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Abstract
Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1) and
detector (F2) electrodes connected to a normal conductor (N) is studied. We reveal how the
spin transport depends on interface resistance, electrode resistance, spin polarization and spin
diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and
spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit
scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge
currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic
metals is proposed.

Keywords: spin polarized transport, spin injection, spin accumulation, spin current,
spin detection, spin Hall effect, spin-orbit interaction, spin diffusion length

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Spin-dependent transport phenomena in magnetic nanostruc-
tures are of great interest not only in the emergence of new
phenomena but also in the potential applications to spin elec-
tronic devices and information technologies [1–4]. Recent
experimental and theoretical studies have demonstrated that
the spin-polarized carriers injected from a ferromagnet (F)
into a nonmagnetic material (N), such as a normal conducting
metal, semiconductor, and superconductor, give rise to non-
equilibrium spin accumulation and spin current over the spin
diffusion length. Efficient spin injection, spin accumulation,
spin transfer and spin detection are key factors in utilizing the
spin degree of freedom as a new functionality in spin elec-
tronic devices.

∗ Invited paper.

In this review article, we discuss the basic theoretical
aspects for spin injection, spin transport and spin detection
in magnetic nanostructures containing normal conducting
metals by focusing on the spin accumulation and spin current
in a nonlocal spin device of F1/N/F2 structure, where F1
is a spin injector and F2 a spin detector. We derive basic
spin-dependent transport equations for the electrochemical
potentials (ECPs) of up- and down-spin electrons, and apply
them to a structure with arbitrary electrode resistance and
junction resistance ranging from a metallic contact to a
tunneling regime. By analyzing the spin transport in the struc-
ture, we obtain the optimal conditions for spin accumulation
and spin current. The injection of spin-polarized electrons
and the detection of spin accumulation depend strongly on
the nature of the junction interface (metallic contact or tunnel
barrier). When a tunnel barrier is used for both junctions,
the most efficient spin injection and detection are achieved.
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When a metallic contact is used for the N/F2 junction, a
large spin current injection into F2 is realized owing to strong
spin absorption (spin sink) by F2 with a short spin diffusion
length as in, for example, permalloy (Py). The latter effect is
important for a nonlocal spin manipulation by nonlocal spin
injection. We discuss the spin Hall effect (SHE), caused by
the spin–orbit scattering of conducting electrons in nonmag-
netic metals, by which the spin (charge) current is converted
to charge (spin) current using a nonlocal spin device.

2. Spin injection and spin accumulation

Johnson and Silsbee [5, 6] first reported that nonequilibrium
spin injected from a ferromagnet diffuses into an Al
film over the spin diffusion length of the order of 1µm
(or even several hundredµm for pure Al). This rather
long spin diffusion length led to the proposal of a
spin injection technique using a F1/N/F2 structure (F1
is an injector and F2 a detector) [7, 8], in which the
output voltage at F2 depends on the relative orientation
of the magnetizations of F1 and F2. Recently, Jedema
et al performed spin injection and detection experiments
with a nonlocal measurement in a lateral structure of
permalloy/copper/permalloy (Py/Cu/Py) and observed a
clear spin accumulation signal at room temperature [9].
Subsequently, they measured a large spin-accumulation signal
in a cobalt/aluminum/cobalt (Co/I/Al/I/Co) structure with
tunnel barriers(I = Al2O3) [10]. Nonlocal spin injection
and detection experiments have been conducted by many
groups [11–25].

We consider a spin injection and detection device
that consists of a nonmagnetic metal N connected to the
ferromagnets of the injector F1 and detector F2, as shown in
figures1(a) and (b). F1 and F2 are ferromagnetic electrodes
with width wF and thicknessdF, and are separated by
distanceL. N is a normal-metal electrode with widthwN and
thicknessdN. The magnetizations of F1 and F2 are aligned
either parallel or antiparallel. In this device, by sending
the bias currentI from F1 into the left side of N, spin-
polarized electrons are injected from F1 into N, and the spin
accumulation is detected by F2, at distanceL from F1, by
measuring the voltageV2 between F2 and N. Because of the
absence of a voltage source on the right side of the device,
there is no charge current in the electrodes that lie on the
right side of F1. By contrast, the injected spins are diffused
equally in both directions, creating spin accumulation on the
right side (figure1(c)). Accordingly, the spin and charge
degrees of freedom are transported separately in the device.
The advantage of the nonlocal measurement is that F2 probes
only the spin degrees of freedom.

The electrical current densityjσ for spin channelσ
(σ =↑, ↓) in a conductor is driven by electric fieldE = −∇φ

and the gradient of carrier densitynσ :

j↑ = σ↑E − eD↑∇n↑, j↓ = σ↓E − eD↓∇n↓, (1)

I
(b) Side view
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(c) Electrochemical potential (ECP) in N

(d) Detection of spin accumulation by F2
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Figure 1. Nonlocal spin injection and detection device. (a) Top
view. (b) Side view. CurrentI is sent from F1 to the left end of N.
The spin accumulation atx = L is proved by measuring voltageV2

at F2. (c) Spatial variation of the ECP for up- and down-spin
electrons in N. (d) Densities of states for the up- and down-spin
bands in N (center) and F2 (left and right). (e) Nonlocal resistance
V2/I as a function of in-plane magnetic fieldB, where P and AP
represent the parallel and antiparallel orientations of magnetizations
in F1 and F2.
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where σσ and Dσ are the electrical conductivity and the
diffusion constant with spinσ , respectively. Using∇nσ =

Nσ∇εσ
F (Nσ is the density of states in the spin subband andεσ

F
is the Fermi energy) and the Einstein relationσσ = e2Nσ Dσ ,
we have

j↑ = −(σ↑/e)∇µ↑, j↓ = −(σ↓/e)∇µ↓, (2)

whereµσ = εσ
F + eφ is the ECP andφ is the electric potential.

