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On the extension of trace norm to tensors

Ryota Tomioka, Kohei Hayashi, and Hisashi Kashima

Abstract

In this paper, we propose three extensions of trace nornhé&minimization of tensor rank via convex
optimization. The alternating direction method of mulips$ is used to efficiently solve the optimization
problems. One of the proposed extensions recovers pgrobkerved tensor almost perfectly from a

small fraction of observations.

. INTRODUCTION

Higher order tensor decompositions have recently beernestilstensively motivated by their usefulness
in various fields including chemometrics, neuroimagingd gnaph analysis [1]. Tensor decomposition
methods aim to separate the factors spanning each modilitgioen tensor and the interactions among
the factors. The smaller the number of factors or the smtlEenumber of interactions, the more compact
and succinct the decomposition is.

Matrix completion, or matrix estimation, has recently witsed a great advance driven by powerful
theory [2], [3] from compressed sensing and tools from crragimization [4].

In this paper, we consider the problem of tensor complet@nmore generally tensor estimation,
which aims to recover an unknown tensor from partial (no@ly¥ervations under the assumption that
the underlying tensor admits a compact decomposition. $kiting obviously includes the case of
decomposing a fully observed tensor.

The aim of this paper is to extend the trace norm, which is adkegponent in matrix completion via
convex optimization, for the tensor completion problem.

In the next section, we first review the matrix rank and itaatieh to the trace norm. Then we
review the definition of tensok-rank, which suggests that a low rank tenssra low rank matrix

when appropriately unfolded. In Séc.lll, we propose thrppr@aches to extend the trace norm for the
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estimation of low-rank tensors. In Séc.]IV, we show that tipdinoization problems associated to the
proposed extensions can be solved by the alternating ineatethod of multipliers. In Se¢. 1V, we
show through numerical experiments that one of the propappdoaches can recover a partly observed
low-rank tensor almost perfectly from smaller fraction diservations compared to the conventional
EM-based Tucker decomposition algorithm. The proposedrdifign shows a sharp threshold behaviour
from a poor fit to a nearly perfect fit; we numerically show tttad fraction of samples at the threshold
is roughly proportional to the sum of theranks of the underlying tensor when the tensor dimension is

fixed. Finally we summarize the paper in Secl VI

[I. LOw RANK MATRIX AND TENSOR
A. Rank of a matrix and the trace norm

The rankr of an R x C' matrix X is defined via the singular-value decomposition (SVD)
X = Udiag(01(X),02(X),...,0n(X))V ",

whereU € RF*™ andV € R¢*" are orthogonal matrices, and (X)) is the jth largest singular-value
of X. The matrixX is calledlow-rank if the rankr is less thammin(R, C'). Unfortunately, the rank of
a matrix is a nonconvex function, and the direct minimizatad the rank is an NP-hard problem.

The trace norm is known to be the tightest convex lower bounehatrix rank [3] and is defined as

the linear sum of singular values as follows:
s
|X1l = 3" 0y(X).
j=1

The trace norm allows us to estimate low-rank matrices viavewr optimization with a theoretical
guaranteel]?2]. Intuitively, the trace norm plays the roletw ¢1-norm in the subset selection problem,

for the estimation of low-rank matrices.

B. Rank of a tensor

We consider thé-rank of tensors, which is a direct generalization of thevabaefinition of the matrix
rank; seel[ll] for other definitions of tensor rank.

The k-rank of an Kth-order tensorX’, denotedranky(X), is defined as the rank of the mode-
unfolding X ;) of X. The tensorX’ is called low-rank if any of its unfoldings is a low-rank miatr

A rank<(ry,...,7k,...,rx) tensorX of dimensionsn; x --- X nx can be written as

X=Gx1 U xoUy--- xg Uk,
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where x, denotes thé-mode matrix producig € R™**"« js called thecore tensor, andU ;, € R™+*"*
(n = 1,...,K) are left singular-vectors from the SVD of the moklainfolding of X. The above
decomposition is called the Tucker decomposition [1].

Since the core tens@ that corresponds to singular-values in the matrix casetigliagonal in general,

it is not straightforward to generalize the trace norm fromtnces to tensors.

