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Abstract

The physical model (PhsMdl) of a Schrodinger nonrelativistic quantized electron (SchEl)
is built by means of a transition of the quadratic differential particle equation of Hamilton-
Jacoby (QdrDfrPrtEqtHam/Jkb) into the quadratic differential wave equation of Schrodinger
(QdrDfrWvEqtSch) in this work, which interprets the physical reason of its quantum
(wave and stochastic) behaviour (QntWvBhv) by explanation of the physical reason which
forces the classical Lorentz electron (LrEl) to participate in Furthian quantized stochastic
oscillation motion (FrthStchOscMtn), which turn it into quantum SchEl. It is performed
that this transition is realized by my consideration the Bohm’s quantum potential as a
kinetic energy of the forced FurthStchOscMtn of the SchEl’s well spread (WllSpr) elemen-
tary electric charge (ElmElcChrg) close to a smooth thin trajectory of a classical LrEl.
There exist as an essential analogy between the Furthian quantum stochastic trembling
oscillation motion and the Brownian classical stochastic trembling motion so and between
the description of their behaviours.

The object of this paper is to discuss and to bring a green light on the problems of the
physical interpretation of the nonrelativistic quantized behaviour of the Schrodinger electron
(SchEl), described by means of the nonrelativistic quantum mechanics (NrlQntMch) laws and
its mathematical results. The purpose of the present work is to describe the felicitous physical
model (PhsMdl) of the SchEl. An obvious physical model (PhsMdl) of the nonrelativistic
quantized SchEl is built by means of some simple mathematical transformation of the known
classical quadratic differential particle equation of Hamilton-Jacoby (ClsQdrDfrPrtEqtHam-
Jkb) into the quantum quadratic differential wave equation of Schrodinger (QntQdrDfrWv
EqtSch). After well physical substantiation it is performed that this transformation is realized
by taking in a consideration the so called Bohm’s quantum potential as a kinetic energy, what
it is in reality, of the forced Furthian stochastic oscillation motion (FurthStchOscMtn) of the
SchEl’s well spread (WllSpr) elementary electric charge (ElmElcChrg) within the nearness to
the trajectory of the classical Lorentz’ electron (LrEl). In such a natural way this transition
interprets the physical reason, exciting the quantum (stochastic corpuscular-wave) behaviour
(QntWvBhv) by explanation of the physical reason which forces the classical LrEl to participate
in a quantized FrthStchOscMtn, which turns it into the quantized SchEl. In this fashion
the QntQdrDfrWvEqtSch is obtained through addition of the kinetic energy of the SchEl’s
FrthStchOscMtn, expressed the dispersion of its momentum or stochastic velocity u, to the
ClsQdrDfrPrtEqtHam-Jkb. Therefore the nonrelativistic quantized Furthian random trembling
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circular oscillation motion with various radius values inside of different planes could be roughly
determined with some mathematical calculation by means of the classical probabilities laws
of both the classical stochastic theory (ClsStchThr) and Maxwell classical electrodynamics
(ClsElcDnm).

Hence the resonant electric interaction (ElcIntAct) of the SchEl’s WllSpr ElmElcChrg
with the averaged electric intensity (ElcInt) of the StchVrtPhtns from the fluctuating vac-
uum (FlcVcm)(zero-point radiation field) determines the influence of its behavior because they
creates their stochastically diverse harmonic circular oscillations with various radii within the
neighborhood of the smooth narrow path of the LrEl, spreading and turning it into some
wide rough cylindrically spread path and inducting the transition of the classical LrEl into the
quantized SchEl. The ElcInt between the WllSpr ElmElcChrg of the SchEl and the ElcInt of
the resultant quantized electromagnetic field (QntElcMgnFld) (zero-point field),determined by
both the boundary conditions and the existent StchVrtPhtns, forced the WllSpr ElmElcChrg
to participate within isotropic stochastically orientated in the three-dimensional space circular
oscillation, the averaged kinetic energy, which every SchEl could obtained from the FlcVcm,
may be obtained by the following formula, well known from NrlClsMch :

Ek =
m 〈(ω)2 (δr)2 〉

2
=

e2

π

m.C

h̄

{

h̄

m.C2

}2 ωmax
∫

ωmin

ω dω (1)

