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The concept of thévalf density matrixis proposed. It unifies the quantum states which are descbige
density matrices and physical processes which are dedcbpeompletely positive maps. With the help of
the half-density-matrix representation of Hermitian &nenap, we show that every positive map which is not
completely positive is differenceof two completely positive maps. A necessary and sufficientdion for a
positive map which is not completely positive is also présénwhich is illustrated by some examples.

PACS numbers: 03.67.-a, 03.65.Bz, 03.65.Fd, 03.65.Ca

Entanglement has become one of the central concept ipcan be expressed as
guantum mechanics, specially in quantum information. A

. . . . L-1
guantum state of a bipartite systeneigtangledf it cannot be T _ Trp— % 1
prepared locally or it cannot be expressed as a convex combi- P P mzn;o Tmn P Omn @

nation of direct product states of two subsystems. This kind
of state is also callethseparable Though easily defined, itis whereo,,,, = (|m)(n| — [n)(m|)/v/2. We see immediately
very hard to recognize the inseparability of a mixed state of that the transposition is a difference of two completely-pos
bipartite system. itive maps. And this statement will be proved to hold true
. . o . for all positive maps which are not completely positive, i

An operational-friendly criterion of separability was pro || pe also characterized by a necessary and sufficienticond
posed by Pered][1]. This criterion is based on the 0bservaion in this Letter.
tion that the partial transposition of a separable densfrim For this purpose we shall first develop an extremely useful
remains positive semidefinite. That the partial ransEsit 50| — half density matrixhat unifies the description of the
of a density matrix isot positive semidefinite infers the in- quantum states and physical processes. And then we derive
separability of the density matrix. This provides a necessa g pajf-density-matrix representation of an arbitrary Hiéiam
condition for the separability. There exist entangledestat | ear map from which our main results are obtained. Along
with positive partial transposition, which exhibit bound-e it the introduction of the concept of half density matits,
tanglement[[2]. Examples of such kind were first provided inrg|ations to the ensembles and the purifications of mixadsta
Ref. [3] and then constructed in Ref] [4] systematicallywit 4re clarified and its applications in the field of quantum info

the help of unextendible product basis. mation such as quantum teleportatifjn [8] are also presented

Normally, quantum states, pure or mixed, are described

Later on, by noticing that the transposition ip@sitive map by density matrices, positive semidefinite operators (whos
(to be described later in details), a necessary and sufficieny. y ' P P

condition of the separability was proposed in Rﬁf- [5]: A bi- eigenvalues are all npnnega‘uve) on the_ _H|Ibert space of the
) . - - L system. Because of its property of positive semidefinite the
partite state is separable iff it is still positive semideénun-

. . : i i
der all positive maps acting on a subsystem. In other words, gensny matrixp can always be written gs = T'T' where

density matrix of a bipartite system is inseparable iff éhex- matrixT'is called here as thiealf density matriXHDM) for a
aeuantum state.

ists a positive map acting on a subsystem such that the imag Obviously, the half density matrix for a given density ma-

of the density matrix is not positive semidefinite. Hence the, . ™. .
) . . o . trix is not unique. For exampl&@U andT are correspond-
inseparability can be recognized by positive maps which are . t ; .

" ing to the same mixed staje = 77" wheneverU is uni-
notcompletely positive

tary. Generally, the half density matrik for a mixed state

Completely positive maps, which are able to describe the Of an s-level system is an x L rectangular matrix with
most general physical proce§} [6], are better understaod th L > 7 = Rankp), i.e., a linear map from an-dimensional
positive maps which are not completely positive. PositiveHilPert spacefi;, to ans-dimensional Hilbert spack;. The
maps from Hilbert space(, (two-dimensional) td, or Hs rankr of _the density matrix equals to the rank of the half den-
are all decomposablf][7], which are characterized by tansp Sity matrixT"andr = 1 for pure state. oy
sition and completely positive maps only. As a result in the Under an orthonormal and complete baggs) },—, and
cases 0ty x Hy andH, x H; the transposition criterion is  1]7) 1= of Hilbert spacesi{; and ., a typical half den-
also a sufficient condition for separabilif [5]. Thereféue- ~ Sity matrix of dimensions x L can be constructed a& =
ther understandings of positive maps which are not comiglete V' (As, 0sx(1—s)) , Where A is a diagonals x s matrix
positive will facilitate the recognition and classificatiofthe ~ formed by all the square roots of the eigenvalueyp ¢the
inseparable mixed states. singular numbers df,) andV is ans x s unitary matrix diag-

onalizing the density matrix. Obviously we have = T.T}.