The continuity equations for charge and spin in the steady
state are

∇ ·
(
j↑ + j↓

)
= 0, (3a)

∇ ·
(
j↑ − j↓

)
= −e

δn↑

τ↑↓

+ e
δn↓

τ↓↑

, (3b)

whereδnσ = nσ − n̄σ is the deviation from equilibrium carrier
density n̄σ with spin σ , and τσσ ′ is the scattering time of
an electron from spin stateσ to σ ′. Making use of the
continuity equations and detailed balanceN↑/τ↑↓ = N↓/τ↓↑,
which ensures no net spin scattering in equilibrium, we obtain
the basic equations for ECP that describe the charge and spin
transport [26–31]

∇
2
(
σ↑µ↑ +σ↓µ↓

)
= 0, (4a)

∇
2
(
µ↑ − µ↓

)
=

1

λ2

(
µ↑ − µ↓

)
, (4b)

whereλ is the spin-diffusion length

λ =

√
Dτsf,

with spin relaxation timeτsf and diffusion constantD [29]:

1

τsf
=

1

2

(
1

τ↑↓

+
1

τ↓↑

)
, (5)

1

D
=

(N↑D−1
↓

+ N↓D−1
↑

)

(N↑ + N↓)
. (6)

The physical quantities of N are spin-independent, e.g. the
electrical conductivity isσ ↑

N = σ
↓

N =
1
2σN, while those of F

are spin-dependent, e.g.σ
↑

F 6= σ
↓

F (σF = σ
↑

F +σ
↓

F ). The spin-
diffusion lengths of transition-metal ferromagnets are found
to beλF ∼ 5 nm for permalloy (Py),λF ∼ 12 nm for CoFe, and
λF ∼ 50 nm for Co from current-perpendicular-plane giant
magnetoresistance (CPP-GMR) experiments [32], whereas
those of nonmagnetic metals areλN ∼ 1µm for Cu [9, 14],
and λN ∼ 0.65µm for Al [10]. The fact thatλF of typical
ferromagnets is much shorter thanλN of nonmagnetic metals,
such as Al or Cu, plays a crucial role in spin transport in
devices with those materials.

The interfacial current across the junctions is described
by using the treatment in CPP-GMR developed by Valet
and Fert [27]. In the presence of spin-dependent interface
resistanceRσ

i at junction i (i = 1, 2), the ECP changes
discontinuously at the interface when the current flows across
the junction. The spin-dependent interfacial currentI σ

1 (I σ
2 )

from F1 (F2) to N is given by the ECP difference at the

interface [27–29]: I σ
1 = (µσ

F1 − µσ
N)/(eRσ

1 ) and I σ
2 = (µσ

F2 −

µσ
N)/(eRσ

2 ), where the distribution of the current is assumed
to be uniform over the interface. The total charge and spin
currents across thei th interface areI i = I ↑

i + I ↓

i and I s
i =

I ↑

i − I ↓

i . The above interfacial currents are applicable to
tunnel junctions as well as to transparent metallic contacts.
In a transparent metallic contact (Rσ

i → 0), the continuity
of ECPs at the interface acts as a strong constraint for spin
accumulation on the N side, because the spin accumulation
on F is very small owing to the short spin diffusion length. In
a tunnel junction, spin accumulation on the N side is free from
the constraint owing to a large discontinuous change in ECPs
at the junction.

In a real device, the distribution of the current across the
interface depends on the relative magnitude of the interface
resistance to the electrode resistance [33]. When the interface
resistance is much larger than the electrode resistance as in
tunnel junctions, the current distribution is uniform in the
contact area [34], which validates the assumption of uniform
interface current. However, when the interface resistance
is comparable to or smaller than the electrode resistance
as in metallic contact junctions, the interface current has
inhomogeneous distribution with a high current density
around a corner of the contact [17, 35]. In this case, the
effective contact area through which most of the current
passes is smaller than the actual contact areaAJ = wNwF of
the junctions.

When currentI is sent from F1 to the left side of N
(I1 = I ) the solution of equations (4a) and (4b) takes the form

µσ
N = µ̄N +σ

(
a1e−|x|/λN − a2e−|x−L|/λN

)
, (7)

where the first term describes the charge transport and isµ̄N =

−[eI/(σN AN)]x (AN = dNwN) for x < 0 andµ̄N = 0 (ground
level of ECP) forx > 0, and the second term is the shift in
ECP of up-spin (σ = +) and down-spin (σ = −) electrons,
where thea1 term represents the spin accumulation due to
spin injection from F1, while thea2 term is the spin depletion
due to spin leakage into F2. Note that the pure spin current
flows in the region ofx > 0, i.e. the charge current (jN =

j ↑

N + j ↓

N) is absent and only the spin current (j s
N = j ↑

N − j ↓

N)
flows (figure1(c)).

In the F1 and F2 electrodes, the thicknesses are much
larger than the spin diffusion length (dF � λF), as in the
case of Py or CoFe, so that the solutions close to the
interfaces may take the forms of vertical transport along
thez-direction:µσ

F1 = µ̄F1 +σ(b1/σ
σ
F )e−z/λF andµσ

F2 = µ̄F2 −

σ(b2/σ
σ
F )e−z/λF, whereµ̄F1 = −[eI/(σFAJ)]z+ eV1 describes

the charge current flow in F1,̄µF2 = eV2 has a constant
potential with no charge current in F2, andV1 andV2 are the
voltage drops across junctions 1 and 2.