As usual we suppose that the upper limit ωmax is equal to double value of the energy at
rest of the SchEl (ωmax = 2m.C2). As the contribution of the lower limit ωmin has negligible
importance, we could suppose that ωmin = 0. In this approximation we cam easily obtained
from eq.(1) its following presentation :

Ek =
2

π
.
e2

C.h̄
.m.C2 (2)

Hence the existence of the isotropic three-dimensional nonrelativistic Furthian QntStchBhv
of the SchEl within the nonrelativistic quantum mechanics (NrlQntMchn) very strongly remind
us about the classical StchBhv (ClsStchBhv) of some Brownian stochastic particle (BrnStchPrt).
Thence the ElcIntAct of the SchEl’s WllSpr ElmElcChrg (or a MgnIntAct of the neutron’s
MgnDplMm) with the resonantly averaged ElcInt (or MgnInt for neutral massive hadron) of the
QntElcMgnFld of the existent StchVrtPhtns in the FlcVcm corresponds to the stochastic action
of the fluctuating resultant force on account of many molecular impacts upon the BrnStchPrt
at a time of its scattering. In our PhsMdl of the SchEl we explain its FrthQntStchBhv and one
assist sorting the matter out the physical opinion of its parameter within the NrlQntMchn.

In above elaborate we have possibility to present the spatial distribution Υ (̺) of the Elc-
Chrg of the WllSpr ElmElcChrg by dint of Kirchoff’s presentation of δ(̺)-function :

F (̺) =
{

2

3 π

}3/2 {m.C

h̄

}3

exp {−(
̺

λo

)2} (3)

Here we must point that the spatial distribution (3) of the SchEl’s WllSpr ElmElcChrg
is caused by the participation of the Dirac’s electron’s fine spread (FnSpr) ElmElcChrg in
the isotropic three-dimensional relativistic quantized Schrodinger’s self-consistent strong corre-
lated fermion harmonic oscillation motion.The isotropic three-dimensional relativistic quantized
Schrodinger’s self-consistent strong correlated fermion harmonic oscillation motion of the FnSpr
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ElmElcChrg of the DrEl may be correctly described by the three α (γ) matrixes of four order.
but in approximation of change of the strongly correlated fermion harmonic oscillation by the
incorrelated boson harmonic oscillation, we could used the well-known orbital wave function
(OrbWvFnc) ψo (̺) of the three-dimensional harmonic oscillator in its ground state, having the
following analytical presentation :

ψo (̺) = {λo

√
π}− 3

2 exp {− ̺2

2λ2
o

} (4)

where λo is the constant of the oscillation (λ2
o = h̄

m ω
= 3

2
.{ h̄

m.C
}2 = 2

3
. 〈 ̺2 〉 . After some

cursory comparison it is easily to understand, that Kirchoff δ-function F (̺) (3) is obtained
from the OrbWvFnc ψo (̺) (3) by means of the equation F (̺) = |ψo (̺) |2, the well known
from the NrlQntMch.

In order to obtain the averaged potential of the SchEl we must put into right side of Poison
equation the spatial distribution of ElcChrg Υ (̺) of its WllSpr ElmElcChrg.In such a naturally
way we have possibility to calculate roughly the averaged self-potential of the SchEl’s WllSpr
ElmElcChrg and to obtain its following excertional presentation :

V (̺) =
−2.e√
π.̺

∫ ( ̺

λo
)

o
exp (−x2) dx (5)

The potential energy of the electric self-action (ElcSlfAct) of the SchEl’s WllSpr ElmElcChrg
with the spatial distribution of its ElcChrg Υ (ρ) from (3) and its own potential V (ρ) from (5)
we are capable to determine by means of the following obvious presentation :

Ep =
2e√
π
.

4 π e

π
√
πλo

∫

∞

o
exp(−u2)

u2 du

u

∫ u

o
exp(−x2) dx (6)

The twofold integration can be easily execute by integration by parts. In such a way after
elementary calculation we can obtain the following obvious result :

Ep =
4 e2

λoπ

∫

∞

o
exp(−x2) dx =

√

2

π

e2

λo

=
2√
3π

.
e2

C.h̄
.m.C2 (7)

