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Abstract

We propose a global noninformative approach for Bayesian variable selection that builds on
Zellner’s g-priors and is similar to Liang et al. (2008). Our proposal does not require any kind
of calibration. In the case of a benchmark, we compare Bayesian and frequentist regularization
approaches under a low informative constraint when the number of variables is almost equal
to the number of observations. The simulated and real dataset experiments we present here
highlight the appeal of Bayesian regularization methods, when compared with alternatives.
They dominate frequentist methods in the sense they provide smaller prediction errors while
selecting the most relevant variables in a parsimonious way.
Keywords: Model choice, regularization methods, noninformative priors, Zellner’s g–prior,
calibration, Lasso, elastic net, Dantzig selector.

1 Introduction

Given a response variable, y and a collection of p associated potential predictor variables x1, . . . , xp,
the classical linear regression model imposes a linear dependence on the conditional expectation
(Rao, 1973)

E[y|x1, . . . , xp] = β0 + β1x1 + . . . βPxp .

∗This paper is part of Mohammed EL Anbari’s PhD thesis. This work has been partly supported by the Agence
Nationale de la Recherche (ANR, 212, rue de Bercy 75012 Paris) through the 2006-2008 project Misgepop and the
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Discussions in 2007 in Banff with Sylvia Richardson and in Roma with Jim Berger and Paul Speckman are also
gratefully acknowledged. Given that Arnold Zellner sadly passed away last August, we would like to dedicate this
paper to the memory of this leading Bayesian thinker who influenced so much the field and will continue to do so.
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A fundamental inferential direction for those models relates to the variable selection problem,
namely that only variables of relevance should be kept within the regression while the others should
be removed. While we cannot discuss at length the potential applications of this issue, variable
selection is particularly relevant when the number p of regressors is larger than the number n of
observations (as in microarray and other genetic data analyzes).

To deal with poorly or ill-posed regression problems, many regularization methods have been
proposed in the literature, like ridge regression (Hoerl and Kennard, 1970) and Lasso (Tibshirani,
1996). Recently the interest for frequentist regularization methods has increased and this has
produced a flury of methods (see, among others, Candes and Tao, 2007, Zou and Hastie, 2005,
Zou, 2006, Yuan and Lin, 2007).

However, a natural approach for regularization is to follow the Bayesian paradigm as demon-
strated recently by the Bayesian Lasso of Park and Casella (2008). The amount of literature on
Bayesian variable selection is quite enormous (a small subset of which is, for instance, Mitchell and Beauchamp,
1988, George and McCulloch, 1993, Chipman, 1996, Smith and Kohn, 1996, George and McCulloch,
1997, Dupuis and Robert, 2003, Brown and Vannucci, 1998, Philips and Guttman, 1998, George,
2000, Kohn et al., 2001, Nott and Green, 2004, Schneider and Corcoran, 2004, Casella and Moreno,
2006, Cui and George, 2008, Liang et al., 2008, Bottolo and Richardson, 2010). The number of ap-
proaches and scenarii that have been advanced to undertake the selection of the most relevant
variables given a set of observations is quite large, presumably due to the vague decisional setting
induced by the question Which variables do matter? Such a variety of resolutions signals a lack
of agreement between the actors in the field and we thus feel the need to propose what we deem
is a coherent resolution of the Bayesian prior modelling in noninformative settings. We will more
closely follow variations with the recent approaches of Cui and George (2008), Liang et al. (2008),
and Bottolo and Richardson (2010).

As in Liang et al. (2008) and Bottolo and Richardson (2010), we focus on the use of the g-
prior, introduced by Zellner (1986). In fact, while this prior has a long history and while it
reduces the prior input to a single integer, g, we stress that the influence of this remaining prior
factor is long-lasting and that large values of g are no guarantee of negligible effects, in connection
with the Bartlett or Lindley–Jeffreys paradoxes (Bartlett, 1957, Lindley, 1957, Robert, 1993), as
illustrated for instance in Celeux et al. (2006) or Marin and Robert (2007). In order to alleviate
this influence, we then follow a most natural Bayesian path and simply proceed to the construction
of a noninformative alternative that eliminates the impact of the factor g, based on the Jeffreys
prior associated with a hierarchical model. We thus claim to have achieved here a calibration-free
Bayesian approach to the variable selection problem.