Making use of the matching conditions that the spin
current is continuous at the interfaces of junctions 1
and 2, the coefficientsai , bi , and Vi in ECPs are deter-
mined. The detected voltages,VP

2 and VAP
2 , in the parallel

(P) and antiparallel (AP) alignments of magnetizations
(figure 1(d)) are used to calculate the spin accumulation
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signal1Rs = (VP
2 − VAP

2 )/I , yielding [30]

1Rs = RN
(2P1r1 + 2pFrF) (2P2r2 + 2pFrF) e−L/λN

(1 + 2r1 + 2rF) (1 + 2r2 + 2rF) − e−2L/λN
, (8)

with the normalized resistances

r i =
1

(1− P2
i )

Ri

RN
, rF =

1

(1− p2
F)

RF

RN
, (9)

where Ri (1/Ri = 1/R↑

i + 1/R↓

i ) is the interface resistance
of junction i , RN and RF are the resistances of the N and F
electrodes with the lengths ofλN andλF and are called spin
resistances:

RN = (ρNλN)/AN, RN = (ρFλF)/AJ, (10)

with the resistivity ρN and the cross-sectional area
AN = wNdN of N, the resistivityρF of F and the contact
areaAJ = wNwF of the junctions.Pi is the interfacial current
spin polarization andpF the spin polarization of F1 and F2:

Pi =
∣∣R↑

i − R↓

i

∣∣/(R↑

i + R↓

i

)
, (11)

pF =
∣∣ρ↑

F − ρ
↓

F

∣∣/(ρ↑

F +ρ
↓

F

)
, (12)

whereρσ
F = 1/σ σ

F is the spin-dependent electrical resistivity
of F. In metallic contact junctions, the spin polarizations (Pi

and pF), are in the range of around 50–70%, as determined
from GMR experiments [32] and point-contact Andreev-
reflection experiments [36], whereas in tunnel junctions,Pi is
in the range of around 30–55% with alumina (Al2O3) tunnel
barriers [37–39], and∼85% with MgO barriers [40, 41], as
determined from superconducting tunneling spectroscopy
experiments.

The spin accumulation signal1Rs strongly depends
on the relative magnitude between the junction resistances
(R1, R2) and the electrode resistances (RN, and RN). Since
RN is much smaller thanRN (RN � RN), as in a device with
Cu and Py, we have the following cases. When both junctions
are tunnel junctions (R1, R2 � RN � RN) [8, 10],

1Rs/RN = P2
T e−L/λN , (13)

wherePT is the tunnel spin polarization. When junction 1 is a
tunnel junction and junction 2 is a transparent metallic contact
(R1 � RN � RN � R2) [30],

1Rs/RN =
2pFPT

1− p2
F

(
RN

RN

)
e−L/λN . (14)

When both junctions are transparent metallic contacts (RN �

RN � R1, R2) [9, 28, 29, 42],

1Rs/RN =
2p2

F

(1− p2
F)

2

(
RN

RN

)2 1

sinh(L/λN)
. (15)

Note that1Rs in the above limiting cases is independent
of Ri .

Figure 2(a) shows the spin accumulation signal1Rs

for RN/RN = 0.01 [9], pF = 0.7, and P1 = P2 = 0.4. We

0 1 2 3
L /λN
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 Ω
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∆R

Figure 2. (a) Spin accumulation signal1Rs as a function of
distanceL between F1 and F2. (b) Spin accumulation signal1Rs as
a function of distanceL in a tunnel device and a metallic contact
device. The symbols(•, ◦) are the experimental data of
Co/I/Al/I/Co [10], and (�,�) are those of Py/Cu/Py [46, 47], where
(•,�) and(◦, �) were measured at 4.2 K and at room temperature,
respectively.

see that1Rs increases by one order of magnitude by
replacing a metallic contact with a tunnel barrier, since the
resistance mismatch, which is represented by(RF/RN) � 1,
is removed by replacing a metallic contact with a tunnel
junction. Note that the mismatch originates from a large
difference in the spin diffusion lengths between N and F
(λF � λN). When a nonmagnetic semiconductor is used for N,
the resistance mismatch arises from the resistivity mismatch
(ρN � ρF) [42–44].

A controversial discussion has been raised on whether
the contacts in the metallic Py/Cu/Py structure [9] are really
transparent junctions (Ri /RF � 1) or, rather, tunnel-like junc-
tions (Ri /RN � 1) [45]. If one uses the experimental values
(Ri AJ ∼ 2× 10−12 �cm2, λF ∼ 5 nm [32], ρF ∼ 10−5 �cm),
one obtainsRi /RF ∼ 0.4, indicating that Py/Cu/Py lies in
the transparent regime, so that equation (15) may be used to
analyze the experimental data.

Figure 2(b) shows the experimental data of1Rs as a
function of distanceL in Co/I/Al/I/Co [10] and Py/Cu/Py
[46, 47]. In the tunnel device of Co/I/Al/I/Co (I= Al2O3),
fitting equation (13) to the data of Jedemaet al [10]
yieldsλN = 650 nm at 4.2 K,λN = 350 nm at 293 K,PT = 0.1
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and RN = 3�.1 The relationλ2
N = Dτsf with λN = 650 nm

and D = 1/[2e2N(0)ρN] ∼ 40 cm2 s−1 leads toτsf = 100 ps
at 4.2 K, which is consistent with the value of the
spin–orbit parameterb = h̄/(3τsf1Al ) ∼ 0.01 obtained by
superconducting tunneling spectroscopy [39, 40]. In the
metallic contact device of Py/Cu/Py, fitting equation (15) to
the data of Garzon [46] yields λN = 920 nm,RN = 5�,2 and
[ pF/(1− p2

F)]RF = 24 m� at 4.2 K, and fitting equation (15)
to the data of Kimuraet al [47] yields λN = 700 nm, RN =

2�,3 and [pF/(1− p2
F)]RF = 14 m� at 293 K.

