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Positive Maps Which Are Not Completely Positive
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The concept of thehalf density matrixis proposed. It unifies the quantum states which are described by
density matrices and physical processes which are described by completely positive maps. With the help of
the half-density-matrix representation of Hermitian linear map, we show that every positive map which is not
completely positive is adifferenceof two completely positive maps. A necessary and sufficient condition for a
positive map which is not completely positive is also presented, which is illustrated by some examples.

PACS numbers: 03.67.-a, 03.65.Bz, 03.65.Fd, 03.65.Ca

Entanglement has become one of the central concept in
quantum mechanics, specially in quantum information. A
quantum state of a bipartite system isentangledif it cannot be
prepared locally or it cannot be expressed as a convex combi-
nation of direct product states of two subsystems. This kind
of state is also calledinseparable. Though easily defined, it is
very hard to recognize the inseparability of a mixed state ofa
bipartite system.

An operational-friendly criterion of separability was pro-
posed by Peres [1]. This criterion is based on the observa-
tion that the partial transposition of a separable density matrix
remains positive semidefinite. That the partial transposition
of a density matrix isnot positive semidefinite infers the in-
separability of the density matrix. This provides a necessary
condition for the separability. There exist entangled states
with positive partial transposition, which exhibit bound en-
tanglement [2]. Examples of such kind were first provided in
Ref. [3] and then constructed in Ref. [4] systematically with
the help of unextendible product basis.

Later on, by noticing that the transposition is apositive map
(to be described later in details), a necessary and sufficient
condition of the separability was proposed in Ref. [5]: A bi-
partite state is separable iff it is still positive semidefinite un-
der all positive maps acting on a subsystem. In other words, a
density matrix of a bipartite system is inseparable iff there ex-
ists a positive map acting on a subsystem such that the image
of the density matrix is not positive semidefinite. Hence the
inseparability can be recognized by positive maps which are
notcompletely positive.

Completely positive maps, which are able to describe the
most general physical process [6], are better understood than
positive maps which are not completely positive. Positive
maps from Hilbert spaceH2 (two-dimensional) toH2 or H3

are all decomposable [7], which are characterized by transpo-
sition and completely positive maps only. As a result in the
cases ofH2 ×H2 andH2 ×H3 the transposition criterion is
also a sufficient condition for separability [5]. Thereforefur-
ther understandings of positive maps which are not completely
positive will facilitate the recognition and classification of the
inseparable mixed states.

As a direct calculation will show, under an orthonormal and
complete basis{|n〉}L−1

n=0 the transposition of anL×Lmatrix

ρ can be expressed as

ρT = Trρ−
L−1∑

m,n=0

σmn ρ σ
†
mn, (1)

whereσmn = (|m〉〈n| − |n〉〈m|)/
√

2. We see immediately
that the transposition is a difference of two completely pos-
itive maps. And this statement will be proved to hold true
for all positive maps which are not completely positive, which
will be also characterized by a necessary and sufficient condi-
tion in this Letter.

For this purpose we shall first develop an extremely useful
tool — half density matrixthat unifies the description of the
quantum states and physical processes. And then we derive
a half-density-matrix representation of an arbitrary Hermitian
linear map from which our main results are obtained. Along
with the introduction of the concept of half density matrix,its
relations to the ensembles and the purifications of mixed states
are clarified and its applications in the field of quantum infor-
mation such as quantum teleportation [8] are also presented.

Normally, quantum states, pure or mixed, are described
by density matrices, positive semidefinite operators (whose
eigenvalues are all nonnegative) on the Hilbert space of the
system. Because of its property of positive semidefinite the
density matrixρ can always be written asρ = TT † where
matrixT is called here as thehalf density matrix(HDM) for a
quantum state.

Obviously, the half density matrix for a given density ma-
trix is not unique. For exampleTU andT are correspond-
ing to the same mixed stateρ = TT † wheneverU is uni-
tary. Generally, the half density matrixT for a mixed state
ρ of an s-level system is ans × L rectangular matrix with
L ≥ r = Rank(ρ), i.e., a linear map from anL-dimensional
Hilbert spaceHL to ans-dimensional Hilbert spaceHs. The
rankr of the density matrix equals to the rank of the half den-
sity matrixT andr = 1 for pure state.

