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On the extension of trace norm to tensors
Ryota Tomioka, Kohei Hayashi, and Hisashi Kashima

Abstract

In this paper, we propose three extensions of trace norm for the minimization of tensor rank via convex

optimization. The alternating direction method of multipliers is used to efficiently solve the optimization

problems. One of the proposed extensions recovers partially observed tensor almost perfectly from a

small fraction of observations.

I. INTRODUCTION

Higher order tensor decompositions have recently been studied intensively motivated by their usefulness

in various fields including chemometrics, neuroimaging, and graph analysis [1]. Tensor decomposition

methods aim to separate the factors spanning each modality of a given tensor and the interactions among

the factors. The smaller the number of factors or the smallerthe number of interactions, the more compact

and succinct the decomposition is.

Matrix completion, or matrix estimation, has recently witnessed a great advance driven by powerful

theory [2], [3] from compressed sensing and tools from convex optimization [4].

In this paper, we consider the problem of tensor completion,or more generally tensor estimation,

which aims to recover an unknown tensor from partial (noisy)observations under the assumption that

the underlying tensor admits a compact decomposition. Thissetting obviously includes the case of

decomposing a fully observed tensor.

The aim of this paper is to extend the trace norm, which is a keycomponent in matrix completion via

convex optimization, for the tensor completion problem.

In the next section, we first review the matrix rank and its relation to the trace norm. Then we

review the definition of tensork-rank, which suggests that a low rank tensoris a low rank matrix

when appropriately unfolded. In Sec. III, we propose three approaches to extend the trace norm for the
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estimation of low-rank tensors. In Sec. IV, we show that the optimization problems associated to the

proposed extensions can be solved by the alternating direction method of multipliers. In Sec. V, we

show through numerical experiments that one of the proposedapproaches can recover a partly observed

low-rank tensor almost perfectly from smaller fraction of observations compared to the conventional

EM-based Tucker decomposition algorithm. The proposed algorithm shows a sharp threshold behaviour

from a poor fit to a nearly perfect fit; we numerically show thatthe fraction of samples at the threshold

is roughly proportional to the sum of thek-ranks of the underlying tensor when the tensor dimension is

fixed. Finally we summarize the paper in Sec. VI

II. L OW RANK MATRIX AND TENSOR

A. Rank of a matrix and the trace norm

The rankr of anR× C matrix X is defined via the singular-value decomposition (SVD)

X = Udiag(σ1(X), σ2(X), . . . , σr(X))V ⊤,

whereU ∈ R
R×r andV ∈ R

C×r are orthogonal matrices, andσj(X) is the jth largest singular-value

of X. The matrixX is calledlow-rank if the rankr is less thanmin(R,C). Unfortunately, the rank of

a matrix is a nonconvex function, and the direct minimization of the rank is an NP-hard problem.

The trace norm is known to be the tightest convex lower bound of matrix rank [3] and is defined as

the linear sum of singular values as follows:

‖X‖∗ =

r
∑

j=1

σj(X).

The trace norm allows us to estimate low-rank matrices via convex optimization with a theoretical

guarantee [2]. Intuitively, the trace norm plays the role ofthe ℓ1-norm in the subset selection problem,

for the estimation of low-rank matrices.

B. Rank of a tensor

We consider thek-rank of tensors, which is a direct generalization of the above definition of the matrix

rank; see [1] for other definitions of tensor rank.

The k-rank of anKth-order tensorX , denotedrankk(X ), is defined as the rank of the mode-k

unfoldingX(k) of X . The tensorX is called low-rank if any of its unfoldings is a low-rank matrix.

A rank-(r1, . . . , rk, . . . , rK) tensorX of dimensionsn1 × · · · × nK can be written as

X = G ×1 U1 ×2 U2 · · · ×K UK ,
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where×k denotes thek-mode matrix product,G ∈ R
r1×···×rK is called thecore tensor, andUk ∈ R

nk×rk

(n = 1, . . . ,K) are left singular-vectors from the SVD of the mode-k unfolding of X . The above

decomposition is called the Tucker decomposition [1].

Since the core tensorG that corresponds to singular-values in the matrix case is not diagonal in general,

it is not straightforward to generalize the trace norm from matrices to tensors.

III. T HREE STRATEGIES TO EXTEND THE TRACE-NORM REGULARIZATION TO TENSORS

In this section, we first consider a given tensor as a matrix and propose to minimize the trace norm of

one of its unfoldings. Next, we extend this to the minimization of the weighted sum of the trace norms

of the unfoldings. Finally, relaxing the condition that thetensor isjointly low-rank in every mode in the

second approach, we propose a mixture approach.

A. Tensor as a matrix

The definition of a low-rank tensor in the previous section implies that a low-rank tensoris a low-rank

matrix when unfolded appropriately.