In the tunneling regime, the spin splitting of ECP at
positionx in N is given by

2δµN(x) = PTeRN I e−|x|/λN . (16)

For a device withPT ∼ 0.1, RN = 3� and I = 100µA [10],
the value ofδµN(x) at x = 0 is about∼15µV, which is much
smaller than the superconducting gap1 ∼ 200µeV of Al
films. In a device with a SC (Al), a large enhancement of the
spin accumulation signal1Rs in the superconducting state has
been predicted [30] and observed experimentally [48, 49].

It is noteworthy that when F1 and F2 are both half-
metallic ferromagnets (pF = 1,rF � 1), we have the largest
signal

1Rs ≈ RNe−L/λN , (17)

without tunnel barriers, which is the advantage of using a half-
metallic ferromagnet with 100% spin polarization.

3. Nonlocal spin-current injection and manipulation

We next investigate how the spin current flows through
the nonlocal structure, particularly the spin current across
the N/F2 interface (figure3(a)), because of an interest in
magnetization switching [50–52] caused by pure spin-current
injection in nonlocal devices [53–55].

The magnitude and distribution of the spin accumulation
and spin current in a nonlocal device is strongly influenced by
the relative magnitudes of the interface resistances (Ri) and
the electrode spin resistances (RF, RN). Figure3(b) shows the
spatial variation of spin accumulationδµN in the N electrode
in the F1/I/N/F2 structure. The dashed curve indicatesδµN in
the absence of F2. When F2 is in contact with N at the position
of L/λN = 0.5, the spin accumulation is strongly suppressed
by F2 with shortRF, leaving little spin accumulation on the
right side of F2. This behavior has been observed in a nonlocal
device with three Py electrodes [13, 14]. We also note that the
slope of the curve between F1 and F2 (0< x < L) becomes
steeper than that of the dashed curve, indicating that the spin
currentsI s

N between F1 and F2 become larger than that in the
absence of F2, as seen in figure3(c). The large discontinuous
drop of I s

N at x = L is caused by strong absorption of the
spin current by F2, indicating that most of the spin current
flows out of N into F2 through the N/F2 interface. In the N
region on the right side of F2 (x > L), the spin current is very
small. This implies that F2 with a very lowRF, such as Py and
CoFe, and with a metallic contact with N acts as a strong spin
absorber (an ideal spin sink).
1 ρN = 6µ�cm,λN = 0.65µm andAN = 250× 50 nm2 for Al [ 10]
2 ρN = 3µ�cm,λN = 0.92µm, andAN = 125× 45 nm2 for Cu [46].
3 ρN = 2.0µ�cmλN = 0.7µm, andAN = 100× 80 nm2 for Cu [47].
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Figure 3. (a) Nonlocal spin current injection device of F1/I/N/F2,
where junction 1 is a tunnel junction and second 2 is a metallic
contact. Spatial variations of (b) spin accumulationδµN and (c) spin
currentI s

N in N for L/λN = 0.5 and∞. The parameter values are the
same as those in figure2. The discontinuous change of spin current
at L/λN = 0.5 indicates that most of the spin current flows out of N
through the N/F2 interface. (d) Spin switching device utilizing
nonlocal spin current injection [53]. The magnetization direction in
F2 is detected by F3.

The spin currentI s
2 across the N/F2 interface is calculated

as [30, 54]

I s
2 =

2(P1r1 + pFrF) e−L/λN I

(1 + 2r1 + 2rF) (1 + 2r2 + 2rF) − e−2L/λN
, (18)

which leads to the spin-current injection from N into F2 being
the largest when the first junction is a tunnel junction (r1 � 1),
the second junction is a metallic contact (r2 � 1), and F2
is a strong spin absorber (RF2 � RN), such as Py or CoFe,
yielding the spin-current injected nonlocally into F2 as

I s
2 ≈ PT I e−L/λN . (19)

When a small F2 island is placed on N with the contact area
of (100 nm)2 at distanceL ∼ λN, the injected spin current

5
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density into F2 becomes of the order ofI s
2 ∼ 106 A cm−2

or more for I = 1 mA and PT = 0.3, suggesting that a large
spin current injection is achieved, and hence, the spin-angular
momentum is efficiently transferred from F1 to a small F2.
This result provides a method for manipulating the orientation
of magnetization due to spin transfer torque in nonlocal spin
devices [55].

4. SHE

The anomalous Hall effect (AHE) originates from the
relativistic interaction between the spin and orbital motion of
electrons (spin–orbit interaction) in metals or semiconductors.
Conduction electrons are scattered by local potentials created
by impurities or defects in a crystal. The spin–orbit interaction
at local potentials causes a spin-asymmetric scattering of
conduction electrons [56]. In ferromagnetic materials, up-
spin (majority) electrons are scattered preferentially in one
direction and down-spin (minority) electrons in the opposite
direction, resulting in a transverse current in the direction
perpendicular to both the applied electric field and the
magnetization directions.