In further after some cursory comparison of the eqs.(2) and (7) we could understand that the
value of the averaged kinetic energy, which the SchEl obtain from the FlcVcm at its stochastic
circular oscillations, is equal of the value of the potential energy of its ElcSlfAct between spatial
density of its WllSpr ElmElcChrg and its own averaged potential. This equality is no accidental
nature and for certain have important significant. After this comparison we can understand
why the potential energy of the own averaged electric potential has no contribution into the rest
energy of the DfEl. It turns out that every electron obtains the potential energy of the ElcSlfAct
of its WllSpr ElmElcChrg by its own averaged potential in form of the kinetic energy on account
of its participation in the isotropic three-dimensional nonrelativistic quantized stochastic boson
harmonic oscillations from the FlcVcm at the interaction of its WllSpr ElmElcChrg with the
ElcInt of the StchVrtPhtns. Moreover, we can easily understand that the participation of the
WllSpr ElmElcChrg of the SchEl in the isotropic three-dimensional nonrelativistic quantized
stochastic boson harmonic oscillations not only takes its illocalizing energy from the FlcVcm,
ensuring with this the stability of its ground state in H-atom, but at this as well as all this
oscillation create its additional MchMmn and MgnDplMmn, and this ElcIntAct its tunnelling
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through some potential barriers and causes the shift of its energy levels in atoms.Therefore all
this experimental observed phenomena in the long run demonstrate the real participate of the
SchEl in the isotropic three-dimensional nonrelativistic quantized stochastic boson harmonic
oscillations as a result of the ElcIntAct of its WllSpr ElmElcChrg with the EctInt of the
resultant QntElcMgnFld of the existent StchVrtPhtns.

Although till now nobody know what the McrPrt means, all the same there exists a possi-
bility for a consideration of an unusual behaviour of a QntMcrPrt by means of a transparent
surveyed PhsMdl of the SchEl. In our PhsMdl the SchEl will be treated as a well spread (Wll-
Spr) ElmElcChrg, taking simultaneously part in two different motions: A/The classical motion
of the LrEl along an well contoured smooth and thin trajectory realized in a consequence of some
classical interaction (ClsIntAct) of its over spread (OvrSpr) ElmElcChrg, bare mass or magnetic
dipole moment (MgnDplMm) with some external classical fields (ClsFlds), described by well
known laws of the Newton nonrelativistic classical mechanics (NrlClsMch). This motion may be
finically described by virtue of the laws of both the NrlClsMch and the classical electrodynamics
(ClsElcDnm); B/The isotropic three-dimensional nonrelativistic quantized (IstThrDmnNrlQnt)
Furthian stochastic boson harmonic oscillation motion (FrthStchBznHrmOscMtn) of the SchEl
as a result of the permanent ElcIntAct of the electric intensity (ElcInt) of the self-consistent
resultant QntElcMgnFld of all the StchVrtPhtns, existing within the FlcVcm and generated by
dint of the VrtPhtn’s stochastic exchange between them. The SchEl’s motion and its unusual
quantized behaviour, described in the NrlQntMch may be easily understood by assuming it
as a forced random trembling oscillation motion (RndTrmMtn) upon a stochastic joggle influ-
ence of the StchVrtPhtns scattering from some BrnClsPrt. Therefore the RndTrmMtn can be
approximately described through some determining calculations by means of both the laws of
the Maxwell ClsElcDnm and the probable laws of the classical stochastic theory (ClsStchThr).
But in a principle the exact description of the SchEl’s uncommon behaviour can be carry into
a practice by means only of the NrlQntMch’s laws and ClsElcDnm s ones.

In an accordance of the analogy between the Furthian quantum stochastic trembling oscilla-
tion motion and the Brownian classical stochastic trembling motion and the description of their
behaviours (of the BrnClsPrts and of the FrthQntPrts) with a deep physical understanding of
the Furthian random trembling oscillation motion (FrthRndTrmOscMtn), we must determine
both as the value V −

j of the BrnClsMcrPrt’s (FrthQntMcrPrt) velocity before the moment t of
the scattering time of some molecule (LwEnr-StchVrtPhtn) from one (its OvrSpr ElmElcChrg),
so the value V +

j of its velocity after the same moment t of the scattering time by means of the
following definitions :

V −

j (r, t) = LimDt→o

(

rj(t) − rj(t−Dt)

Dt

)

; V +
j (r, t) = LimDt→o

(

rj(t. +Dt) − rj(t)

Dt

)

; (8)

In addition we may determine two new velocities vj and uj by dint of the following simple
equations :