Therefore, for the reconstruction of partly observed tensor, we can solve the following problem:

minimize
X∈Rn1×···×nK

1

2λ
‖Ω(X )− y‖2 + ‖X(k)‖∗, (1)

whereX(k) is the mode-k unfolding ofX , y ∈ R
M is the vector of observations, andΩ : Rn1×···×nK →

R
M is a linear operator that reshapes the prespecified (possibly overlapping) elements of the input tensor

into anM dimensional vector;M is the number of observations.

Since the estimation procedure (1) is essentially an estimation of a low-rank matrixX(k), we know

that O(ñ
6/5
k rk log(ñk)) samples are enough to perfectly recover the unknown true tensor X ∗, where

rk = rankk(X
∗) and ñk = max(nk,

∏

k′ 6=k nk′), if the rankrk is not too high [2].

Note that when we can estimate the mode-k unfolding ofX ∗ perfectly, we can also recover the whole

X ∗ perfectly, including the ranks of the modes we did not use during the estimation.

However, the success of the above procedure is conditioned on the choice of the mode to unfold the

tensor. If we choose a mode with a large rank, even if there areother modes with smaller ranks, we

cannot hope to recover the tensor from a small number of samples.
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B. Constrained optimization of low rank tensors

In order to exploit the rank deficiency of more than one mode, it is natural to consider the following

extension of the estimation procedure (1)

minimize
X∈Rn1×···×nK

1

2λ
‖Ω(X )− y‖2 +

K
∑

k=1

γk‖X(k)‖∗.

This is a convex optimization problem, because it can be reformulated as follows:

minimize
x,Z1,...,ZK

1

2λ
‖Ωx− y‖2 +

K
∑

k=1

γk‖Zk‖∗, (2)

subject to P kx = zk (k = 1, . . . ,K), (3)

wherex ∈ R
N is the vectorization ofX (N =

∏K
k=1 nk), P k is the matrix representation of mode-k

unfolding (note thatP k is a permutation matrix; thusP k
⊤P k = IN ), Zk ∈ R

nk×N/nk is a matrix of

the same size as the mode-k unfolding ofX , andzk is the vectorization ofZk. With a slight abuse of

notationΩ ∈ R
M×N denotes the observation operator as a matrix.

This approach was considered earlier in [5], but they relaxed the constraints (3) into penalty terms,

which is more similar to the approach we discuss in the next subsection.

C. Mixture of low-rank tensors

The optimization problem (2) considers every mode of the tensor X to be jointly low-rank, which

might be too strict to be satisfied in practice. Thus we propose to predict instead with a mixture ofK

tensors; each mixture component is regularized by the tracenorm to be low-rank in each mode. More

specifically, we solve the following minimization problem:

minimize
Z1,...,ZK

1

2λ

∥

∥

∥

∥

Ω

(

∑K

k=1
P k

⊤zk

)

− y

∥

∥

∥

∥

2

+

K
∑

k=1

γk‖Zk‖∗. (4)

Note that whenx = 1
KP k

⊤zk for all k = 1, . . . ,K, the problem (4) reduces to the problem (2) with

γ′k = γkK.

IV. OPTIMIZATION

In this section, we describe the optimization algorithms based on the alternating direction method of

multipliers [6] (also known as the split Bregman iteration [7]) for the problems (1), (2), and (4).
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A. Optimization of problem (1)

We consider the following constrained reformulation of theproblem (1)

minimize
x,Z

1

2λ
‖Ωx− y‖2 + ‖Z‖∗, subject to P kx = z. (5)

The augmented Lagrangian (AL) function of the above constrained minimization problem can be written

as follows:

Lη(x,Z,A) =
1

2λ
‖Ωx− y‖2 + ‖Z‖∗ +α⊤(P kx− z) +

η

2
‖P kx− z‖2,

wherex ∈ R
N is a vectorization ofX , Z ∈ R

dk×N/dk is an auxiliary variable that corresponds to the

mode-k unfolding of X , andz ∈ R
N is the vectorization ofZ; α ∈ R

N is the Lagrangian multiplier

vector that corresponds to the constraintP kx = z. Note that the AL function reduces to the ordinary

Lagrangian ifη = 0.