Nonlocal spin injection in nanostructured devices pro-
vides a new opportunity for observing AHE innonmagnetic
conductors, which is called the SHE. If spin-polarized elec-
trons flow in a nonmagnetic electrode (N), these electrons are
deflected by spin–orbit scattering to induce spin and charge
Hall currents in the transverse direction and accumulate spin
and charge at the edges of N [57–62]. Using nonlocal spin in-
jection and detection devices, the following two kinds of SHE
are observable. When a spin current without accompanying
charge current (pure spin current) is created in N via non-
local spin injection, the up- and down-spin currents, which
flow in opposite directions, are deflected in the same direc-
tion to induce a charge current in the transverse direction and
the charge accumulates on the edges of N. Inversely, when
an unpolarized charge current flows in N as a result of an
applied electric field, the up- and down-spin currents, which
flow in the same direction, are deflected in the opposite direc-
tion to induce a spin current in the transverse direction, and
the spin accumulates near the edges of N. As a consequence,
the spin (charge) degrees of freedom are converted to charge
(spin) degrees of freedom because of spin–orbit scattering in
nonmagnetic conductors. Recently, SHE has been observed
using nonlocal spin injection in metal-based nanostructured
devices [63–67], which paves the way for future spin elec-
tronic applications. In addition to theseextrinsicSHEs, in-
trinsic SHEs have been intensively studied in semiconductors
which do not require impurities or defects [68–73].

In the following, we consider the effect of spin–orbit
scattering on the spin and charge transports in nonmagnetic
metals (N) such as Cu, Al and Ag, and discuss SHE by taking
into account theside jump(SJ) andskew scattering(SS)
mechanisms [56, 74–76], and derive formulae for the SHE
induced by spin–orbit scattering in nonmagnetic metals [60].

4.1. Basic formulation

The spin–orbit interaction in the presence of nonmagnetic
impurities in a metal is derived as follows [77]. The impurity
potential V(r) gives rise to an additional electric field
E = −(1/e)∇V(r). When an electron passes through the
field with velocity p̂/m = (h̄/ i )∇/m, the electron feels an
effective magnetic fieldBeff = −(1/mc)p̂ × E, which leads to
the spin–orbit couplingVso = −µBσ · Beff = ηsoσ · [∇V(r) ×

∇/ i ], where σ is the Pauli spin operator andηso is the
spin–orbit coupling parameter. The total impurity potential
U (r) is the sum of the ordinary impurity potential and the
spin–orbit potential:U (r) = V(r) + Vso(r).

In the presence of the impurity potentialU (r), the
scattering of conduction electrons between states|kσ 〉 with
momentumk and spin σ is described by the scattering
amplitudeU σ ′σ

k′k = 〈k′σ ′
|U |kσ 〉 given by

U σ ′σ
k′k = Vimp

[
δσ ′σ + iηsoσσ ′σ · (k × k′)

] ∑
i

ei(k−k′)·r i , (20)

whereσ is the Pauli matrix andVimp
∑

i ei(k−k′)·r i represents
the matrix elements of the weakδ-function potentialV(r) ≈

Vimp
∑

i δ(r − r i ) for impurities at positionr i .
The velocity vσ

k of an electron in the presence of
spin–orbit potential is calculated as follows. By taking the
matrix elementvσ

k = 〈k+σ |v̂|k+σ 〉 of the velocity operator
v̂ = dr/dt [78] between the scattering states,

|k+σ 〉 = |kσ 〉 +
∑

k′

|k′σ 〉
Vimp

∑
i ei(k−k′)·r i

ξk − ξk′ + i δ
, (21)

where |kσ 〉 is the one-electron state with momentumk,
spinσ , and kinetic energyξk = (h̄k)2/2m− εF, we obtain

vσ
k = h̄k/m+ωσ

k (22)

with the usual velocitȳhk/m and anomalous velocity

ωσ
k = αSJ

H (σσσ × h̄k/m) , (23)

whereαSJ
H is the dimensionless coupling parameter of the side

jump

αSJ
H =

mηso

h̄τ 0
tr

=
h̄η̄so

2εFτ
0
tr

=
η̄so

kFl
(24)

with the scattering timeτ 0
tr = 1/[(2π/h̄)nimpN(0)V2

imp], the
impurity concentrationnimp, the dimensionless spin–orbit
coupling parameter̄ηso = k2

Fηso, the Fermi momentumkF, and
the mean-free pathl = vFτ

0
tr .

Introducing the current operator for conduction electrons
with spinσ ,

Ĵσ = e
∑

k

(
h̄k/m+ωσ

k

)
a†

kσ akσ (25)

(e= −|e| is the electronic charge), the total charge current
Jq = J↑ + J↓ and the total spin currentJs = J↑ − J↓ are
expressed as

Jq = J′

q +αSJ
H

[
ẑ× J′

s

]
, (26)

6
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Js = J′

s +αSJ
H

[
ẑ× J′

q

]
, (27)

where

J′

q = e
∑

k

h̄k
m

(
fk↑ + fk↓

)
, (28)

J′

s = e
∑

k

h̄k
m

(
fk↑ − fk↓

)
, (29)

and fkσ = 〈a†
kσ akσ 〉 is the distribution function of an electron

with energyξk and spinσ . The second terms in equations (26)
and (27) are the charge and spin Hall currents induced by
side jump. In addition to the side jump contribution, there
is the skew scattering contribution which originates from the
anisotropic scattering due to the spin–orbit interaction and
modifies the distribution function.