Under an orthonormal and complete bases{|m〉}s−1
m=0 and

{|n〉}L−1
n=0 of Hilbert spacesHs andHL, a typical half den-

sity matrix of dimensions × L can be constructed asTe =
V †(∆s, 0s×(L−s)) , where∆s is a diagonals × s matrix
formed by all the square roots of the eigenvalues ofρ (the
singular numbers ofTe) andV is ans×s unitary matrix diag-
onalizing the density matrixρ. Obviously we haveρ = TeT

†
e .

As a direct result of thesingular number decompositionof an
arbitrary matrix [9] we have the following
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Lemma: Given a density matrixρ of ans-level system, an
s× L matrixT is a half density matrix forρ, i.e.,ρ = TT †,
if and only if there exists anL×L unitary matrixU such that
T = TeU .

When written explicitly in the established basis, the rela-
tion ρ = TeT

†
e results in exactly an ensemble formed by all

the eigenvectorsV †|m〉 of the mixed state, which is referred
to aseigen-ensemblehere. In this way every half density ma-
trix T of a mixed stateρ corresponds to an ensemble of the
mixed state. The aboveLemmatells us that every ensemble
of a given mixed state is related to the eigen-ensemble by a
unitary matrix which has been proved by other means [10].
Therefore the half density matrix of a density matrix is phys-
ically equivalent to an ensemble of the corresponding mixed
state.

Every mixed stateρ admits apurification[11], a pure state
|φ〉 of a bipartite system including this system as a subsys-
tem such thatρ = Tr2|φ〉〈φ|. Under the established basis, a
general pure state inHs ⊗HL is

|φ〉 =

s−1∑

m=0

L−1∑

n=0

Cmn|m〉1|n〉2 := T |ΦL〉. (2)

Here pure state|ΦL〉 =
∑L−1

n=0 |n〉1|n〉2 lives in Hilbert space
HL ⊗HL andT is a linear map fromHL toHs acting on the
first L-dimensional Hilbert spaceHL. Under the given bases
linear mapT is represented by ans × L rectangular matrix
with matrix elements given by〈m|T |n〉 = Cmn. When the
pure state|φ〉 is normalized we have Tr(T †T ) = 1. Alterna-
tively, we also have|φ〉 = T T |Φs〉 with state|Φs〉 defined in
Hs⊗Hs similar to state|ΦL〉. The linear mapT T : Hs 7→ HL

acts on the secondHs and it is represented by the transposi-
tion of T under the established basis.

Tracing out the second system we obtain a reduced density
matrix of the first subsystemρs = TT † and similarlyρL =
T TT ∗ for the second subsystem. That is to sayT is the HDM
for the reduced half density matrixρs = TrL|φ〉〈φ| of the first
subsystem and its transpositionT T for ρL = Trs|φ〉〈φ|. Thus
a one-to-one correspondence between a normalized pure state
|φ〉 of a bipartite system, a purification, and a linear mapT
satisfying Tr(T †T ) = 1, a half density matrix, is established.
Therefore a half density matrixT is also equivalent to a pu-
rification of the mixed state. The linear mapT is also referred
to as the half density matrix of a bipartite pure state, whichis
unique by definition. Ifs = L the polar decomposition ofT
will result in the useful Schmit-decomposition.

The pure bipartite state is separable iff the rank of its half
density matrix is one. For a pure product state|v〉s|w〉L the
half density matrix is|v〉〈w∗| where|w∗〉 is the index state
of state|w〉 defined by|w∗〉 = 〈w|ΦL〉 [11]. For later use we
define amirror operatorML = |ΦL〉〈ΦL| in the Hilbert space
HL ⊗ HL, which has the property〈w∗|ML|w∗〉 = |w〉〈w|.
The partial transposition of the mirror operatorX = MT1

L is
in fact the exchanging (or swapping) operator introduced by
Werner [12] (denoted asV there).