While the hierarchical extension of the g-prior can be found in the earlier literature, either
through an implicit modelling as in Zellner and Siow (1980) or through a clear call to an hyper-
prior as in Liang et al. (2008) and Bottolo and Richardson (2010), two major differences with those
recent papers are that we assume that there always is an intercept coefficient β0 in the regression
model and that we further process this parameter β0 in the same way as we process the other
regression parameters of the linear model. As a result and in contrast with those recent papers, we
do avoid the need to call for a proper prior on g, which necessarily depends on an hyperparameter.
Obviously, the counterpart of this global approach is that the intercept is no longer estimated un-
der standard invariance constraints like location equivariance (Berger et al., 1998). We nonetheless
argue that the prior independence between β0 and the other parameters of β, found in the mod-
elings of Liang et al. (2008) and Bottolo and Richardson (2010), does not have to hold and that
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the lack of location invariance resulting from our approach is a negligible problem (if any) from
practical and methodological viewpoints. (Guo and Speckman, 2009, have furthermore established
the consistency of the Bayes factors based on such priors.)

Beside this new Bayesian modelling in linear models, the purpose of our paper is to compare
the frequentist and the Bayesian point of views in regularization when n remains (slightly) greater
than p. As a matter of fact, the use of g-prior implies that the sample size n has to be greater than
p. This comparison is considered from both the predictive and the explicative point of views.

The plan of the paper is as follows: we recall the details on Zellner’s (1986) original g prior
in Section 2, as well as discuss the potential choices of g in Section 2, then proceed to construct
our hierarchical noninformative alternative in Section 3 including the re-derivation of the Jeffreys
prior in this setting. Sections 4 and 4.3 compare the results of Bayesian and frequentist methods
on simulated and real datasets. Section 5 concludes the paper.

2 Zellner’s g-priors

Following standard notation, we introduce a variable γ ∈ Γ = {0, 1}⊗p that indicates which vari-
ables are active in the regression, excluding the constant vector corresponding to the intercept that
is assumed to be always present in the linear regression model.

We observe y,x1, . . . ,xp ∈ R
n, the model Mγ is defined as the conditional distribution

y|X,γ,βγ , σ2 ∼ Nn

(

Xγβγ , σ2In
)

, (1)

where

◮ pγ =
∑p

i=1 γi,

◮ Xγ is the (n, pγ +1) matrix which columns are made of the vector 1n and of the variables xi

for which γi = 1,

◮ βγ ∈ R
pγ+1 and σ2 ∈ R

∗
+ are unknown parameters.

The same symbol for the parameter σ2 is used in all models. For model Mγ , Zellner’s g-prior is
given by

βγ |X,γ, σ2 ∼ Npγ+1(β̃
γ
, gγσ

2((Xγ)′Xγ)−1) ,

π(σ2|X,γ) ∝ σ−2 .

The experimenter chooses the prior expectation β̃
γ
and gγ . For such a prior, we obtain the classical

average between prior and observed regressors,

E(βγ |X,γ,y) =
gγβ̂

γ
+ β̃

γ

gγ + 1
.

This prior is traditionally called Zellner’s g-prior in the Bayesian folklore because of the use of the
constant gγ by Zellner (1986) in front of Fisher’s information matrix ((Xγ)′Xγ)−1. Its appeal is
that, by using the information matrix as a global scale,

◮ it avoids the specification of a whole prior covariance matrix, which would be a tremendous
task;
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◮ it allows for a specification of the constant gγ in terms of observational units, or virtual prior
pseudo-observations in the sense of de Finetti (1972).

A fundamental feature of the g-prior is that this prior is improper, due to the use of an infinite
mass on σ2. From a theoretical point of view, this should jeopardize the use of posterior model
probabilities since these probabilities are not uniquely scaled under improper priors, because there is
no way of eliminating the residual constant factor in those priors (DeGroot, 1973, Kass and Raftery,
1995, Robert, 2001). However, under the assumption that σ2 is a parameter that is common to all
models Mγ , Berger et al. (1998) develop a framework that allows to work with a single improper
prior that is common to all models (see also Marin and Robert, 2007). A fundamental appeal of
Zellner’s g-prior in model comparison and in particular in variable selection is its simplicity, since
it reduces the prior input to the sole specification of a scale parameter g.

At this stage, we need to point out that an alternative g-prior is often used (Berger et al.,
1998, Fernandez et al., 2001, Liang et al., 2008, Bottolo and Richardson, 2010), by singling out
the intercept parameter in the linear regression. By first assuming a centering of the covariates,
i.e. 1′nxi = 0 for all i’s, the intercept α is given a flat prior while the other parameters of βγ are
associated with a corresponding g-prior. Thus, there is an alternative model to model Mγ , which
we denote by model Minv

γ in this paper to stress the distinctions between both representation and
which is such that

y|X,γ, α,βγ
inv, σ

2 ∼ Nn

(

α1n +X
γ
invβ

γ
inv, σ

2In
)

, (2)

where

◮ X
γ
inv the (n, pγ) matrix which columns are made of the variables xi for which γi = 1,

◮ α ∈ R, βγ
inv ∈ R

pγ and σ2 ∈ R
∗
+ are unknown parameters.