As a direct calculation will show, under an orthonormal andAs a direct result of theingular number decompositiai an

complete basi§|n)} “Z; the transposition of ah x L matrix  arbitrary matrix [§] we have the following
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Lemma: Given a density matriy of ans-level system, an
s x L matrix T is a half density matrix fop, i.e.,p = TTT,
if and only if there exists ai x L unitary matrixU such that
T=T.U.

2

|@)12 @and |k;1)a3 = Ty Ps)23 denote an orthonormal com-
plete basis for systems 2 and 3 with HDNg; satisfying
TrTi T}, = 6w oy for orthogonality andy,, T OT), =
TrO for completeness. We then have expansion

When written explicitly in the established basis, the rela-

tion p = T.T, results in exactly an ensemble formed by all

the eigenvector¥ ' |m) of the mixed state, which is referred
to aseigen-ensembleere. In this way every half density ma-

trix T of a mixed state corresponds to an ensemble of the

mixed state. The aboeemmatells us that every ensemble

s—1
)12lt)s = > Ty Ty [h)1]k; D)as. €)

k,1=0

This describes exactly a quantum teleportation of an unknow

of a given mixed state is related to the eigen-ensemble by gquantum statex)) from system 3 to system 1 when bdih
unitary matrix which has been proved by other me [10]andTy,; are unitary or statép),, and basigk; ()23 are maxi-
Therefore the half density matrix of a density matrix is phys mally entangled stateEllS].

ically equivalent to an ensemble of the corresponding mixed The mixed stat@,;, of an (s x L) bipartite system can also

state.
Every mixed state admits apurification[ﬂ], a pure state

be equivalently and conveniently characterized by HDMs of
pure bipartite states. Lét;), p; } 2., be an ensembles pf ;.

|¢) of a bipartite system including this system as a subsyswe have

tem such thap = Try|¢)(¢|. Under the established basis, a

general pure state i, ® Hy is

s—1 L—1

6) = > Conlm)r|n)e = T|®L).

m=0n=0

(2)

Here pure statgb;) = S5 [n);|n) lives in Hilbert space
Hr ® Hy andT is a linear map fron, to H, acting on the
first L-dimensional Hilbert spack . Under the given bases
linear mapT is represented by afn x L rectangular matrix
with matrix elements given bym|T|n) = C,,,. When the
pure statg¢) is normalized we have TI''T) = 1. Alterna-
tively, we also haveg) = T7|®,) with state|®,) defined in
Hs®H, similar to statd® ). The linearmag™” : H, — H

L
acts on the secont; and it is represented by the transposi-

tion of T" under the established basis.

R R
ps = Y _pildi)(dil = > AiMLA], (4)
i=1 i=1

where we have denoted; as the half density matrix of the
pure state,/p;|¢:), i.e., \/pil¢i) = A;|®r). Obviously
HDMs defined byd; = >_; Ui;A; characterize the same den-
sity matrix whenevelU is a unitary matrix. And from the
Lemmawe know that given a density matrix this is the only
freedom that the half density matrices can have.

The density matrix expressed in the form as in Eq.(4) can be
easily manipulated by local operations. For example the den
sity matrix under operatioll; ® U; is transformed to density
matrix specified by half density matricésAiUz. The tilde
operationp — p introduced in Ref.|E4] to obtain explicitly

Tracing out the second system we obtain a reduced densif{?e entanglement of formation of two-qubit is simply an anti

matrix of the first subsystem, = 77" and similarlyp; =
TTT* for the second subsystem. That is to §aig the HDM
for the reduced half density matrix = Try|¢) (| of the first
subsystem and its transpositi@d for p;, = Tr,|¢)(#|. Thus

linear transformatiom; = TrA! — A,

In the discussions above we have defined the half density
matrices for the states of a single system, for pure biggartit
states, and for mixed bipartite states. The physical ps@ses

a one-to-one correspondence between a normalized puge st@an also be characterized by half density matrices. A génera

|¢) of a bipartite system, a purification, and a linear niap
satisfying T(T'T) = 1, a half density matrix, is established.
Therefore a half density matriX is also equivalent to a pu-
rification of the mixed state. The linear mafis also referred
to as the half density matrix of a bipartite pure state, wligch
unigue by definition. Ifs = L the polar decomposition &f
will result in the useful Schmit-decomposition.

physical process which can include unitary evolutions;-tra
ing out one system, and general measurements is described
by trace-preserving completely positive mdfls[L]], which
is a special kind of Hermitian linear map.