Starting from an initial point(x0,Z0,α0), the alternating direction method of multipliers for the

problem (5) performs the following steps:

xt+1 = argmin
x

Lη(x,Z
t,αt), (6)

Zt+1 = argmin
Z

Lη(x
t+1,Z,αt), (7)

αt+1 = αt + η(P kx
t+1 − zt+1). (8)

All the above steps can be implemented in closed forms. First, minimization with respect tox yields,

xt+1 =
(

Ω
⊤y + λP k

⊤(ηzt −αt)
)

./(1Ω + λη1N ),

where1Ω is anN -dimensional vector that has one for observed elements and zero otherwise;1N is an

N -dimensional vector filled with ones;./ denotes element-wise division. Note that whenλ → 0 (zero

training error), the above expression reduces to

xt+1
i =











(Ω⊤y)i, i ∈ Ω,

(P k
⊤(zt −αt/η))i, i /∈ Ω

(i = 1, . . . , N). (9)

Next, the minimization with respect toZ yields,

Zt+1 = proxtr1/η
(

P jx
t+1 +αt/η

)

,

whereproxtr1/η is the proximity operator with respect to the trace norm and is defined as follows (see

[8]):

proxtrλ (z) := U max(S − λ, 0)V ⊤,
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whereZ = USV ⊤ is the SVD of the matrixZ obtained by appropriately rearranging the elements of

z.

The KKT condition for the problem (5) can be written as follows:

1

λ
Ω

⊤ (Ωx− y) + P k
⊤α = 0, (10)

P kx− z = 0, (11)

α ∈ ∂‖Z‖∗. (12)

Note that from the update equations (7) and (8), the third condition (12) is automatically satisfied. There-

fore, we monitor the first two conditions (10)-(11) and stop the algorithm when the norm‖Ω⊤(Ωxt+1−

y)/λ+ P k
⊤αt+1‖ and‖P kx

t+1 − zt+1‖ both fall below some tolerance, say10−3.

B. Optimization of problem (2)-(3)

The AL function of the constrained minimization problem (2)-(3) can be written as follows:

Lη(x, {Zk}
K
k=1, {αk}

K
k=1) =

1

2λ
‖Ωx− y‖2 +

K
∑

k=1

(

γk‖Zk‖∗ +αk
⊤(P kx− zk) +

η

2
‖P kx− zk‖

2
)

.

Starting from an initial point(x0, {Z0
k}

K
k=1, {α

0
k}

K
k=1), we take exactly the same steps as in (6)-(8)

except that the last two steps are performed for allk = 1, . . . ,K. That is,

xt+1 =

(

Ω
⊤y + λ

∑K

k=1
P k

⊤(ηzt
k −αt

k)

)

./(1Ω + ληK1N ), (13)

Zt+1
k = proxtrγk/η

(

P kx
t+1 +αt

k/η
)

(k = 1, . . . ,K), (14)

αt+1
k = αt

k + η(P kx
t+1 − zt+1) (k = 1, . . . ,K). (15)

The KKT condition for the problem (2)-(3) can be written as follows:

1

λ
Ω

⊤(Ωx− y) +
∑K

k=1
P k

⊤αk = 0, (16)

P kx− zk = 0 (∀k = 1, . . . ,K), (17)

αk ∈ γk∂‖Zk‖∗ (∀k = 1, . . . ,K). (18)

Note again that the third condition (18) is automatically satisfied. Therefore, we stop the algorithm when

the errors‖Ω⊤(Ωxt+1 − y)/λ +
∑K

k=1P k
⊤αt+1

k ‖ andmaxk ‖P kx
t+1 − zt+1

k ‖ both fall below some

tolerance.
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C. Optimization for problem (4)

We consider the following dual problem of (4):

minimize
α∈RN ,W k∈Rnk×N/nk

λ

2
‖α‖2 −α⊤y +

K
∑

k=1

δγk
(W k), subject to wk = P kΩ

⊤α (k = 1, . . . ,K),

(19)

whereα ∈ R
N is a dual vector;W k ∈ R

nk×N/nk is an auxiliary variable that corresponds to the mode-k

unfolding of Ω⊤α, andwk ∈ R
N is the vectorization ofW k; the indicator functionδλ is defined as

δλ(W ) = 0, if ‖W ‖ ≤ λ, andδλ(W ) = +∞, otherwise, where‖ · ‖ is the spectral norm (maximum

singular-value of a matrix).

The AL function for the problem (19) can be written as follows:

Lη(α, {W k}
K
k=1, {zk}

K
k=1) =

λ

2
‖α‖2 −α⊤y +

K
∑

k=1

(

δγk
(W k) + zk

⊤(P kΩ
⊤α−wk) +

η

2
‖P kΩ

⊤α−wk‖
2
)

Similar to the previous two algorithms, we start from an initial point (α0, {W 0
k}

K
k=1, {z

0
k}

K
k=1), and

compute the following steps:

αt+1 = argmin
α

Lη(α, {W t
k}

K
k=1, {z

t
k}

K
k=1)

W t+1
k = argmin

W k

Lη(α
t+1, {W k}

K
k=1, {z

t
k}

K
k=1)

zt+1
k = zt

k + η(P kΩ
⊤αt+1 −wt+1

k ). (20)