The parameters σ2 and α are denoted the same way across all models and rely on the same prior.
Namely, for model Minv

γ , the corresponding Zellner’s g-prior is given by

β
γ
inv|X,γ, σ2 ∼ Npγ (β̃

γ

inv, gγσ
2((Xγ

inv)
′X

γ
inv)

−1) ,

π(α, σ2|X,γ) ∝ σ−2 .

In that case, we obtain

E(βγ
inv|X,γ,y) =

gγβ̂
γ

inv + β̃
γ

inv

gγ + 1
,

and

E(α|X,γ,y) = ȳ =
1

n

n
∑

i=1

yi .

For model Mγ , in a noninformative setting, we can for instance choose β̃
γ
= 0pγ+1

and gγ
large. However, as pointed out in Marin and Robert (2007, Chapter 3) among others, there is a
lasting influence of gγ over the resulting inference and it is impossible to “let gγ go to infinity” to
eliminate this influence, because of the Bartlett and Lindley-Jeffreys (Bartlett, 1957, Lindley, 1957,
Robert, 1993) paradoxes that an infinite value of gγ ends up selecting the null model, regardless
of the information brought by the data. For this reason, data-dependent versions of gγ have been
proposed with various degrees of justification:
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◮ Kass and Wasserman (1995) use gγ = n so that the amount of information about the param-
eters contained in the prior equals the amount of information brought by one observation.
As shown by Foster and George (1994), for n large enough this perspective is very close to
using the Schwarz (Kass and Wasserman, 1995) or BIC criterion in that the log-posterior
corresponding to g = n is equal to the penalized log-likelihood of this criterion.

◮ Foster and George (1994) and George and Foster (2000) propose gγ = p2γ , in connection with
the Risk Inflation Criterion (RIC) that penalizes the regression sum of squares.

◮ Fernandez et al. (2001) gather both perspectives in gγ = max(n, p2γ) as a conservative bridge
between BIC and RIC, a choice that they christened “benchmark prior”.

◮ George and Foster (2000) and Cui and George (2008) resort to empirical Bayes techniques.

These solutions, while commendable since based on asymptotic properties (see in particular
Fernandez et al., 2001 for consistency results), are nonetheless unsatisfactory in that they depend
on the sample size and involve a degree of arbitrariness, while a complete Bayesian solution is
readily available, as demonstrated below.

3 Mixtures of g-priors

The most natural Bayesian approach to solving the uncertainty on the parameter gγ = g is indeed
to put a hyperprior on this parameter:

◮ This was implicitely proposed by Zellner and Siow (1980) sinc those authors introduced
Cauchy priors on the βγ ’s since this corresponds to a g-prior augmented by a Gamma
Ga(1/2, n/2) prior on g−1.

◮ For model Minv
γ , Liang et al. (2008), Cui and George (2008) and Bottolo and Richardson

(2010) use
β
γ
inv|X,γ, σ2 ∼ Npγ (0pγ , gσ

2((Xγ
inv)

′X
γ
inv)

−1)

and an hyperprior of the form

π(α, σ2, g|X,γ) ∝ (1 + g)−a/2σ−2 ,

with a > 2 . This constraint on a is due to the fact that the hyperprior must be proper, in
connection with the separate processing of the intercept α and the use of a Lebesgue measure
as a prior on α. We note that a needs to be specified, a = 3 and a = 4 being the solutions
favored by Liang et al. (2008).

◮ For model Mγ , Celeux et al. (2006) and Marin and Robert (2007) used

βγ |X,γ, σ2 ∼ Npγ+1(0pγ+1, gσ
2((Xγ)′Xγ)−1)

and an hyperprior of the form

π(σ2, g|X) ∝ σ−2g−1
IN∗(g) ,

as a simple way of circumventing computational difficulties.
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In the current paper, we propose a more convincing modelling, based on the remark that the
Jeffreys prior is available. Indeed, if

βγ |X,γ, σ2 ∼ Npγ+1(0pγ+1, gσ
2((Xγ)′Xγ)−1) ,

then

y|X,γ, g, σ2 ∼ Npγ+1

(

0n, σ
2

[

In − g

g + 1
Pγ

]−1
)

,

where Pγ is the orthogonal projector on the linear subspace spanned by the columns of Xγ . Since,
the Fisher information matrix is

I(σ2, g) =

(

1

2

)[

n
/

σ4 (pγ + 1)
/

(σ2(g + 1))
(pγ + 1)

/

(σ2(g + 1)) (pγ + 1)
/

(g + 1)2

]

,

the corresponding Jeffreys prior on (σ2, g) is

π(σ2, g|X) ∝ σ−2(g + 1)−1 .

