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An identity of Jack polynomials
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Abstract
In this work it is propose an alterative proof of one of basic properties of the zonal
polynomials. This identity is generalised for the Jack polynomials.

1 Introduction

Many results in multivariate distribution theory have been obtained using zonal and invari-
ant polynomials. Moreover, these results, in their final version, have been derived in very
compact form, using hypergeometric functions with one or two matrix arguments, see Con-
stantine [4], James [14], Chikuse and Davis [3], Davis [5] and Muirhead [17], among many
others.

Many of these results obtained in the real case have also been studied with respect to
complex, quaternion and octonion cases, see James [14], Li and Xue [16] and Forrester 9],
and although many properties of real and complex zonal polynomials have been extended
to the quaternion and octonion cases, many others remain unstudied.

In this paper, we are interested in particular in the basic property of real zonal polynomi-
als, examined in James [13, Theorem 5, eq. (27)] (see also James ﬂj, eq. (22)]), and proved
by James ], in terms of group representation theory. This property plays a fundamental
role in the context of matrix multivariate elliptical distributions and specifically in that of
related noncentral matrix multivariate distributions, such as generalised noncentral Wishart
and beta distributions, and also in the context of generalised shape theory, see Diaz-Garcia
and Gonzélez-Farfas [7], Diaz-Garcia and Gutiérrez-Jaimez [6] and Caro-Lopera et al. [2].

Section 2] proposes an alternative proof of one of the basic properties of zonal polynomials
established by James [13, Theorem 5, eq. (27)] (see also James [14, eq. (22)]). The proof is
given in terms of the results in Herz ﬂﬂ] and Constantine M], and as the main result, this
property is generalised for real normed division algebras.
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2 Main result

A detailed discussion of real normed division algebras may be found in Baez [1] and Gross
and Richards [10], and of Jack polynomials and hypergeometric functions in Sawyer [1§],
Gross and Richards [10] and Koev and Edelman [15]. For convenience, we shall introduce
some notations, although in general we adhere to standard notations.

There are exactly four real finite-dimensional normed division algebras: real numbers,
complex numbers, quaternions and octonions, these being denoted generically as §, see Baez
[1]. All division algebras have a real dimension of 1,2, 4 or 8, respectively, whose dimension
is denoted by 8, see Baez |1, Theorems 1, 2 and 3].

Let Lﬁl_’n be the linear space of all n x m matrices of rank m < n over § with m distinct

positive singular values, where § denotes a real finite-dimensional normed division algebra.
Let %™ be the set of all n x m matrices over §, and let A € F"*™. Then A* = XT
denotes the usual conjugate transpose.

The set of matrices H; € §*™ such that H{H; = I,, is a manifold denoted Vﬁm,
termed the Stiefel manifold. In particular, Vvémn’ is the maximal compact subgroup {4” (m)

of Egl_’m and consists of all matrices H € §™*™ such that H*H =1,,,. If H; € Vﬁl_’n then

(HijdH,) = A\ /\ hjdh.

i=1 j=i+1

where H = (H;|Hz) = (hy,...,hy|hyi1,. .., hy,) € 45 (m). The surface area or volume of
the Stiefel manifold V7, , is

2mﬂ.mn,8/2

= T .

Vol(V5 ) = / (HjdH;)
’ H, evffl,n

where I'? [a] denotes the multivariate Gamma function for the space of hermitian matrices,
see Gross and Richards [10].

Let C?(B) be the Jack polynomials of B = B*, corresponding to the partition x =
(k1,...kp) of ky, k1 > - > ky, > 0 with >." | k; = k, see Sawyer [18] and Koev and
Edelman [15]. In addition,
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defines the hypergeometric function with one matrix argument on the space of hermitian
matrices, where [a]? denotes the generalised Pochhammer symbol of weight &, defined as

m

[aly = T[(a = (i = 1)B/2)1,

i=1

where R(a) > (m — 1)8/2 — ky, and (a); = a(a+1)---(a+1i — 1), see Gross and Richards
[10], Koev and Edelman [15] and Diaz-Garcia [g].

Now, we clarify an apparent discrepancy between the results obtained by the different
approaches. From Muirhead |17, Lemma 9.5.3, p. 397], it is easy to see that equality (3.5%),
proved via a Laplace transform by Herz [11, p. 494], and equality (27) in James [14], proved
via group representation theory by James [13, Theorem 5], coincide.

Then, from James |13, eq. (27)] (see also James [14, eq. (22)]) we have the following.



Lemma 2.1. If X € £} then
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Proof. From Herz |11, eq. (3.5"), p. 494], and expanding in series of powers

m,n

oF}(n/2,XX*/4) = /H . etr{XH, }(dH;)

m,n

Z o /HEVM (tr(XHy))* (dH,).

Recalling that if one or more parts ki, ..., km of partition k is odd, then
/ (tr(XHy))"(dH;) =
HeVy!

see James [12] and James |14]. Therefore

o0

Pl /2. XX ) = 30
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W/HV (tr(XH;))%* (dH,). (3)
0 . = 1

Now, by the definition of hypergeometric functions with one matrix argument in terms of
zonal polynomials, we have (see Constantine [4]),

1 CLXX*/4)

oF ! (n/2,XX*/4) = ,;); R n . (4)
Then, equalling and comparing term-by-term the series on the right side of @) and ) we
obtain 01 (XX /4)
1 ¥ 1
i = tr(XH;))?* (dH;).
R T ey, TOKED)
Finally, observing that 4%(1/2)x/(2k)! = 1/k! and that C}(aB) = a*C}(B), the desired
result is obtained. O O

Property (@) was also proved in an alternative way by Takemura [19, Lemma 1, p. 40],
for the real case. Now, under our approach, property (2)) is easily extended to the Jack
polynomial case for real normed division algebras.

Theorem 2.1. Let X € 2 then

()
(tr(XH;y))** (dH, ) = 2k OB (XXY). (5)
/Hlevz,n 2 ol
Proof. Observe that by Gross and Richards [10] and Koev and Edelman [15],

. 1 CP(XX*/4)
oFY (Bn/2, XX /4) = kZOZ RTINS

and by Diaz-Garcia [g],
oFP (Bn/2,XX* /4) = / etr{XH; }(dH,),
H,eVs

whose equality was found by James [14], for the complex case, and by Li and Xue [16],
for the quaternion case. Then, the desired result is obtained following the proof of Lemma
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