP impossible to de-

couple them in finite time because of the extremely large number of degrees

of freedom of the environment. However, we know from experience that it is

possible to create quantum states in the laboratory that are very well isolated

10



from their environment. Microscopic quantum systems are, of course, rou-

tinely created in the laboratory (such as single atoms, single electrons, single

photons, etc.,) and considerable effort is being made to create isolated macro-

scopic systems that would show quantum coherence, and there is already some

evidence of the existence of mesoscopic ‘cat states’ which decohere when ap-

propriate radiation is introduced into the cavity [13].

Equation (19) is a totally new equation that correctly bridges the gap

between the quantum and the classical worlds. It should form a sound starting

point for studying systems, parametrized by λ(t), that lie anywhere in the

continuous spectrum stretching between the quantum and classical limits.

Notice that if one defines the momentum by the relation π = ∇S−
∫

∇Qdt,

the equation of motion can be written in the classical form

dπ

dt
= −∇V . (22)

This shows that it is π which is conserved in the absence of any external

potential and not the particle momentum p. This is obviously due to the

existence of the quantum potential.

A look at the modified Hamilton-Jacobi equation (12) also shows that

the quantity conserved by it is not the classical energy but this energy plus

the quantum potential. Also notice that the equation of motion (15) im-

plies that a quantum mechanical particle is not free even in the absence of

an external potential. It is obvious therefore that the interaction of the cor-

responding classical system with its environment must serve to cancel this

purely quantum force and restore the classical laws of motion. Once the form

of the classical Hamilton-Jacobi equation is restored, conservation of energy

is mathematically inevitable.

Notice that the additional interaction of a classical system with its en-

vironment in the form of the effective potential Qcl becomes manifest only
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when the Hamilton-Jacobi equation is recast in terms of the classical wave

function (equations (6) and (7)). This is why the Hamilton-Jacobi equation

can be written without ever knowing about this interaction. The wave func-

tion approach reveals what lies hidden and sterile in the traditional classical

approach. This is a significant new insight offered by the wave function ap-

proach.

It is important to point out a fundamental difference between the two

potentials V (x) and Q in (12). V (x) is a given external potential whereas Q

is not so—it depends on the modulus of the wave function of the system, and

is therefore nonlocal in character.

This leads to a fundamental difference of the approach advocated in this

paper from the conventional de Broglie-Bohm theory in which quantum me-

chanics rather than classical mechanics is regarded as being more fundamen-

tal. In the de Broglie-Bohm theory the quantum potential must necessarily

vanish in the classical limit, and the quantum system appears to behave clas-

sically. On the other hand, in the present approach there is no need for the

quantum potential to vanish in the classical limit—only its effects must be

completely cancelled by nonlinear environment-induced decoherence of a very

special type. Furthermore, besides the wave function, de Broglie and Bohm

must also introduce the position of the particle as an additional variable to

complete the description of the system. If classical mechanics happens to be

more fundamental than quantum mechanics, there is no need to do this as the

position and trajectory are already present in the fundamental description. It

is , in fact, the wave function that acquires a subsidiary role in this approach.

It is interesting that some circumstantial evidence already seems to exist indi-

cating that the position of a quantum system plays a more fundamental role

than its wave function [14].

There is therefore a fairly strong case in favour of the possibility that
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quantum theory might be the limiting case of classical mechanics in which

the interaction of the system with its environment (nonlinear in |ψ|) is com-

pletely switched off. It is difficult to see how such a situation can be accom-

modated within the standard Copenhagen philosophy. The wave function also

acquires a new significance—it is sterile and dispensable in the classical limit

but becomes potent and indispensable in the quantum limit.