In constrast with our proposal, the prior of Liang et al. (2008) depends on a tuning parameter
a. The choice of this hyperparameter a is sensitive and its influence is unfortunately non-vanishing
against an increase of the number of observations n, since g has a significant influence on the
Bayesian analysis of the linear model, as discussed earlier. As far as we can judge, it is difficult to
propose any guideline for choosing a. However, there also exist arguments to back up this prior
modelling, including invariance under location-scale transforms. As obviously deduced from later
formulae, our modellling and prior choices ensure scale invariance but not location invariance. In
order to ensure location invariance, it would be necessary to center the observation variable y as
well as the dependent variables X. Obviously, this centering of the data is completely unjustified
from a Bayesian perspective and it further creates artificial correlations between observations. In
conclusion, we argue that the lack of location invariance only pertains to quite specific and somehow
artificial situations and that it is negligible in most situations. There is therefore no justification
in using artefacts to ensure location invariance.

The main consequence of this modelling is that, for the selected prior distributions, there exists
a closed-form representation for posterior quantities in that

π(γ, g|X,y) ∝ (g + 1)n/2−(pγ+1)/2−1(1 + g(1 − y′Pγy/y
′y))−n/2

and

π(γ|X,y) ∝ 2F1(n/2, 1; (pγ + 3)/2;y′Pγy
/

y′y)

pγ + 1
,

where 2F1 is the Gaussian hypergeometric function (Butler and Wood, 2002). We can thus proceed
to undertake Bayesian variable selection without resorting at all to numerical methods like simula-
tion (Marin and Robert, 2007). Moreover, the shrinkage factor due to the Bayesian modelling can
also be expressed in closed form as

E(g/(g + 1)|X,γ,y) =

∫ ∞

0
g(g + 1)n/2−(pγ+1)/2−2(1 + g(1 − y′Pγy/y

′y))−n/2dg
∫ ∞

0
(g + 1)n/2−(pγ+1)/2−1(1 + g(1− y′Pγy/y

′y))−n/2dg

=
2 2F1(n/2, 2; (pγ + 3)/2 + 1;y′Pγy

/

y′y)

(pγ + 3) 2F1(n/2, 1; (pγ + 3)/2;y′Pγy
/

y′y)
.
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This obviously leads to straightforward representations for Bayes estimates. If Xnew is a q × p
matrix containing q new values of the explanatory variables for which we would like to predict the
corresponding response ynew, the Bayesian predictor of ynew is given by

ŷγ
new = E [ynew|Xnew,X,γ,y]

= 2
2F1(n/2, 2; (pγ + 3)/2 + 1;y′Pγy

/

y′y)

(pγ + 3) 2F1(n/2, 1; (pγ + 3)/2;y′Pγy
/

y′y)
Xnewβ̂

γ
.

Similarly, the Bayesian model averaging predictor of ynew is given by

ŷnew = E [ynew|Xnew,X,y] (3)

= 2

∑

γ∈Γ 2F1(n/2, 2; (pγ + 3)/2 + 1;y′Pγy
/

y′y)/ [(pγ + 1)(pγ + 3)]
∑

γ∈Γ 2F1(n/2, 1; (pγ + 3)/2;y′Pγy
/

y′y)/(pγ + 1)
Xnewβ̂

γ
.

This numerical simplification in the derivation of Bayesian estimates and predictors is also available
in Liang et al. (2008) and exploited further in Bottolo and Richardson (2010).

4 Numerical comparisons

In this section, we present the results of several numerical experiments aimed at comparing the
behavior of Bayesian variable selection and of some (non-Bayesian) popular recent regularization
methods in regression when considered from a variable selection point of view. The regularization
methods that we consider are the Lasso, the Dantizg selector, and elastic net, as described in Section
4.1. The Bayesian variable selection procedures we consider in terms of the strategies selecting the
hyperparameter g in Zellner’s g-priors. They are described in Table 1. We have also included in
this comparison the highly standard AIC and BIC penalized likelihood criteria.

4.1 Regularization methods

1) The Lasso: The Lasso, introduced by Tibshirani (1996), is a shrinkage method for linear
regression. It is defined as the solution to the following ℓ1 penalized least squares optimization
problem

β̂Lasso = argmin
β

||y −Xβ||22 + λ

p
∑

j=1

|βj |,

where λ is a positive tuning parameter.