As an application, we consider a state|φ〉12|ψ〉3 of a tri-
partite system with all three subsystems 1,2 and 3 beings-
level systems. LetTφ denote the HDM of the bipartite state

|φ〉12 and |k; l〉23 = Tkl|Φs〉23 denote an orthonormal com-
plete basis for systems 2 and 3 with HDMsTkl satisfying
TrTklT

†
k′l′ = δkk′δll′ for orthogonality and

∑
kl TklOT

†
kl =

TrO for completeness. We then have expansion

|φ〉12|ψ〉3 =
s−1∑

k,l=0

Tφ T
∗
kl |ψ〉1|k; l〉23. (3)

This describes exactly a quantum teleportation of an unknown
quantum state|ψ〉 from system 3 to system 1 when bothTφ
andTkl are unitary or state|φ〉12 and basis|k; l〉23 are maxi-
mally entangled states [13].

The mixed stateρsL of an (s×L) bipartite system can also
be equivalently and conveniently characterized by HDMs of
pure bipartite states. Let{|φi〉, pi}Ri=1 be an ensembles ofρsL
we have

ρsL =
R∑

i=1

pi|φi〉〈φi| =
R∑

i=1

AiMLA
†
i , (4)

where we have denotedAi as the half density matrix of the
pure state

√
pi|φi〉, i.e.,

√
pi|φi〉 = Ai|ΦL〉. Obviously

HDMs defined byÃi =
∑
j UijAj characterize the same den-

sity matrix wheneverU is a unitary matrix. And from the
Lemmawe know that given a density matrix this is the only
freedom that the half density matrices can have.

The density matrix expressed in the form as in Eq.(4) can be
easily manipulated by local operations. For example the den-
sity matrix under operationUs⊗U∗

L is transformed to density
matrix specified by half density matricesUsAiU

†
L. The tilde

operationρ 7→ ρ̃ introduced in Ref. [14] to obtain explicitly
the entanglement of formation of two-qubit is simply an anti-
linear transformatioñAi = TrA†

i −A†
i .

In the discussions above we have defined the half density
matrices for the states of a single system, for pure bipartite
states, and for mixed bipartite states. The physical processes
can also be characterized by half density matrices. A general
physical process which can include unitary evolutions, trac-
ing out one system, and general measurements is described
by trace-preserving completely positive maps[6, 11], which
is a special kind of Hermitian linear map.

A Hermitian linear map sends linearly Hermitian opera-
tors to Hermitian operators that may live in different Hilbert
spaces. LetL denote a general Hermitian linear map from
Hilbert spaceHL to Hs. Because the mapL is linear the
mapL ⊗ IL is also a Hermitian linear map fromHL ⊗ HL

to Hs ⊗ HL, whereIL denotes the identity map onHL. Re-
calling that the mirror operatorML = |ΦL〉〈ΦL| is defined on
HL ⊗HL, its image

HsL = L ⊗ IL(ML) (5)

is therefore a Hermitian operator inHs ⊗ HL. Let |ψ+
i 〉 =

Ai|ΦL〉 (i ≤ i+) denote the eigenvectors corresponding to
the positive eigenvalues ofHsL and|ψ−

i 〉 = Bi|ΦL〉 (i ≤ i−)
to negative eigenvalues ofHsL, wherei± is the number of the
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positive/negative eigenvalues ofHsL. We then have

HsL =

i+∑

i=1

AiMLA
†
i −

i−∑

i=1

BiMLB
†
i , (6)

in which the norms of the eigenvectors|ψ±
i 〉 have been taken

to be the absolute values of corresponding eigenvalues. Be-
cause the eigenvectors corresponding to different eigenvalues
are orthonormal we have Tr(AiB

†
j ) = 0 for all i andj. In this

sense two families of half density matrices{Ai} and{Bi} are
orthogonalto each other.

For a pure statePw = |w〉〈w| in the Hilbert spaceHL we
havePw = 〈w∗|ML|w∗〉 where|w∗〉 is the index state of|w〉.
As a result we haveL(Pw) = 〈w∗|HsL|w∗〉. Taking into
account of the linearity of the Hermitian mapL, we finally
obtain

L(H) =

i+∑

i=1

AiHA
†
i −

i−∑

i=1

BiHB
†
i , (7)

whereH is an arbitrary Hermitian matrix inHL. This is called
the half-density-matrix representationof a Hermitian linear
map. As one result we have