III. THE KLEIN-GORDON EQUATION

Let the Hamilton-Jacobi equation for free relativistic classical particles be

∂Scl

∂t
+
√

(∂iScl)2 c2 +m2
0 c

4 = 0 . (23)

Then, using the relation pµ = −∂µScl = m0 uµ where uµ = dxµ/d τ with

τ = γ−1 t, γ−1 =
√

1 − v2/c2, vi = dxi/d t, the particle equation of motion is

postulated to be

m0
duµ

dτ
= 0 =

d pµ

d τ
. (24)

It is quite easy to show that the classical equations (23) and (3) continue to

hold if one describes the system in terms of a complex wave function ψcl =

Rcl exp ( i
h̄
Scl ) that satisfies the modified Klein-Gordon equation

(

2 +
m2

0 c
2

h̄2 − Qcl

h̄2

)

ψcl = 0 (25)

with

Qcl = h̄2 2Rcl

Rcl

. (26)

As in the non-relativistic case, Qcl may be interpreted as an effective potential

in which the system finds itself when described in terms of the wave function

ψcl. If this potential goes to zero in some limit, one obtains the free Klein-

Gordon equation which is the quantum limit.
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On the other hand, using ψ = Rexp ( i
h̄
S ) in the Klein-Gordon equation

and separating the real and imaginary parts, one obtainds respectively the

equation

1

c2

(

∂S

∂t

)2

− (∂iS)2 −m2
0 c

2 −Q = 0 (27)

which is equivalent to the modified Hamilton-Jacobi equation

(

∂S

∂t

)

+
√

(∂iS)2 c2 +m2
0 c

4 + c2Q = 0 (28)

and the continuity equation

∂µ (R2∂µ S ) = 0 . (29)

One can then identify the four-current as jµ = −R2∂µS so that ρ = j0 =

R2E/c which is not positive definite because E can be either positive or

negative, and therefore, as is well known, it is not possible to interpret it as

a probability density.

Nevertheless, let us note in passing that, if use is made of the definition

pµ = −∂µ S of the particle four-momentum, (27) implies

pµ p
µ = m0 c

2 +Q (30)

and pµ = M0 uµ whereM0 = m0

√

1 +Q/m2
0 c

2. Thus, the quantum potential

Q acts on the particles and contributes to their energy-momentum so that they

are off their mass-shell. ∗ Applying the operator ∂µ on equation (27), we get

the equation of motion

d pµ

d τ
=
∂µQ

2M0
(31)

which has the correct non-relativistic limit. The equation for the acceleration

of the particle is therefore given by [6]

∗The author is grateful to E. C. G. Sudarshan for drawing his attention to this important point.
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duµ

d τ
=

1

2m2
0

( c2 gµν − uµ uν ) ∂ν log (1 +
Q

m2
0 c

2
) . (32)

If, on the other hand, one uses the modified Klein-Gordan equation (25) and

the corresponding Hamilton-Jacobi equation (23), the particles are on their

mass-shell and the free particle classical equation (24) is satisfied.

IV. RELATIVISTIC SPIN 1/2 PARTICLES

Let us now examine the Dirac equation for relativistic spin 1/2 particles,

( ih̄γµ∂
µ +m0 c)ψ = 0. (33)

Let us write the components of the wave function ψ as ψa = Rθa exp ( i
h̄
Sa),

θa being a spinor component. It is not straightforward here to separate the

real and imaginary parts as in the previous cases. One must therefore follow

a different method for relativistic fermions.

It is well known that every component ψa of the Dirac wave function

satisfies the Klein-Gordan equation. It follows therefore, by putting ψa =

Rθa exp ( i Sa/h̄ ), that Sa must satisfy the modified Hamilton-Jacobi equation

∂µ S
a ∂µ Sa −m2

0 c
2 −Qa = 0 . (34)

where Qa = h̄2
2Rθa/R θa. Summing over a, we get

∑

a

∂µ S
a ∂µ Sa − 4m2

0 c
2 −

∑

a

Qa = 0 . (35)

Defining

∂µ S ∂
µ S =

1

4

∑

a

∂µ S
a ∂µ Sa (36)

Q =
1

4

∑

a

Qa , (37)

we have

∂µ S ∂
µ S −m2

0 c
2 −Q = 0 . (38)
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Then, defining the particle four-momentum by pµ = −∂µ S, one has pµ p
µ =

m2
0 c

2 +Q. Therefore, one has the equation of motion

d pµ

d τ
=
∂µQ

2M0
. (39)

The Bohmian 3-velocity of these particles is defined by the relation

vi = γ−1 ui = c
ui

u0
= c

ji
j0

= c
ψ† αi ψ

ψ† ψ
. (40)

Then, it follows that

uµ = γ vµ = γ c
jµ
ρ

(41)

where ρ = ψ† ψ. This relation is satisfied because jµ j
µ = ρ2/γ2 if (40) holds.