2) The Dantzig Selector : Candes and Tao (2007) introduced the Dantzig Selector as an alter-
native to the Lasso. The Dantzig Selector is the solution to the optimization problem

min
β∈Rp

‖β‖1 subject to ‖Xt(y −Xβ)‖∞ ≤ λ,

where λ is a positive tuning parameter. The constraint ‖Xt(y −Xβ)‖∞ ≤ λ can be viewed
as a relaxation of the normal equation in the classical linear regression.
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3) The Elastic Net (Enet): The Lasso has at least two limitations: a) Lasso does not encourage
grouped selection in the presence of high correlated covariates and b) for p > n case Lasso can
select at most n covariates. To overcome these limitations, Zou and Hastie (2005) proposed
an elastic net that combines both ridge ℓ2 and Lasso ℓ1 penalties, i. e.

β̂Enet = argmin
β

||y −Xβ||22 + λ

p
∑

j=1

|βj |+ µ

p
∑

j=1

β2
j ,

where λ and µ are two positive tuning parameters.

4.2 Numerical experiments on simulated datasets

We have used five different simulated datasets, chosen as follows:

1. Example 1 (sparse uncorrelated design) corresponds to an uncorrelated covariate setting
(ρ = 0), with p = 10 predictors and where the components of xi (i = 1, . . . , 10) are iid N1(0, 1)
realizations. The response is simulated as

y ∼ Nn(2 + x2 + 2x3 − 2x6 − 1.5x7, In) .

2. Example 2 (sparse correlated design) corresponds to a correlated case (ρ = 0.9), with
p = 10 predictors and xi = (zi + 3z11)/

√
10, for i = 1, 2, xi = (zi + 3z12)/

√
10, for i = 3, 4, 5,

and xi = (zi + 3z13)/
√
10 for i = 6, . . . , 10, the components of zi (i = 1, . . . , 13) being iid

N1(0, 1) realizations. The use of common terms in the xi’s obviously induces a correlation
among those xi’s: the correlation between variables x1 and x2 is 0.9, as for the variables (x3,
x4 and x5), and for the variables (x6, x7, x8, x9 and x10). There is no correlation between
those three groups of variables. The response is simulated as

y ∼ Nn(2 + x2 + 2x3 − 2x6 − 1.5x7, In) .

3. Example 3 (sparse noisy correlated design) involves p = 8 predictors. Those variables
are generated using a multivariate Gaussian distribution with correlations

ρ(xi,xj) = 0.5|i−j| .

The response is simulated as

y ∼ Nn(3x1 + 1.5x2 + 2x5, 9In) .

4. Example 4 (saturated noisy correlated design) is the same as Example 3, except that
the response is simulated as

y ∼ Nn

(

0.85

8
∑

i=1

xi, 9In

)

.

5. Example 5 (saturated correlated design) is the same as Example 4, except that the
response is simulated as

y ∼ Nn

(

0.85

8
∑

i=1

xi, In

)

.
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Each dataset consists of a training set of size n = 15, on which the regression model has been
fitted and a test set T of size nT = 200 for assessing the performances. Tuning parameters in the
Lasso, the Dantzig selector (DZ), and the elastic net (ENET) have been selected by minimizing
the cross-validation prediction error through leave-one-out. For each example, 100 independent
datasets have been simulated. We use three measures for performances:

1. The root mean squared error (MSE)

MSEy =
√

∑nT

i=1(yi − ŷi)2
/

nT ,

ŷi being the prediction of yi in the test set;

2. HITS: the number of correctly identified influential variables;

3. FP (False Positives): the number of non-influential variables declared as influential.

Using those five different datasets, we compare the variable selection methods listed in Table 1.
The results of those different methods are summarized in Tables 2–6. In the Bayesian approach,
the set of variables is selected according to the maximum posterior probability π(γ|X,y) and the
predictive is obtained via the Bayesian model averaging predictor of (3). Note that we also ran a
test about the modified behavior of our approach (NIMS, which stands for non-informative mixture
selection) when the response variable is drifted by 20, i.e. using y+20 instead of y. As we expected,
a change in the location of the response does not affect at all the statistical performances of the
analysis obtained with our approach.

AIC Akaike Information Criterion
BIC Bayesian Information Criterion

BRIC g prior with g = max(n, p2)
EB-L Local EB estimate of g in g-prior
EB-G Global EB estimate of g in g-prior
ZS-N Base model in Bayes factor taken as the null model (Liang et al., 2008)
ZS-F Base model in Bayes factor taken as the full model (Liang et al., 2008)
HG-3 Hyper-g prior with a = 3 (Liang et al., 2008)
HG-4 Hyper-g prior with a = 4 (Liang et al., 2008)

NIMS Our proposal based on the non-invariant model

LASSO Lasso (Tibshirani, 1996)
DZ The Dantzig Selector (Candes and Tao, 2007)
ENET The elastic-net (Zou and Hastie, 2005)

Table 1: Accronyms used for the variable selection methods.