The distribution functionfkσ is calculated based on the
Boltzmann transport equation in the steady state,

vk · ∇ fkσ +
eE
h̄

· ∇k fkσ =

(
∂ fkσ

∂t

)
scatt

, (30)

where vk = h̄k/m, E is the external electric field, and the
collision term due to impurity scattering in the rhs is written as

(
∂ fkσ

∂t

)
scatt

=

∑
k′σ ′

[
Pσσ ′

kk ′ fk′σ ′ − Pσ ′σ
k′k fkσ

]
=

∑
k′σ ′

Pσ ′σ
k′k

(1)
( fk′σ ′ − fkσ )

+
∑
k′σ ′

Pσ ′σ
k′k

(2)
( fk′σ + fkσ ) , (31)

where the first term in the brackets is the scattering-in
term (k′σ ′

→ kσ ) and the second term is the scattering-
out term (kσ → k′σ ′), Pσ ′σ

k′k is the scattering probability
from state|kσ 〉 to state|k′σ ′

〉 and is calculated byPσ ′σ
k′k =

(2π/h̄)nimp|〈k′σ ′
|T̂ |kσ 〉|

2δ(ξk − ξk′) using theT̂-matrix, and

Pσ ′σ
k′k

(1)
andPσ ′σ

k′k
(2)

are, respectively, the first-order symmetric
and the second-order asymmetric contributions:

Pσ ′σ
k′k

(1)
=

2π

h̄
nimpV2

imp ×

(
δσσ ′ +

∣∣∣ηso(k′
× k) ·σσσ ′

∣∣∣2)
× δ(ξk′ − ξk), (32)

Pσ ′σ
k′k

(2)
=

(2π)2

h̄
nimpV3

impN(0) ×

[
ηso(k′

× k) ·σσσ

]
× δσσ ′δ(ξk′ − ξk), (33)

In solving the Boltzmann transport equation, it is convenient
to separatefkσ into three parts [79] as

fkσ = f 0
kσ + g(1)

kσ + g(2)

kσ , (34)

where f 0
kσ is a nondirectional distribution function defined by

the average offkσ with respect to the solid angle�k of k:

f 0
kσ =

∫
fkσ

d�k

(4π)
,

and g(1)

kσ and g(2)

kσ are directional distribution functions, i.e.∫
g(i )

kσ d�k = 0, and are associated with the first-order and the
second-order transitions, respectively.

The first term in equation (31) is written as

∑
k′σ ′

[
Pσσ ′

kk ′

(1)
fk′σ ′ − Pσ ′σ

k′k
(1)

fkσ

]
= −

g(1)

kσ

τtr
−

f 0
kσ − f 0

k−σ

τsf(θ)
,

(35)
where τtr is the transport relaxation time andτsf(θ) is the
spin–flip relaxation time,

1/τtr(θ) =

∑
k′σ ′

Pσσ ′

kk ′
(1)

=
1

τ 0
tr

(
1 + 2η̄2

so/3
)
, (36a)

1/τsf(θ) =

∑
k′

P↑↓

kk ′

(1)
=

η̄so
2

3τ 0
tr

(
1 + cos2 θ

)
, (36b)

with the angle θ between k and the x-axis. Then, the
Boltzmann equation (30) with the collision term (35)
is [59, 80]

vk ·
∂ fkσ

∂r
+

eE
h̄

·
∂ fkσ

∂k
= −

g(1)

kσ

τtr
−

f 0
kσ − f 0

k−σ

τsf(θ)
, (37)

where the first term in the rhs describes the momentum
relaxation due to impurity scattering and the second term
the spin relaxation due to spin–flip scattering. Sinceτtr � τsf,
the momentum relaxation occurs first, followed by slow spin
relaxation.

The first-order solution due to momentum relaxation is
obtained as

g(1)

kσ ≈ −τtr

(
vk · ∇ +

eE
h̄

· ∇k

)
f 0
kσ . (38)

The distribution functionf 0
kσ is a local equilibrium one with

Fermi energyεσ
F (r) = εF +σδεF(r) shifted byσδεF(r) from

the global equilibrium, and may be expanded as

f 0
kσ ≈ f0(ξk) − σ

∂ f0(ξk)

∂ξk
δEF(r), (39)

where f0(ξk) is the Fermi distribution function. Therefore,
equation (38) becomes

g(1)

kσ ≈ τtr
∂ f0(ξk)

∂ξk
vk · ∇µσ

N(r), (40)

with the electrochemical potential (ECP)µσ
N(r) = εF + eφ +

σδεF and the electric potentialφ (E = −∇φ).

7
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The spin–flip scattering by the spin–orbit interaction
causes a slow relaxation for spin accumulation(µ

↑

N − µ
↓

N) =

2δµN. By substituting equations (34), (39) and (40) into the
Boltzmann equation (37) and summing overk, one obtains
the spin diffusion equation

∇
2δµN =

1

λ2
N

δµN (41)

with λN =
√

Dτsf, D = (1/3)τtrv
2
F, and τ−1

sf = 〈τ−1
sf (θ)〉av =

4η̄2
so/(9τ 0

tr).
The second-order term in the Boltzmann equation is∑

k′σ ′

[
Pσ ′σ

k′k
(1)

(
g(2)

kσ − g(2)

k′σ ′

)
− Pσ ′σ

k′k
(2)

(
g(1)

kσ + g(1)

k′σ ′

)]
= 0.