A Hermitian linear map sends linearly Hermitian opera-
tors to Hermitian operators that may live in different Hitbe
spaces. Lef’ denote a general Hermitian linear map from

The pure bipartite state is separable iff the rank of its halHilbert spaceH to H,. Because the mag is linear the

density matrix is one. For a pure product statg |w);, the
half density matrix isiv) (w*| where|w*) is theindex state
of state|w) defined bylw*) = (w|®) [L1]. For later use we
define amirror operatorM, = |®1)(®, | in the Hilbert space
Hr ® Hr, which has the propertyw* | M |w*) = |w)(w|.
The partial transposition of the mirror operatér= Mgl is

map L ® Zy, is also a Hermitian linear map fro; ® Hp
to Hs, ® Hr, whereZ;, denotes the identity map dr;. Re-
calling that the mirror operatdv/;, = |®.,)(® | is defined on
Hr ® Hy, itsimage

HSL:£®IL(ML) (5)

in fact the exchanging (or swapping) operator introduced by

Werner [1P] (denoted && there).

As an application, we consider a stagg2]1)s of a tri-
partite system with all three subsystems 1,2 and 3 being
level systems. LeTy denote the HDM of the bipartite state

is therefore a Hermitian operator s ® Hy,. Let [¢;")
A;|®L) (i < i4) denote the eigenvectors corresponding to
the positive eigenvalues &f,;, and|y; ) = B;|®r) (1 <i_)

to negative eigenvalues éf,;,, wherei . is the number of the
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positive/negative eigenvalues &f,;,. We then have mapS : Hy — H,s and an arbitrary positive integérthe
induced mas ® Zj, from Hy ® Hy to Hs ® Hy is positive.

t ; - ; However it is enough to check whether the imddg, =
Hy =Y A;MLAl - B;MB], (6) S ®7Z.(My) of the mirror operatod/;, is positive semidefi-
i=1 i=1 nite or not. If it is positive semidefinite, then the negathast

in the HDM representation Etﬁl(?) disappears, which yields

in which the norms of the eigenvectq;zgt>_have_ been taken exactly theoperator-sum representatiaf a CP map|[i1]
to be the absolute values of corresponding eigenvalues. Be-

cause the eigenvectors corresponding to different eideesa it

are orthonormal we have (EﬁiB;f) = Oforall ¢ andj. In this S(p) = ZAiij. (11)
sense two families of half density matricgd;} and{B;} are i=1

orthogonalto each other.

For a pure staté®, = |w)(w| in the Hilbert spacé(, we I the trace is preserved, we have furthgl, ATA; = 1.
haveP,, = (w*|Mp|w*) where|w*) is the index state dfv). Therefore the operator-sum representation of a CP map can
As a result we havel(P,) = (w*|H,|w*). Taking into also be referred to asmlf-density-matrix representatiois-
account of the linearity of the Hermitian mah we finally ~ pecially, if H,;, equals to the identity matrik, ® I, the cor-

obtain responding CP map is simply the trace operatianp) =
_ I Trp.
+ ki A positive map which is not completely positive (non-CP)
L(H)=Y AHAl - BHB] (7)  is nonetheless a Hermitian map so thatit has a HDM represen-
=1 =1

tation as Eq|]7), from which we obtaihi = S, — S where
two CP mapsS 4, g are represented by HDMsA, } and{B; }

whereH is an arbitrary Hermitian matrix it ;. Thisis called . X .
y ML respectively. Two CP map$,, 5 are said to be orthogonal if

the half-density-matrix representatioof a Hermitian linear

map. As one result we have their HDMSs are orthogonal to each other, i.e.(ArB!) = 0
for all i, j. We see thati;, can not be positive semidefinite.
(O4|Ts @ L(Xs1)|Ps) = Tr(Hst]STL) (8) Conversely, if the Hermitian matri¥/; has at least one

negative eigenvalue then it determines a non-CP positiye® ma
for an arbitrary Hermitian matri;;, in Hs, ® Hy. As an-  Let|¢) denote an eigenvector corresponding to one of the neg-
other consequence, a one-to-one correspondence betveeen #iive eigenvalues off;;, and Py, = |¢) (. From identity [B)
Hermitian mapsC : Hy — H, and Hermitian matrixH,, we see immediately thal, ® S(Pf) is not positive semidef-

(an observable) ift{; ® H;, can be established inite, i.e., mapsS is not completely positive. We note that the
eigenspace corresponding to the negative eigenvaludsof
L(H)=Tr,(H HT) (9)  contains no product state because of positivity. To sunmeari
] - we have the following
in addition to Eq(p). Theorem: Every positive map which is not completely pos-

The HDM representation of Hermitian linear map is notitie is a difference of two orthogonal completely positive
unique. Suppose two integefd > i, andN > i and  maps; A Hermitian linear mag : Hy — M, is positive
let SU(M, N) denote the pseudo-unitary group formed by pyt not completely positive if and only if for all pure produc
(M + N) x (M + N) matrices satisfyingnS™ = n where  stateP, © Q;, in H;, ® H, we have T(H,.P, ® Q1) > 0
n=1Iy®(—Iy)andly y)istheM x M (N x N)identity  while H,, = S ® 7, (M) is notpositive semidefinite.
matrix. If we define a family of HDM{T;} M+ asT; = 4; This theorem provides an obvious way to construct a non-
1<i<iy), T;=B;,(M+1<i<M+i_)andT; =0 CP positive map forni{;, to H,. First, we choose a proper
otherwise and take an arbitrary elemeéhof SU(M,N), a  Hermitian matrixH,y, in H, ® H, satisfying the conditions
new family of HDMs {7}~ defined byT; = >;Si;T;  specified in the above theorem. Then a non-CP positive map
represents the same Hermitian linear map S :Hy — H,is determined byS(pr,) = Try, (Hsppt).