The Bayesian procedures are clearly much more parsimonious than the regularization proce-
dures in that they almost always avoid overfitting. (Tables corresponding to Examples 1, 3–5 for
the performances are not reproduced in this paper since they either exhibit a constant number of
hits or a quasi-constant MSE. In all examples, the false positive rate FP is zero for all Bayesian
solutions and positive for regularization methods.). Except for the ZS-F scenario which behaves
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slightly worse than the others, all the Bayesian procedures tested here produce the same selec-
tion of predictors. From a predictive viewpoint, Bayesian approaches also perform better than
regularization approaches except for the noisy example (Example 4). We further note that the
classical selection procedures based on AIC and BIC do not easily reject variables and are thus
slightly worse than Bayesian and regularization procedures (which is not surprising for AIC). In all
examples but the noisy one, the NIMS approach leads to optimal performances in that it selects
the right covariates and only the right covariates, while achieving close to the minimal root mean
squared error compared with all the other Bayesian solutions we considered. It also does almost
systematically better than BIC and AIC. The case of Example 4 is rather extreme due to the large
noise factor, but the standard regularization procedures manage to reduce the MSE in this case by
close to 10% compared with the Bayesian procedures.

A global remark is that all Bayesian procedures have a very similar MSE and thus that they
all correspond to the same regularization effect, except for ZS-F which does systematically worse.
Obviously, the examples are such that no (Bayesian) procedure performs very poorly compared
with the others. Even Steel’s simple BRIC stands its ground against the more elaborate alter-
natives, including the extreme Example 4. Note that Example 5 whose results are not reported
here brings no leeway for comparing those Bayesian procedures among themselves because almost
systematically all procedures include all variables.

Variables 1 2 3 4 5 6 7 8 9 10

AIC 0.19 1 1 0.28 0.19 1 1 0.21 0.23 0.18
BIC 0.11 1 1 0.14 0.05 1 1 0.07 0.05 0.04

BRIC 0.03 1 1 0.05 0.02 1 1 0.02 0.01 0.01
EB-L 0.03 1 1 0.05 0.02 1 1 0.03 0.01 0.01
EB-G 0.03 1 1 0.05 0.02 1 1 0.03 0.01 0.01
ZS-N 0.03 1 1 0.05 0.02 1 1 0.03 0.01 0.01
ZS-F 0.12 1 1 0.20 0.10 1 1 0.12 0.10 0.10
HG-3 0.03 1 1 0.04 0.02 1 1 0.03 0.01 0.01
HG-4 0.03 1 1 0.05 0.02 1 1 0.03 0.01 0.01

NIMS 0.03 1 1 0.04 0.01 1 1 0.02 0.01 0.01

LASSO 0.49 1 1 0.64 0.53 1 1 0.52 0.56 0.53
DZ 0.25 0.99 1 0.29 0.21 1 1 0.25 0.25 0.24
ENET 0.61 1 1 0.64 0.49 1 1 0.55 0.54 0.56

Table 2: Example 1: Relative frequencies of selections of the variables

4.3 Real datasets

The two datasets that we consider in this section are associated with a moderate number of variables
against the number of observations.

Body fat dataset The body fat dataset has been first used by Penrose et al. (1985). The
corresponding study aims at estimating the percentage of body fat from various body circumference
measurements observed on 252 men. The thirteen regressor variables are:
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MSEy HITS FP

AIC 1.10 4 1
BIC 1.08 4 0

BRIC 1.04 4 0
EB-L 1.04 4 0
EB-G 1.04 4 0
ZS-N 1.04 4 0
ZS-F 1.06 4 1
HG-3 1.04 4 0
HG-4 1.04 4 0

NIMS 1.07 4 0

LASSO 1.10 4 3
DZ 1.13 4 5
ENET 1.12 4 3

Table 3: Example 2: performances as MSE, HITS and FP

Variables 1 2 3 4 5 6 7 8 9 10

AIC 0.16 1 1 0.17 0.27 1 1 0.28 0.21 0.21
BIC 0.08 1 1 0.06 0.08 1 1 0.12 0.07 0.07

BRIC 0 1 1 0 0 1 1 0 0 0
EB-L 0.01 1 1 0 0.02 1 1 0.02 0.01 0.03
EB-G 0.01 1 1 0 0.02 1 1 0.02 0.01 0.03
ZS-N 0.01 1 1 0 0.02 1 1 0.02 0 0.03
ZS-F 0.10 1 1 0.08 0.13 1 1 0.19 0.13 0.10
HG-3 0.01 1 1 0 0.02 1 1 0.02 0 0.03
HG-4 0.01 1 1 0 0.02 1 1 0.02 0 0.03