(42)
Making use of equations (32), (33) and (40), the solution

of the second-order (skew scattering) term becomes

g(2)

kσ = −αSS
H τtr

∂ f0(ξk)

ξk
(σσσ × vk) · ∇µσ

N(r), (43)

whereαSS
H is the dimensionless parameter of skew scattering

αSS
H = (2π/3)η̄soN(0)Vimp. (44)

4.2. Spin and charge currents induced by SHE

Using the solutions of the Boltzmann equation given in the
preceding sections, the distribution function becomes

fkσ ≈ f0(ξk) − σ
∂ f0(ξk)

∂ξk
δµN(r) + τtr

∂ f0(ξk)

∂ξk

×
[
vk − αSS

H σσσ × vk
]
· ∇µσ

N(r), (45)

from which the spin and charge currents in equation (29) are
calculated asJ′

s = j s +αSS
H [ẑ× jq] and J′

q = jq +αSS
H [ẑ× j s],

whereẑ is the polarization vector and the second terms are,
respectively, the Hall spin and charge currents induced by the
charge and spin currents:

j s = −
σN

e
∇δµN, (46)

jq = σNE, (47)

where σN = 2e2N(0)D is the electrical conductivity and
δµN =

1
2(µ

↑

N − µ
↓

N) is the chemical potential shift. Therefore,
the total spin and charge currents in equations (26) and (27)
are written as

Jq = jq +αH
[
ẑ× j s

]
, (48)

Js = j s +αH
[
ẑ× jq

]
, (49)

where αH = αSJ
H +αSS

H = η̄so[1/(kFl ) + (2π/3)N(0)Vimp].
Equations (48) and (49) indicate that the spin currentj s
induces the transverse charge currentjH

q = αH[ẑ× j s], while
the charge currentjq induces the transverse spin current
jH
s = αH[ẑ× jq], as shown in figure4.

x

y

x

 j

(a) Spin-current-induced SHE

(b) Charge-current-induced SHE

j H
q

s 

z

y

 j

j H

q

s

 

z

Charge current

spin current

Charge current

Spin current

Figure 4. (a) Spin-current-induced SHE in which the spin currentj s
flowing along thex-direction with the polarization parallel to the
z-axis induces the charge currentjH

q in the y-direction.
(b) Charge-current-induced SHE in which the charge currentjq

along thex-direction induces the spin currentjH
s in the y-direction

with the polarization parallel to thez-axis.

The spin Hall conductivityσH = σSJ
H +σSS

H has the
side-jump contributionσSJ

H = αSJ
H σN and the skew-scattering

contributionσSS
H = αSS

H σN, which are given by

σSJ
H =

e2

h̄
ηsone =

2

3π

e2

h
kFη̄so, (50)

σSS
H =

[
2π

3
kFl N (0)Vimp

]
σSJ

H , (51)

with ne ∼ N(0)εF being the carrier (electron) density. We
note that the side-jump conductivityσSJ

H is independent
of the impurity concentration. The spin Hall conductivity
is dominated by skew-scattering for(kFl )|N(0)Vimp| � 1
and by side jump for(kFl )|N(0)Vimp| � 1. The spin Hall
resistivity ρH ≈ σH/σ 2

N has linear and quadratic terms in
ρN representing the contributions from side-jump and skew
scatterings, respectively:

ρH = aSSρN + bSJρ
2
N, (52)

where aSS= (2π/3)η̄soN(0)Vimp and bSJ= (2/3π)η̄so

(e2/h)kF.

4.3. Spin–orbit coupling parameter

It is worthwhile to note that, if one multiplies the resistivity
ρN and spin diffusion lengthλN, one obtains [54, 61, 81]:

ρNλN =

√
3π

2

RK

k2
F

√
τsf

τtr
=

3
√

3π

4

RK

k2
F

1

η̄so
, (53)
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Table 1.Spin–orbit coupling parameterη̄so for Cu, Al, Ag, Au and
Pt. Here, we use the following Fermi momenta:
kF = 1.75× 108 cm−1 (Al), 1.36× 108 cm−1 (Cu), 1.20× 108 cm−1

(Ag) and 1.21× 108 cm−1 (Au) [82]. (We assume 1× 108 cm−1

for Pt.)

λN (nm) ρN (µ� cm) τsf/τtr η̄so Reference

Al 650 5.90 2.8× 104 0.009 [10]
Al 455 9.53 3.6× 104 0.008 [63]
Al 705 5.88 3.3× 104 0.008 [63]
Cu 1000 1.43 1.4× 103 0.040 [9]
Cu 1500 1.00 1.6× 103 0.037 [47]
Cu 546 3.44 2.4× 103 0.030 [18]
Ag 162 4.00 1.8× 102 0.113 [19]
Ag 195 3.50 2.0× 102 0.107 [19]
Au 168 4.00 2.0× 102 0.107 [20]
Pt 14 12.8 6.5 0.59 [83]

where RK = h/e2
∼ 25.8 k� is the quantum resistance.

Equation (53) implies thatρNλN is expressed in terms of the
spin–orbit coupling parameterη̄so, and provides a new method
of evaluating the spin–orbit coupling in nonmagnetic metals.
Using the experimental data ofρN andλN for Al, Cu, Ag and
Au in equation (53), we obtain the values of the spin–orbit
coupling parameter̄ηso in those metals, as listed in table1.
We note that the values ofη̄so estimated by the spin injection
method are 102–103 times the value of̄ηso = h̄2k2

F/4m2c2
=

(vF/2c)2 in the free-electron model.