[1l. THREE STRATEGIES TO EXTEND THE TRACENORM REGULARIZATION TO TENSORS

In this section, we first consider a given tensor as a matrik@onpose to minimize the trace norm of
one of its unfoldings. Next, we extend this to the minimiaatof the weighted sum of the trace norms
of the unfoldings. Finally, relaxing the condition that tte:sor isjointly low-rank in every mode in the

second approach, we propose a mixture approach.

A. Tensor as a matrix

The definition of a low-rank tensor in the previous sectiopligs that a low-rank tensas a low-rank
matrix when unfolded appropriately.

Therefore, for the reconstruction of partly observed tense can solve the following problem:

1
Jinimize S QX) = ylF + 1 X g s, 1)

where X ;) is the modek unfolding of X', y € RM s the vector of observations, afil: R™ > *nx
RM is a linear operator that reshapes the prespecified (pgssibllapping) elements of the input tensor
into an M dimensional vectorj\/ is the number of observations.

Since the estimation proceduid (1) is essentially an estmaf a low-rank matrixX ,, we know
that O(ﬁ2/5rk log(ng)) samples are enough to perfectly recover the unknown trusoteX’™, where
ri = rankg(X*) andng = max(nk,Hk,?ék ng), if the rankry is not too high [[2].

Note that when we can estimate the mddenfolding of X* perfectly, we can also recover the whole
X" perfectly, including the ranks of the modes we did not useénduthe estimation.

However, the success of the above procedure is conditionegtiedochoice of the mode to unfold the
tensor. If we choose a mode with a large rank, even if thereottrer modes with smaller ranks, we

cannot hope to recover the tensor from a small number of sEnpl
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B. Constrained optimization of low rank tensors

In order to exploit the rank deficiency of more than one motée hatural to consider the following

extension of the estimation proceduré (1)

K
1
Jhinimize o [|Q(X) — y] +l;%|! il

This is a convex optimization problem, because it can bermaitated as follows:

K
L 1 2
mipimige o[ Q@ — y| "’kz_l’VkHZkH*a )
subjectto Prx=z;, (k=1,...,K), 3)

wherex € RY is the vectorization oft (N = Hszl ny), P} is the matrix representation of mode-
unfolding (note thatP}, is a permutation matrix; thu®;, ' P, = Iy), Z; € R™>N/" is a matrix of
the same size as the mo#lainfolding of X', and z;, is the vectorization ofZ,. With a slight abuse of
notationQ € RM*N denotes the observation operator as a matrix.

This approach was considered earlier[in [5], but they ralatke constraintd {3) into penalty terms,

which is more similar to the approach we discuss in the nelssaction.

C. Mixture of low-rank tensors

The optimization problem{2) considers every mode of thesdeX’ to be jointly low-rank, which
might be too strict to be satisfied in practice. Thus we prepospredict instead with a mixture df
tensors; each mixture component is regularized by the tnacm to be low-rank in each mode. More
specifically, we solve the following minimization problem:

o 1 K T
n%mlmzlze 2 HQ <Zk:1 P, zk> -y

Lyes 4K

s K
)l Zk - (4)
k=1

Note that whenr = P} "z for all k = 1,..., K, the problem[{4) reduces to the problelm (2) with

Y = K.

IV. OPTIMIZATION

In this section, we describe the optimization algorithmsdahon the alternating direction method of

multipliers [6] (also known as the split Bregman iteratifj) [for the problems[{1)[{2), andl(4).
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A. Optimization of problem ()

We consider the following constrained reformulation of greblem [(1)

1 .
minimize [ Q - yl|? + |Z]l«, subjectto Pz = z. (5)

x,Z
The augmented Lagrangian (AL) function of the above coimstthminimization problem can be written

as follows:
1
Ly(x,Z,A) = ﬁ\lﬂm —ylP+1Z]s + a" (Prx — 2) + gIIPkw - z|%,

wherex € RY is a vectorization of¥, Z € R%*N/dx js an auxiliary variable that corresponds to the
mode# unfolding of X, andz € RY is the vectorization ofZ; o € RY is the Lagrangian multiplier
vector that corresponds to the constralfitx = z. Note that the AL function reduces to the ordinary
Lagrangian ifn = 0.