As the first example we consider the the exchanging opera-

Moo N tor defined inH;, ® Hy, by X = M** or explicitly
L(H)=S"THT! - Y THT]. (10) L
i=1 j=1 L-1
. _ _ o . X= 3 |mn)nml (12)
A positive map is a special Hermitian linear map which 0

maps any positive semidefinite operator to a positive sefmide
inite operator. A Hermitian linear maf : Hy — Hs;is  The exchanging operatok has two eigenvaluesl and
positive if and only if T(S(QL)Ps) = TI(HL, Ps® QL) >0  omu|®L) (m > n) are the eigenvectors corresponding to
for all pure product stat®, ® @, whereH,;, = S®Zr(M}). eigenvalue—1. ThereforeX is not positive semidefinite
In the followingS is always a positive map. and for any pure product statégp) = |v)|w) we have

A completely positive (CP) map is a positive map which (pp| X |pp) = |(v|w)|? > 0 as specified by the above theorem.
keeps its positivity when the system it acts on is embedded ds fact the resulting non-CP positive map By, is exactly the
a subsystem in an arbitrary larger system. That is, for a CRanspositionp” = Tro(X p?). By writing X in its diagonal



form we obtainp” = Sr(p) — S, (p), where the CP mag,

is represented by HDM§&s,,,,, } andSr is the trace operation.

4

andl < d < sL. Matrix H. is not positive semidefinite since
TrH.p = —edTr(pop) < 0 and for an arbitrary pure product

As the second example we consider a Hermitian matrix irstate{«|(5|H.|a)|3) > 0. If we choosepy = I, ® I /sL

Hr ® Hy defined byHgr = I, ® I, — M. Itis not positive
semidefinite becaus@|Hg|® 1) < 0 and for every product
states|pp) we have(pp|Hg|pp) = 1 — [{v|w*)|* > 0. Ac-
cordingly, a non-CP positive map is defined®n asA(p) =
Trp — p, which provides theeduction criterion[fL§, [18]: Ev-
ery inseparable state iH; ® H which loses its positivity
under mapZ;, ® A is distillable and in the distillation pro-

cedure provided in Refm.S] the HDM of pure bipartite state

serves as the filtering operation. Becaugp) = S, (p?),

then a non-CP positive map is defined by

S
Sc(p) =Y TipT] = cTrp, (13)

i=1

whereT; = |a;) (5] is the half density matrix of the product

the reduction map is a decomposable positive map, which basg;)|5;). In Ref. [IT]p, is taken as a maximally entangle

is generally of formS,(p) = S1(p) + S2(p”) with S; 2 being
two CP maps.

state and! = min(s, L). Positive mapS. is indecomposable
becauseZ, ® S.(p) is not positive semidefinite whil&, ®

The last example makes use of an unextendible product bai(p) is positive semidefinite for any decomposable map.

sis [4], a set of orthonormal product bagisy;)|3;)}5_, of

Hs ® Hyr whereS < sL and there is no other pure prod-
uct state that is orthogonal to this set of basis. If we denot

P =>"|a;){a;| ®|6i)(B:| thenp = (1— P)/(sL— S) repre-
sents an inseparable states with positive partial trantspos
If we define

€= ‘3%><a|<5|P|O‘>|5>

it can be sure that < ¢ < S/sL [@]. Denotingpg as a
normalized density matrix it s ® H, which has the property
Tr(pop) > 0, we define a Hermitian matrix &8, = P — edpg
where
" = max (al (Blpolad] )
Z — max
d e P

In conclusion, the concept of the half density matrix was
studied and its applications to the quantum information are

Qiscussed in some detail. Based on the half-density-matrix

representation of a Hermitian linear map, we proved thateve
positive map which is not completely positive is a differenc
of two completely positive maps. A necessary and sufficient
condition for a non-CP positive map is given, which provides
a way of constructing such kind of maps. Some examples are
also presented. Further applications of the half densityima
in the quantum information and other fields can be expected
and the understandings of positive maps provided here may be
helpful the recognition of the inseparable quantum states a
to the quantification of the entangleme@[lS].
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