As we have seen, for a classical theory of spinless particles, the correct

equation for the associated wave function is the modified Klein-Gordon equa-

tion (25). Let the corresponding modified wave equation for classical spin 1/2

particles be of the form

( i h̄ γµD
µ +m0 c ) ψcl = 0 (42)

where Dµ = ∂µ + (i/h̄)Qµ. Then we have

(DµD
µ +

m2
0 c

2

h̄2 )ψa
cl = 0 . (43)

Writing ψa
cl = Rcl θ

a exp ( i
h̄
Sa

cl), one obtains

∂µ S
a
cl ∂

µ Sa
cl −m2

0 c
2 −Qa

cl +QµQ
µ − 2Qµ ∂

µ Sa
cl = 0 (44)

where

Qa
cl =

h̄2
2Rclθ

a

Rclθa
. (45)

Define a diagonal matrix Ba b
µ ≡ ∂µ S

a
cl δ

a b such that

1

2
TrBµ =

1

2

∑

a

∂µ S
a
cl ≡ ∂µ Scl . (46)
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Then

∂µ Scl ∂
µ Scl =

1

4
Tr Bµ TrB

µ =
1

4
Tr (Bµ B

µ ) (47)

=
1

4

∑

a

∂µS
a
cl ∂

µSa
cl . (48)

Therefore, taking equation (44) and summing over a, we have

∂µ Scl ∂
µ Scl −m2

0 c
2 −Qcl +QµQ

µ −Qµ ∂
µ Scl = 0 (49)

where

Qcl =
1

4

∑

a

Qa
cl . (50)

In order that the classical free particle equation is satisfied, the effects of the

quantum potential must be cancelled by this additional interaction, and one

must have

Qµ (Qµ − ∂µ Scl ) = Qcl . (51)

A solution is given by

pµ = −∂µ Scl = m0 uµ , (52)

Qµ = αm0 uµ (53)

with

α =
1

2
± 1

2

√

1 + 4Qcl/m
2
0 c

2 . (54)

V. RELATIVISTIC SPIN 0 AND SPIN 1 PARTICLES

It has been shown [15] that a consistent relativistic quantum mechanics

of spin 0 and spin 1 bosons can be developed using the Kemmer equation [16]

( i h̄ βµ ∂
µ +m0 c )ψ = 0 (55)
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where the matrices β satisfy the algebra

βµ βν βλ + βλ βν βµ = βµ gνλ + βλ gνµ . (56)

The 5×5 dimensional representation of these matrices describes spin 0 bosons

and the 10 × 10 dimensional representation describes spin 1 bosons. Multi-

plying (55) by β0, one obtains the Schrödinger form of the equation

i h̄
∂ψ

dt
= [−i h̄ c β̃i ∂i −m0 c

2 β0 ]ψ (57)

where β̃i ≡ β0 βi − βi β0. Multiplying (55) by 1 − β2
0 , one obtains the first

class constraint

i h̄ βi β
2
0 ∂i ψ = −m0 c ( 1 − β2

0 )ψ. (58)

The reader is referred to Ref. [15] for further discussions regarding the signif-

icance of this constraint.

If one multiplies equation (57) by ψ† from the left, its hermitian conju-

gate by ψ from the right and adds the resultant equations, one obtains the

continuity equation

∂ (ψ† ψ)

∂t
+ ∂i ψ

† β̃i ψ = 0 . (59)

This can be written in the form

∂µ Θµ0 = 0 (60)

where Θµν is the symmetric energy-momentum tensor with Θ00 =

−m0 c
2 ψ† ψ < 0. Thus, one can define a wavefunction φ =

√

m0 c2/E ψ

(with E = − ∫ Θ00 dV ) such that φ† φ is non-negative and normalized and

can be interpreted as a probability density. The conserved probability current

density is sµ = −Θµ0/E = (φ† φ,−φ† β̃i φ) [15].