〈Φs|Is ⊗ L(ΣsL)|Φs〉 = Tr(HsLΣTsL) (8)

for an arbitrary Hermitian matrixΣsL in Hs ⊗ HL. As an-
other consequence, a one-to-one correspondence between the
Hermitian mapsL : HL 7→ Hs and Hermitian matrixHsL

(an observable) inHs ⊗HL can be established

L(H) = TrL(HsLH
T ) (9)

in addition to Eq.(5).
The HDM representation of Hermitian linear map is not

unique. Suppose two integersM ≥ i+ andN ≥ i− and
let SU(M,N) denote the pseudo-unitary group formed by
(M + N) × (M + N) matrices satisfyingSηS† = η where
η = IM ⊕ (−IN) andIM(N) is theM ×M (N ×N ) identity
matrix. If we define a family of HDMs{Ti}M+N

i=1 asTi = Ai
(1 ≤ i ≤ i+), Ti = Bi (M + 1 ≤ i ≤ M + i−) andTi = 0
otherwise and take an arbitrary elementS of SU(M,N), a
new family of HDMs{T̃i}M+N

i=1 defined byT̃i =
∑

j SijTj
represents the same Hermitian linear map

L(H) =

M∑

i=1

T̃iHT̃
†
i −

N∑

j=1

T̃jHT̃
†
j . (10)

A positive map is a special Hermitian linear map which
maps any positive semidefinite operator to a positive semidef-
inite operator. A Hermitian linear mapS : HL 7→ Hs is
positive if and only if Tr(S(QL)Ps) = Tr(HT

sLPs ⊗QL) ≥ 0
for all pure product statePs⊗QL whereHsL = S⊗IL(ML).
In the followingS is always a positive map.

A completely positive (CP) map is a positive map which
keeps its positivity when the system it acts on is embedded as
a subsystem in an arbitrary larger system. That is, for a CP

mapS : HL 7→ Hs and an arbitrary positive integerk the
induced mapS ⊗ Ik fromHL ⊗Hk toHs ⊗Hk is positive.

However it is enough to check whether the imageHsL =
S ⊗ IL(ML) of the mirror operatorML is positive semidefi-
nite or not. If it is positive semidefinite, then the negativepart
in the HDM representation Eq.(7) disappears, which yields
exactly theoperator-sum representationof a CP map [11]

S(ρ) =

i+∑

i=1

AiρA
†
i . (11)

If the trace is preserved, we have further
∑
iA

†
iAi = 1.

Therefore the operator-sum representation of a CP map can
also be referred to as ahalf-density-matrix representation. Es-
pecially, ifHsL equals to the identity matrixIs ⊗ IL, the cor-
responding CP map is simply the trace operationST (ρ) =
IsTrρ.

A positive map which is not completely positive (non-CP)
is nonetheless a Hermitian map so that it has a HDM represen-
tation as Eq.(7), from which we obtainS = SA − SB where
two CP mapsSA,B are represented by HDMs{Ai} and{Bi}
respectively. Two CP mapsSA,B are said to be orthogonal if
their HDMs are orthogonal to each other, i.e., Tr(AiB

†
j ) = 0

for all i, j. We see thatHsL can not be positive semidefinite.
Conversely, if the Hermitian matrixHsL has at least one

negative eigenvalue then it determines a non-CP positive map.
Let |ψ〉 denote an eigenvector corresponding to one of the neg-
ative eigenvalues ofHsL andPψ = |ψ〉〈ψ|. From identity (8)
we see immediately thatIs ⊗ S(PTψ ) is not positive semidef-
inite, i.e., mapS is not completely positive. We note that the
eigenspace corresponding to the negative eigenvalues ofHsL

contains no product state because of positivity. To summarize,
we have the following

Theorem: Every positive map which is not completely pos-
itive is a difference of two orthogonal completely positive
maps; A Hermitian linear mapS : HL 7→ Hs is positive
but not completely positive if and only if for all pure product
statePs ⊗ QL in HL ⊗ Hs we have Tr(HsLPs ⊗ QL) ≥ 0
whileHsL = S ⊗ IL(ML) is notpositive semidefinite.

This theorem provides an obvious way to construct a non-
CP positive map formHL to Hs. First, we choose a proper
Hermitian matrixHsL in Hs ⊗ HL satisfying the conditions
specified in the above theorem. Then a non-CP positive map
S : HL 7→ Hs is determined byS(ρL) = TrL(HsLρ

T
L).