4.4. Nonlocal SHE

Let us consider the nonlocal spin Hall device shown in
figure5 [54, 61, 81, 84]. The magnetization of the ferromagnet
(F) points in thez-direction perpendicular to the plane. Spin
injection is induced by sending the currentI from F to the
left end of N, while the Hall voltage (VH) is measured by the
Hall bars at distanceL, where charge currentjq is absent and
only spin currentj s flows in thex-direction. Therefore, from
equations (48) and (49), Js = j s and

Jq = αH
[
ẑ× j s

]
+σNE, (54)

where the first term is the Hall current induced by the spin
current, and the second term is the ohmic current that builds
up in the transverse direction as opposed to the Hall current.
In an open circuit condition in the transverse direction, the
y-component ofJq in equatiion (54) vanishes, which yields
the relation between the Hall electric fieldEy and the spin
currentj s = ( js, 0, 0),

Ey = −αHρN js, (55)

which is integrated with respect toy to yield the Hall voltage

VH = αHwNρN js, (56)

wherewN is the width of N. The spin currentjs at x = L is
given by

js ≈
1
2 Peff(I /AN)e−L/λN , (57)

N

+   +     +      +           +                +

−   −     −      −           −                −

VH

I

L

F

m z//

I js
jq

H

Figure 5. Nonlocal spin Hall device. The magnetization of F is
pointed perpendicular to the plane. The nonlocal Hall voltageVH is
generated in the transverse direction by injecting pure spin current.

wherePeff is the effective spin polarization and has the tunnel
spin polarizationPT for a tunnel junction andPeff = [ pF/(1−

p2
F)](RF/RN) for a metallic contact junction. Therefore, the

nonlocal Hall resistanceRH = VH/I becomes [54, 61, 81, 84]

1RH =
1
2 PeffαH

ρN

dN
e−L/λN (58)

with the spin-Hall angle

αH = η̄so
[
1/kFl + (2π/3)N(0)Vimp

]
. (59)

For typical values of device parameters (Peff ∼ 0.3, dN ∼

10 nm andρN ∼ 5µ� cm), andαH ∼ 0.01–0.0001 forη̄so =

0.1–0.01 (table1), kFl ∼ 100 andVimpN(0) ∼ 0.1–0.01, the
expected value of1RH at L = λN/2 is of the order of
0.05–5 m�, indicating that SHE is measurable using nonlocal
Hall devices.

Recently, the SHE was observed by the nonlocal spin
injection technique in CoFe/Al [63, 85] under high magnetic
fields perpendicular to the device plane, in Py/Cu/Pt [64, 65]
using strong spin absorption by Pt, in FePt/Au [66] using a
perpendicularly magnetized FePt, and in a Py/Pt bilayer by a
ferromagnetic resonance (FMR) technique [67].

4.5. SHE in superconductors

SHE in a superconductor is an interesting problem for the
following reasons. The spin current carried by quasiparticles
(QPs) in a superconductor (SC) is deflected by spin–orbit
impurity scattering and accumulate QP charge (charge
imbalance) in the transverse direction. The QP charge
accumulation is compensated by the Cooper pair charge
owing to the overall charge neutrality, thereby creating the
electric potential necessary to maintain the ECP of pairs
constant in space (otherwise the pairs are accelerated). This
spin and charge coupling leads to SHE in SCs [60].

In a nonlocal spin Hall device, in which N is replaced
by SC as in figure5, the nonlocal Hall voltage is greatly
enhanced below the superconducting critical temperature
Tc. In the superconducting state, QPs injected above the
superconducting energy gap1 carry the spin current in SC,
which induces SHE. When the Hall voltageVH is detected by

9
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Figure 6. Temperature dependence of the nonlocal spin Hall
resistance normalized to that atT = Tc. The solid curve indicates
the side jump contribution and the dashed curve the skew scattering
contribution.

Hall bars of a normal metal, the nonlocal Hall resistance is
calculated as [60]

1RH =
1

2
PT

ρN

dN

(
αSJ

H

2 f0(1)
+

χ̄s(T)

[2 f0(1)]2
αSS

H

)
e−L/λN , (60)

where f0(1) is the Fermi function at the gap energy1 and
χ̄s(T) is the spin susceptibility normalized to the normal-state
one atTc:

χ̄s(T) = 2
∫

∞

1

dE
E

√
E2 − 12

[
−

∂ f0(E)

∂E

]
, (61)

which hasχ̄s(T) ∼ 1− [7ζ(3)/4π2] (1/kBT)2 near Tc and
χ̄s(T) ∼ (π1/2kBT)1/2 exp[−1/kBT ] well below Tc. In
equation (60), λN is unchanged in the superconducting
state [86]. Figure6 shows the temperature dependence of the
spin Hall resistivity1RH for quasiparticles. The solid and
dashed curves indicate the SHEs due to the side-jump and
skew-scattering contributions, respectively. The rapid increase
of 1RH belowTc reflects the strongT-dependence of spin and
charge imbalance of QPs in a superconductor.

5. Summary

In this article, we discussed a variety of spin transport
phenomena caused by spin injection from ferromagnets into
normal metals in nanostructured devices, and clarified the
conditions under which efficient spin injection, accumulation
and transport are realized in these devices. Using the nonlocal
spin injection, a pure spin current is created in nonmagnetic
conductors, so that we have the opportunity to observe the
spin-current induced SHE in nonmagnetic conductors (N)
via the spin–orbit scattering by nonmagnetic impurities. The
observation of the SHE provides direct verification of the
existence of spin current flowing in N. In a reversible way,
the electrical current creates the spin current via the SHE,
which provides a spin-generating source without the need to

use ferromagnetic materials. The nonlocal spin injection also
makes it possible to realize a nonlocal spin manipulation,
in which a small ferromagnet is attached to the N and its
magnetization direction is switched by the spin transfer torque
due to nonlocal spin-current absorption. The advantages of
nonlocal lateral structures are flexibility of the layout and
the relative ease of fabricating multiterminal devices with
different functionalities. The development of nonlocal spin
devices is a new challenge in the research field of spin
electronics.
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