NIMS 0.01 1 1 0 0.02 1 1 0.02 0.01 0.03

LASSO 0.55 1 1 0.57 0.53 1 1 0.59 0.53 0.52
DZ 0.81 1 1 0.77 0.79 1 1 0.86 0.75 0.78
ENET 0.59 1 1 0.62 0.56 1 1 0.57 0.58 0.58

Table 4: Example 2: Relative frequencies of selections of the variables
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Variables 1 2 3 4 5 6 7 8

AIC 1 0.92 0.11 0.20 0.98 0.22 0.15 0.26
BIC 1 0.84 0.06 0.07 0.96 0.10 0.07 0.11

BRIC 1 0.80 0.05 0.04 0.96 0.06 0.05 0.07
EB-L 1 0.83 0.05 0.06 0.96 0.08 0.06 0.12
EB-G 1 0.84 0.05 0.06 0.97 0.08 0.07 0.13
ZS-N 1 0.82 0.05 0.05 0.96 0.07 0.06 0.10
ZS-F 1 0.88 0.08 0.10 0.97 0.14 0.08 0.17
HG-3 1 0.83 0.05 0.06 0.96 0.08 0.06 0.11
HG-4 1 0.84 0.05 0.06 0.97 0.09 0.07 0.12

NIMS 1 0.83 0.05 0.05 0.96 0.08 0.06 0.12

LASSO 1 0.99 0.34 0.40 1 0.46 0.35 0.44
DZ 1 0.98 0.23 0.32 0.99 0.28 0.18 0.25
ENET 1 0.99 0.47 0.42 0.98 0.45 0.30 0.37

Table 5: Example 3: Relative frequencies of selections of the variables

Variables 1 2 3 4 5 6 7 8

AIC 0.66 0.59 0.62 0.63 0.69 0.58 0.61 0.59
BIC 0.49 0.39 0.50 0.46 0.48 0.44 0.54 0.36

BRIC 0.48 0.36 0.51 0.43 0.48 0.39 0.54 0.33
EB-L 0.49 0.43 0.52 0.50 0.49 0.46 0.54 0.39
EB-G 0.52 0.45 0.52 0.51 0.50 0.47 0.55 0.40
ZS-N 0.49 0.41 0.51 0.47 0.49 0.44 0.55 0.38
ZS-F 0.54 0.47 0.52 0.56 0.50 0.49 0.57 0.42
HG-3 0.49 0.43 0.52 0.49 0.49 0.46 0.54 0.39
HG-4 0.52 0.45 0.52 0.51 0.50 0.47 0.55 0.40

NIMS 0.49 0.43 0.52 0.50 0.49 0.46 0.54 0.39

LASSO 0.91 0.86 0.90 0.93 0.94 0.86 0.87 0.79
DZ 0.78 0.80 0.87 0.89 0.88 0.80 0.88 0.69
ENET 0.86 0.90 0.94 0.96 0.92 0.92 0.92 0.81

Table 6: Example 4: Relative frequencies of selection of the variables
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1. age,

2. weight (lbs),

3. height (inches),

4. neck circumference,

5. chest circumference,

6. abdomen 2 circumference,

7. hip circumference,

8. thigh circumference,

9. knee circumference,

10. ankle circumference,

11. biceps (extended) circumference,

12. forearm circumference,

13. wrist circumference.

In order to investigate the performances of the different methods, the Penrose et al. (1985)
dataset has been split 25 times into a training set of 151 observations and a test set of 101 observa-
tions. Tuning parameter for the frequentist regularization methods have been chosen by minimizing
the (ten fold) cross-validated prediction error.

For this dataset, the Bayesian procedures we investigated are much more parsimonious than the
standard regularization procedures, as shown in Table 7. There is no variability in the prediction
MSE but regularization procedures require about twice to three times as many covariates to achieve
this goal, being much less parsimonious than AIC. (We stress that the MSE is computed by model
averaging for the Bayesian procedures.) As in the simulation experiment, all Bayesian approaches
are highly similar, except for ZS-F which remains more open to incorporating the last two covariates.