Notice that according to the equation of motion (57), the velocity operator

for massive bosons is c β̃i, so that the Bohmian 3-velocity can be defined by
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vi = γ−1 ui = c
ui

u0
= c

si

s0
= c

ψ† β̃i ψ

ψ† ψ
. (61)

Exactly the same procedure can be followed for massive bosons as for

massive fermions to determine the quantum potential and the Bohmian tra-

jectories, except that the sum over a has to be carried out only over the

independent degrees of freedom (six for ψ and six for ψ̄ for spin-1 bosons).

The constraint (58) implies the four conditions ~A = ~∇× ~B and ~∇ . ~E = 0.

The theory of massless spin 0 and spin 1 bosons cannot be obtained simply

by taking the limit m0 going to zero. One has to start with the equation [17]

i h̄ βµ∂
µ ψ +m0 cΓψ = 0 (62)

where Γ is a matrix that satisfies the following conditions:

Γ2 = Γ (63)

Γβµ + βµ Γ = βµ . (64)

Multiplying (62) from the left by 1 − Γ, one obtains

βµ ∂
µ ( Γψ ) = 0 . (65)

Multiplying (62) from the left by ∂λ β
λ βν , one also obtains

∂λ βλ βν ( Γψ ) = ∂ν ( Γψ ) . (66)

It follows from (65) and (66) that

2 ( Γψ ) = 0 (67)

which shows that Γψ describes massless bosons. The Schrödinger form of the

equation

i h̄
∂ ( Γψ )

dt
= −i h̄ cβ̃i ∂i (Γψ) (68)

and the associated first class constraint
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i h̄ βi β
2
0 ∂i ψ +m0 c ( 1 − β2

0 ) Γψ = 0 (69)

follow by multiplying (62) by β0 and 1 − β2
0 respectively. The rest of the

arguments are analogous to the massive case. For example, the Bohmian

3-velocity vi for massless bosons can be defined by equation (61).

Neutral massless spin-1 bosons have a special significance in physics. Their

wavefunction is real, and so their charge current jµ = φT βµ φ vanishes. How-

ever, their probability current density sµ does not vanish. Furthermore, si

turns out to be proportional to the Poynting vector, as it should.

Modifications to these equations can be introduced as in the massive case

to obtain a classical theory of massless bosons.

VI. THE GRAVITATIONAL FIELD

Exactly the same procedure can also be applied to the gravitational field

described by Einstein’s equations

Rµν − 1

2
gµν R = 0 (70)

for the vacuum, where Rµν is the Ricci tensor and R the curvature scalar. In

this section, following [18], we will use the signature −+++ and the absolute

system of units h̄ = c = 16π G = 1. The decompostion of the metric is given

by [6]

ds2 = gµν dx
µ dxν

= (NiN
i −N2 ) dt2 + 2Ni dx

i dt+ gij dx
i dxj (71)

with gi j(x), the 3-metric of a 3-surface embedded in space-time, evolving

dynamically in superspace, the space of all 3-geometries.

By quantizing the Hamiltonian constraint, one obtains in the standard

fashion the Wheeler-DeWitt equation [18]
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[

Gi j k l

δ2

δgi j δgk l

+
√
g 3R

]

Ψ = 0 (72)

where g = det gi j ,
3R is the intrinsic curvature, Gi j k l is the supermetric, and

Ψ[gi j(x)] is a wave functional in superspace. Substituting Ψ = A exp (i S),

one obtains as usual a conservation law

Gi j k l

δ

δgi j

(

A2 δS

δgk l

)

= 0 (73)

and a modified Einstein-Hamilton-Jacobi equation

Gi j k l

δS

δgi j

δS

δgk l

−√
g 3R+Q = 0 (74)

where

Q = −A−1Gi j k l δ
2A/δgi j δgk l (75)

is the quantum potential. It is invariant under 3-space diffeomorphisms. The

causal interpretation of this field theory (as distinct from particle mechanics

considered earlier) assumes that the universe whose quantum state is governed

by equation (72) has a definite 3-geometry at each instant, described by the

3-metric gij(x, t) which evolves according to the classical Hamilton-Jacobi

equation

∂gi j(x, t)

∂t
= ∂iNj + ∂jNi + 2N Gi j k l

δS

δgk l

|gi j(x)=gi j(x,t) (76)

but with the action S as a phase of the quantum wave functional. This

equation can be solved if the initial data gi j(x, 0) are specified. The metric

in this field theory clearly corresponds to the position in particle mechanics,

equation (76) being its guidance condition.