Starting from an initial point(z®, Z°, a°), the alternating direction method of multipliers for the

problem [(5) performs the following steps:

!t = argmin Ly(x, Z' o), (6)
X

Z'! = argmin Ln(a:tﬂ, Z,a), @)
z

at-l—l — ot +T](Pk$t+1 _ zt-i—l). (8)

All the above steps can be implemented in closed forms., Firstimization with respect te: yields,
2 = (QTy + AP (12 — ) /(Lo + ML),

wherelg is an N-dimensional vector that has one for observed elements aermdatherwisel y is an
N-dimensional vector filled with ones; denotes element-wise division. Note that wher- 0 (zero
training error), the above expression reduces to
(QTy)H (RS Q>
ot = ’ (i=1,...,N). ©)
(PrT (2" —a'/n)i, i¢Q

Next, the minimization with respect t& yields,
Zr = prox‘ir/n (Pj$t+1 + at/n) ,

Whel’eprox'ir/n is the proximity operator with respect to the trace norm andéfined as follows (see

[8]):

prox¥(z) :== Umax(S — \,0)V ',
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whereZ = USVT is the SVD of the matrixZ obtained by appropriately rearranging the elements of
z.

The KKT condition for the probleni{5) can be written as follaw

1
XQT Qz—y)+ P, a=0, (10)
Pyx—2z=0, (11)

acd|Z|.. (12)

Note that from the update equatiofs$ (7) and (8), the thirdlitimm (12) is automatically satisfied. There-
fore, we monitor the first two conditions (1@)-{11) and stbp algorithm when the norffQ " (Qx!+! —

yY)/A+ P o't and||Pratt! — 2+ || both fall below some tolerance, sag—3.

B. Optimization of problem (2)-(3)

The AL function of the constrained minimization probleln-(@@) can be written as follows:

K

1
Ly(®, {Z1}iey, {an}iey) = o 192 — yl?+ > (%HZkH* + oy (Pr — 21) + gHPkm - ZkH2> :
k=1

Starting from an initial point(z?, {Z{}< |, {al}E ), we take exactly the same steps as[ih [6)-(8)

except that the last two steps are performed forka# 1,..., K. That is,
xi Tt = <9Ty + A ZZ(:I P, (nzl — a%)) J(1ag + \K1y), (13)
ZiH = prox | (Pra't! + af/n) (k=1,...,K), (14)
al = af +n(Prz'™ -2 (k=1,...,K). (15)

The KKT condition for the probleni{2)-[3) can be written afidas:

LT K T
XQ (Qx —y) + Zk:l P o, =0, (16)
Prx—2,=0 (VE=1,...,K), @a7)

Note again that the third conditiop_(18) is automaticalltisfeed. Therefore, we stop the algorithm when
the errors| QT (Qz'*! — y) /A + S5, P Talt!| and maxy, || Pyt — 2471|| both fall below some

tolerance.
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C. Optimization for problem (4)

We consider the following dual problem dfl (4):
\ K
aERNITlViVI}kiéIIlRiEkeXN/"k §Ha|]2 —a'y+ ;5% (W}), subjectto w,=P,Q a (k=1,...,K),
(19)
wherea € RY is a dual vectorW;, ¢ R™*N/+ is an auxiliary variable that corresponds to the made-
unfolding of QT «, andw;, € RY is the vectorization oW ; the indicator functions, is defined as
(W) =0, if |[W] < A, andd)(W) = oo, otherwise, wherd| - || is the spectral norm (maximum
singular-value of a matrix).
The AL function for the problem(19) can be written as follows
K
Ly(a AW}y, {zr o) = %HGH2 —a'y+ > (%(Wk) +21, (P —wy) + gHPkQTa - wkl!2)
k=1
Similar to the previous two algorithms, we start from aniaipoint (a®, {W {1 {20} ), and

compute the following steps:
ot = argéﬂin Ly(c, AW N {1 1)
Wi = argmin Ly(a! Wi 3o, =4 o)
zfjl =z + (P ol — 'w?rl). (20)
The above steps can be computed in closed forms. In fact,

1 K K
altt = Nk <<y - Zk:l szf€> +nQ Zk:l P;Jwi) , (21)

W?l = proxfyr]: (PkQTaH_l + 2k /n), (22)

where the proximity operatgsrox!" is the projection onto a radius-spectral-norm ball, as follows:

proxy (w) := U min(S,\)V T,

whereW = USV'T is the SVD of the matricization of the input vectar. Moreover, combining the
two steps[(22) and (20), we have (see [8])

2t = proxfyrw (sz + nPkQTatH) ) (23)

Therefore, we can simply iterate steps](21) dnd (23).
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The KKT condition for the probleni{19) can be written as fal
K
Ve —y+ﬂzk:1Pszk =0, PQa-w,=0 (Vk=1,...,K),
zp € 004, (W) (Vk=1,...,K).