As the first example we consider the the exchanging opera-
tor defined inHL ⊗HL byX = MT1

L or explicitly

X =

L−1∑

m,n=0

|m,n〉〈n,m|. (12)

The exchanging operatorX has two eigenvalues±1 and
σmn|ΦL〉 (m > n) are the eigenvectors corresponding to
eigenvalue−1. ThereforeX is not positive semidefinite
and for any pure product states|pp〉 = |v〉|w〉 we have
〈pp|X |pp〉 = |〈v|w〉|2 ≥ 0 as specified by the above theorem.
In fact the resulting non-CP positive map onHL is exactly the
transpositionρT = Tr2(XρT ). By writing X in its diagonal
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form we obtainρT = ST (ρ) − Sσ(ρ), where the CP mapSσ
is represented by HDMs{σmn} andST is the trace operation.

As the second example we consider a Hermitian matrix in
HL ⊗HL defined byHR = IL ⊗ IL −ML. It is not positive
semidefinite because〈ΦL|HR|ΦL〉 < 0 and for every product
states|pp〉 we have〈pp|HR|pp〉 = 1 − |〈v|w∗〉|2 ≥ 0. Ac-
cordingly, a non-CP positive map is defined onHL asΛ(ρ) =
Trρ− ρ, which provides thereduction criterion[15, 16]: Ev-
ery inseparable state inHL ⊗ HL which loses its positivity
under mapIL ⊗ Λ is distillable and in the distillation pro-
cedure provided in Ref. [15] the HDM of pure bipartite state
serves as the filtering operation. BecauseΛ(ρ) = Sσ(ρT ),
the reduction mapΛ is a decomposable positive map, which
is generally of formSd(ρ) = S1(ρ)+S2(ρ

T ) with S1,2 being
two CP maps.

The last example makes use of an unextendible product ba-
sis [4], a set of orthonormal product basis{|αi〉|βi〉}Si=1 of
Hs ⊗ HL whereS < sL and there is no other pure prod-
uct state that is orthogonal to this set of basis. If we denote
P =

∑ |αi〉〈αi|⊗ |βi〉〈βi| thenρ̃ = (1−P )/(sL−S) repre-
sents an inseparable states with positive partial transposition.
If we define

ǫ = min
|α〉|β〉

〈α|〈β|P |α〉|β〉

it can be sure that0 < ǫ ≤ S/sL [17]. Denotingρ0 as a
normalized density matrix inHs⊗HL which has the property
Tr(ρ0ρ̃) > 0, we define a Hermitian matrix asHǫ = P − ǫdρ0

where

1

d
= max

|α〉|β〉
〈α|〈β|ρ0|α〉|β〉

and1 ≤ d ≤ sL. MatrixHǫ is not positive semidefinite since
TrHǫρ̃ = −ǫdTr(ρ0ρ̃) < 0 and for an arbitrary pure product
state〈α|〈β|Hǫ|α〉|β〉 ≥ 0. If we chooseρ0 = Is ⊗ IL/sL
then a non-CP positive map is defined by

Sǫ(ρ) =
S∑

i=1

TiρT
†
i − ǫTrρ, (13)

whereTi = |αi〉〈β∗
i | is the half density matrix of the product

base|αi〉|βi〉. In Ref. [17]ρ0 is taken as a maximally entangle
state andd = min(s, L). Positive mapSǫ is indecomposable
becauseIs ⊗ Sǫ(ρ̃) is not positive semidefinite whileIs ⊗
Sd(ρ̃) is positive semidefinite for any decomposable map.

In conclusion, the concept of the half density matrix was
studied and its applications to the quantum information are
discussed in some detail. Based on the half-density-matrix
representation of a Hermitian linear map, we proved that every
positive map which is not completely positive is a difference
of two completely positive maps. A necessary and sufficient
condition for a non-CP positive map is given, which provides
a way of constructing such kind of maps. Some examples are
also presented. Further applications of the half density matrix
in the quantum information and other fields can be expected
and the understandings of positive maps provided here may be
helpful the recognition of the inseparable quantum states and
to the quantification of the entanglement [18].
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