Ozone data This second benchmark dataset is used in Marin and Robert (2007) and consists
of daily measurements of the maximum ozone concentration and of eight meteorological variables
near Los Angeles. Those variables are

1. the daily ozone concentration (maximum one hour average, parts per million) at Upland, CA
which is the response variable;

2. the Vandenburg 500 millibar pressure height (m);

3. the wind speed (mph) at Los Angeles International Airport (LAX);

4. the humidity (percent) at LAX;

5. the Sandburg Air Force Base temperature (F o);
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MSEy Median number
of selected variables

AIC 4.58 6
BIC 4.60 4

BRIC 4.51 3
EB-L 4.52 3
EB-G 4.52 4
ZS-N 4.52 3
ZS-F 4.49 4
HG-3 4.54 3
HG-4 4.56 3

NIMS 4.50 2

LASSO 4.54 8
DZ 4.51 11
ENET 4.54 9

Table 7: Body fat dataset: MSE and median number of selected variables

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13

AIC 0.44 0.84 0.16 0.64 0.04 1.00 0.20 0.16 0.08 0.16 0.44 0.80 0.88
BIC 0.08 0.84 0.08 0.32 0.00 1.00 0.12 0.08 0.04 0.00 0.16 0.28 0.40

BRIC 0.08 0.84 0.08 0.32 0.00 1.00 0.12 0.08 0.04 0.00 0.16 0.24 0.40
EB-L 0.08 0.84 0.08 0.32 0.00 1.00 0.12 0.08 0.04 0.00 0.16 0.28 0.40
EB-G 0.08 0.88 0.08 0.36 0.00 1.00 0.08 0.08 0.04 0.00 0.20 0.36 0.40
ZS-N 0.08 0.84 0.08 0.32 0.00 1.00 0.12 0.08 0.04 0.00 0.16 0.24 0.40
ZS-F 0.20 0.84 0.12 0.40 0.00 1.00 0.12 0.12 0.08 0.04 0.24 0.60 0.68
HG-3 0.08 0.84 0.08 0.32 0.00 1.00 0.12 0.08 0.04 0.00 0.16 0.28 0.40
HG-4 0.08 0.88 0.08 0.32 0.00 1.00 0.08 0.08 0.04 0.00 0.16 0.36 0.40

NIMS 0.04 0.88 0.04 0.08 0.00 1.00 0.04 0.08 0.04 0.00 0.04 0.04 0.12

LASSO 1 0.28 1.00 0.88 0.24 1.00 0.44 0.52 0.28 0.56 0.68 0.84 1.00
DZ 1 0.80 1.00 0.88 0.60 1.00 0.80 0.72 0.40 0.88 0.92 0.88 0.96
ENET 1 0.40 1.00 0.80 0.28 1.00 0.40 0.64 0.44 0.64 0.68 0.84 1.00

Table 8: Body fat dataset: relative frequencies of selections of the variables over the 25 random
splits
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6. the inversion base height at LAX;

7. the inversion base temperature at LAX;

8. the Daggett Pressure gradient (mm Hg) from LAX to Daggett, CA;

9. the visibility (miles) at LAX.

For this dataset, as shown by Table 9, all Bayesian approaches, as well as AIC and BIC, select four
variables, except for our NIMS solution which only selects three variables, while the regularization
methods opt for five. The minimal MSE is also obtained when using NIMS, but the difference
between all procedures is negligible. (This lack of significant differences in the MSEs is also exhibited
through the boxplots of Figure 1.)

Variables 1 2 3 4 5 6 7 8

AIC 5 3 24 25 14 2 11 4
BIC 1 0 24 25 15 0 9 1

BRIC 1 0 24 25 15 0 10 1
EB-L 1 0 24 25 15 0 9 1
EB-G 1 0 24 25 15 0 9 1
ZS-N 1 0 24 25 15 0 9 1
ZS-F 1 2 23 25 15 0 10 2
HG-3 1 0 24 25 15 0 9 1
HG-4 1 0 24 25 15 0 9 1

NIMS 1 0 24 25 15 0 8 1

LASSO 0 0 25 25 25 0 25 25
DZ 0 0 25 25 25 0 25 25
ENET 0 0 25 25 25 0 25 25

Table 9: Ozone dataset: relative frequencies of selections of the variables over the 25 random splits

5 Conclusion

We have shown in this study that an objective Bayesian solution is available for Bayesian variable
selection and regularization in linear models. When compared with earlier Bayesian approaches, our
approach requires no calibration whatsoever on the prior derivation. While this is not a justification
per se, we have also shown through a series of examples that NIMS performs as well than the
Bayesian alternatives, with a slight tendency to select less variables, and that it mostly overrides the
performances of standard regularization tools. Those exhibited here a marked tendency to choose
more variables than both Bayesian variable selection methods and standard penalized likelihood
criteria such AIC and BIC without leading to a sensitive decrease in the predictive MSE, due to
the model averaging.

A limitation of this study on our objective Bayesian approach is that we do not consider large
dimensions as in Bottolo and Richardson (2010), which require different computational tools to
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face the enormous number of potential models. This difficulty is obviously faced by all Bayesian
solutions considered in this paper and not an issue in terms of the validity of the prior modelling.
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Figure 1: Body fat and Ozone datasets: variability of the median test root mean squared errors
over 25 random splits for BIC, NIMS, LASSO and ENET methods.
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