Again the last condition is automatically satisfied by s{8f){ thus we check the first two conditions

and terminate the algorithm when they are both below sonazaote.

V. NUMERICAL EXPERIMENTS

We randomly generated a rank-(7,8,9) tensor of dimensis@%50,20) by drawing the core from the
standard normal distribution and multiplying its each mdgean orthonormal factor randomly drawn
from the Haar measure. We randomly selected some elemettis true tensor for training and kept the
remaining elements for testing. We used the algorithmsriestin the previous section with the tolerance
10~3. We choosey;, = 1 for simplicity in the later two approaches. For the first twapeaches) — 0
(zero training error) was used; séé (9). For the last approge used\ = 0. The Tucker decomposition
algorithmt ucker in the N-way toolbox([9] is also included as a baseline, forolihwe used the correct
rank (“exact”) and the 20% higher rank (“large”). Note th#lt@oposed approaches can find the rank
automatically. The generalization error is defined as theasgtroot of the sum of squared differences
between the true and the estimated tensors over the unebdselements. For the “As a Matrix” strategy,
error for each mode is reported. The experiment was repddtennes and averaged.

Figure[1 shows the result of tensor completion using threstegfies we proposed above, as well
as the Tucker decomposition. The proposed “Constrainttaggh shows a sharp threshold behaviour
around 35% observation from a poor fit (generalization efrdy to an almost perfect fit (generalization
error~ 1073). The “As a Matrix” approach also show similar transitiom foode 1 and mode 2 (around
40%), and mode 3 (around 80%), but even the first transitialower than the “Constraint” approach.
The “Mixture” approach shows a transition around 70% sliglfiaster than the mode 3 in the “As
A Matrix” approach. Tucker shows early decrease in the g#ization error, but when the rank is
missspecified (“large”), the error remains almost consi&vgn when the correct rank is known (“exact”),
the convergence is slower than the proposed “Constraimgfageh.

We have further investigated the condition for the threghi@haviour using the proposed “Constraint”
approach. In Figuré]3, we can see that the fraction of obsengmrequired to perfectly recover an
unknown tensor is roughly proportional to the sum of the rahthe underlying tensor, where we define

the reconstruction to be perfect when the mean generalizatiror is less than 0.01.
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- = = As a Matrix (mode 1)
----- As a Matrix (mode 2)
—— As a Matrix (mode 3)
— Constraint

— Mixture

Tucker (large)

—— Tucker (exact)

- = = Optimization tolerance

Generalization error

| | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of observed elements

Fig. 1. Comparison of three strategies, tensor as a mathis @ Matrix”), constrained optimization (“Constraint”)na
mixture of low-rank tensors (“Mixture”). Also the Tucker cemposition with 20% higher rank (“large”) and with the ot
rank (“exact”) implemented in the N-way toolbox [9] are inded as baselines. The generalization error is plottechsigtie

fraction of observed elements of the underlying low-rankste. Also the tolerance of optimization0("®) is shown.

50 -
As a Matrix
= —— Constraint
— Mixture
40 .
—— Tucker (large)
— Tucker (exact)
30 .

20

Computation time (s)

0 | | | | | 1 #—
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of observed elements

Fig. 2. Comparison of computation times.

VI. SUMMARY

In this paper we have proposed three strategies to exterchtteenorm to tensor rank minimization, and
we have compared them on a simulated tensor completionggrobe have found that tensor completion
using the “Constraint” approach shows nearly perfect retrantion from only 35% observations. There is

no need to specify the rank of the decomposition as in theadional Tucker decomposition approach.
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Fig. 3. Fraction of observations at the threshold plottedirssg the sum of true ranks. Numbers in the brackets denete th

k-rank of the underlying tensor. The dimension of the tensq0,50,20).

The proposed approach shows a sharp threshold behaviowehdve found that the fraction of samples
at the threshold is roughly proportional to the sum of rankthe underlying tensor. Further analysis is

necessary to explain the threshold behaviour.
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