It is now clear that one can modify the Wheeler-DeWitt equation (72) to

the form

[

Gi j k l

δ2

δgi j δgk l

+
√
g 3R−Qcl

]

Ψcl = 0 (77)
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where Qcl is defined by an expression analogous to (75) with A and S replaced

by the classical variables Acl and Scl. This leads to the classical Einstein-

Hamilton-Jacobi equation

Gi j k l

δScl

δgi j

δScl

δgk l

−√
g 3R = 0 . (78)

The term Qcl can then be interpreted, as before, as a potential arising due

to the coupling of gravitation with other forms of energy. If this coupling

could be switched off, quantum gravity effects would become important. The

question arises as to whether this can at all be done for gravitation.

VII. CONCLUDING REMARKS

It is usually assumed that a classical system is in some sense a limiting case

of a more fundamental quantum substratum, but no general demonstration

for ensembles of systems has yet been given. That a quantum system may, on

the other hand, be a part of a classical system in which its typical quantum

features lie dormant is, however, clear from the above discussions. The part

therefore naturally shares the ontology of the total classical system, and the

measurement problem does not even arise. The nonlocal quantum potential

that is responsible for self-organization and the creation of varied stable and

metastable quantum structures, becomes active only when the coupling of the

part to the whole is switched off. This is a clearly defined physical process

that links the classical and quantum domains.

According to this view, therefore, every quantum system is a closed sys-

tem and every classical system is an open system. The first Newtonian law of

motion therefore acquires a new interpretation—the law of inertia holds for

a system not when it is isolated from everything else but when it interacts

with its environment to an extent that all its quantum aspects are quenched.
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Various attempts to show that the classical limit of quantum systems is ob-

tained in certain limits, like large quantum numbers and/or large numbers of

constituents, have so far failed [19]. The reason is clear—a linear equation

like the Schrödinger equation can never describe a classical system which is

described by a modified Schrödinger equation with a nonlinear term. This

nonlinear term must be generated through some mechanism like the coupling

of the system to its environment. There are, of course, other purely formal

limits too (like h̄ going to zero, for example) in which a closed quantum system

reduces to a classical system, as widely discussed in the literature.

It is clear from the usual ‘decoherence’ approach that the interaction of a

quantum system with its environment in the form of some kind of heat bath

is necessary to obtain a quasi-classical limit of quantum mechanics. This is

usually considered to be a major advance in recent years. Such decoherence

effects have already been measured in cavity QED experiments. Decoherence

effects are very important to take into account in other critical experiments

too, like the use of SQUIDs to demonstrate the existence of Schrödinger cat

states. The failure to observe cat states so far in such experiments shows

how real these effects are and how difficult it is to eliminate them even for

mesoscopic systems. I have taken these advances in our knowledge seriously

in a phenomenological sense and tried to incorporate them into a conceptually

consistent scheme.

The usual decoherence approach however suffers from the following diffi-

culty: it does neither solve the measurement problem nor does it lead to a

truly classical phase space. The two problems seem to be intimately related.

The density matrix becomes diagonal only in the coordinate representation.

In other words, it does not represent a proper ‘statistical mixture’. The use of

the linear Schrödinger equation then automatically implies that the momen-

tum space representation is necessarily non-diagonal. This does not happen in
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the approach advocated in this paper because of equation (19) which guaran-

tees the emergence of classical phase space and a proper ‘statistical mixture’.

A clear empirical difference must therefore exist between the predictions of

the usual decoherence approach and the approach advocated in this paper

in the classical limit. It should be possible to test this by suitable experi-

ments which are under consideration. The proposed conceptual frame! work

is therefore falsifiable.
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