The above steps can be computed in closed forms. In fact,

αt+1 =
1

λ+ ηK

((

y −Ω

∑K

k=1
P kz

t
k

)

+ ηΩ
∑K

k=1
P k

⊤wt
k

)

, (21)

W t+1
k = proxtr

∗

γk
(P kΩ

⊤αt+1 + zt
k/η), (22)

where the proximity operatorproxtr
∗

λ is the projection onto a radiusλ-spectral-norm ball, as follows:

proxtr
∗

λ (w) := U min(S, λ)V ⊤,

whereW = USV ⊤ is the SVD of the matricization of the input vectorw. Moreover, combining the

two steps (22) and (20), we have (see [8])

zt+1
k = proxtrγkη

(

zt
k + ηP kΩ

⊤αt+1
)

. (23)

Therefore, we can simply iterate steps (21) and (23).
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The KKT condition for the problem (19) can be written as follows:

λα− y +Ω

∑K

k=1
P k

⊤zk = 0, P kΩ
⊤α−wk = 0 (∀k = 1, . . . ,K),

zk ∈ ∂δγk
(W k) (∀k = 1, . . . ,K).

Again the last condition is automatically satisfied by step (23); thus we check the first two conditions

and terminate the algorithm when they are both below some tolerance.

V. NUMERICAL EXPERIMENTS

We randomly generated a rank-(7,8,9) tensor of dimensions (50,50,20) by drawing the core from the

standard normal distribution and multiplying its each modeby an orthonormal factor randomly drawn

from the Haar measure. We randomly selected some elements ofthe true tensor for training and kept the

remaining elements for testing. We used the algorithms described in the previous section with the tolerance

10−3. We chooseγk = 1 for simplicity in the later two approaches. For the first two approaches,λ → 0

(zero training error) was used; see (9). For the last approach, we usedλ = 0. The Tucker decomposition

algorithmtucker in the N-way toolbox [9] is also included as a baseline, for which we used the correct

rank (“exact”) and the 20% higher rank (“large”). Note that all proposed approaches can find the rank

automatically. The generalization error is defined as the square-root of the sum of squared differences

between the true and the estimated tensors over the unobserved elements. For the “As a Matrix” strategy,

error for each mode is reported. The experiment was repeated10 times and averaged.

Figure 1 shows the result of tensor completion using three strategies we proposed above, as well

as the Tucker decomposition. The proposed “Constraint” approach shows a sharp threshold behaviour

around 35% observation from a poor fit (generalization error> 1) to an almost perfect fit (generalization

error≃ 10−3). The “As a Matrix” approach also show similar transition for mode 1 and mode 2 (around

40%), and mode 3 (around 80%), but even the first transition isslower than the “Constraint” approach.

The “Mixture” approach shows a transition around 70% slightly faster than the mode 3 in the “As

A Matrix” approach. Tucker shows early decrease in the generalization error, but when the rank is

missspecified (“large”), the error remains almost constant; even when the correct rank is known (“exact”),

the convergence is slower than the proposed “Constraint” approach.

We have further investigated the condition for the threshold behaviour using the proposed “Constraint”

approach. In Figure 3, we can see that the fraction of observations required to perfectly recover an

unknown tensor is roughly proportional to the sum of the rankof the underlying tensor, where we define

the reconstruction to be perfect when the mean generalization error is less than 0.01.

October 6, 2010 DRAFT
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Fig. 1. Comparison of three strategies, tensor as a matrix (“As a Matrix”), constrained optimization (“Constraint”), and

mixture of low-rank tensors (“Mixture”). Also the Tucker decomposition with 20% higher rank (“large”) and with the correct

rank (“exact”) implemented in the N-way toolbox [9] are included as baselines. The generalization error is plotted against the

fraction of observed elements of the underlying low-rank tensor. Also the tolerance of optimization (10
−3) is shown.
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Fig. 2. Comparison of computation times.

VI. SUMMARY

In this paper we have proposed three strategies to extend thetrace norm to tensor rank minimization, and

we have compared them on a simulated tensor completion problem. We have found that tensor completion

using the “Constraint” approach shows nearly perfect reconstruction from only 35% observations. There is

no need to specify the rank of the decomposition as in the conventional Tucker decomposition approach.
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Fig. 3. Fraction of observations at the threshold plotted against the sum of true ranks. Numbers in the brackets denote the

k-rank of the underlying tensor. The dimension of the tensor is (50,50,20).

The proposed approach shows a sharp threshold behaviour andwe have found that the fraction of samples

at the threshold is roughly proportional to the sum of ranks of the underlying tensor. Further analysis is

necessary to explain the threshold behaviour.
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