2 Vj =
[

V +
j + V −

j

]

; , 2 i Uj =
[

V +
j − V −

j

]

; (9)

In conformity with the eqs.(9) it is obviously followed that the current velocity, having a
real value V , in reality describes the regular drift of the BrnClsMcrPrt (FrthQntMcrPrt) and
the osmotic velocity, having a imagine value iU , in reality describes nonrelativistic Brawnian
classical (Furthian quantized) stochastic trembling harmonic oscillations. Afterwards by virtue
of the well-known definition equations :

2mVj = m
[

V +
j + V −

j

]

= 2∇j S1 ; and 2imUj = m
[

V +
j − V −

j

]

= 2 i∇j S2, ; (10)
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one can obtain following presentation of the SchEl’s OrbWvFnc Ψ(r, t) :

Ψ(r, t) = exp
(

iS1

h̄
− S2

h̄

)

= B exp
(

iS1

h̄

)

(11)

It is easily to verify the results (10) and (11). In effect one be obtained by means of the
following natural equations :

mV +
j Ψ = −i h̄∇j exp

( −iS1

h̄
− S2

h̄

)

= (∇j S1 + i∇j S2 ) Ψ ; (12)

mV −

j Ψ+ = +i h̄∇j exp
(

iS1

h̄
− S2

h̄

)

= (∇j S1 − i∇j S2 ) Ψ+ ; (13)

In this fashion the QntQdrDfrEqtSch is obtained through addition of the kinetic energy
of the SchEl’s FrthRndTrmMtn, expressed with the dispersion of its momentum or stochastic
velocity, to the ClsQdrDfrEqtHam-Jkb. Hence the classical motion of the LrEl is described
by a smooth narrow path, which is determined from its classical real part S1 of the complex
action S[r, t] and its derivatives, but the Furthian quantized stochastic motion of the SchEl
is described by a rough cylindrically spread broad path, which is determined correctly from
its imaginary part S2 represented by the module of its orbital wave function (OrbWvFnc)
Ψ(r, t) and operators. Consequently, the quantum motion is described by rough broad path,
which is determined from the quantum action S[r, t] and its derivatives by the orbital wave
function (OrbWvFnc) Ψ(r, t) and operators. It turns out, that if the action function S(r, t) has
only a real value S1, then the micro particle (McrPrt) moves along a classical well contoured
smooth and narrow path ; but when if the action function S(r, t) has only imaginary value
S2, then the McrPrt moves on a its trajectory, cylindrically spread and turned into wide path
of the cylindrical form with differ radii and centers, being on small pieces from stochastically
broken line ; when the action function has a complex value S(r, t), then the McrPrt moves in
the quantized dual form : indeed as the real part S1 of the action function and its derivative
determine the classical motion and its current velocity v and the imaginary part S2 of the
complex action function S(r, t) and its derivative determine the stochastic motion and its
osmotic velocity u. This spread of the smooth thin curve through its cylindrically spread and
turned into wide path of the cylindrical form with differ radii and centers, being on petty
breaking of small pieces makes the trajectory in rough and road path, which forces us to
put the OrbWvFnc Ψ(r, t) description of the SchEl’s behaviour.Hence the classical motion of
the LrEl is described by a smooth narrow path, which is determined from its classical real
part S1 of the complex action S(r, t) and its derivatives, but the Furthian stochastic quantum
oscillation motion of the SchEl is described by a wide rough path, which is mathematical
correctly determined from its imaginary part S2 represented by the module of its orbital wave
function (OrbWvFnc) Ψ(r, t) and operators. It turns out, when the action function S(r, t)
has only a real value S1, then the NtnMcrPrt moves along its classical well contoured smooth
and narrow path ;when the action function S(r, t) has only an imaginary value S2, then the
BrnMcrPrt moves stochastically on a frequently broken and very scattered orientated line of
small pieces ; when the action function S has a complex value, then the QntMcrPrt moves in a
quantized dual form : as the real part S1 of the action function S and its derivatives determine
the classical motion and its current velocity v and the imaginary part S2 of the action function S
and its derivatives determine the forced stochastic motion and its spreading (osmotic) velocity
u. This spreading of the thin and smooth classical trajectory through its wide path of the
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cylindrical form with differ radii and centers, being on often breaking of small pieces forces us
to put the OrbWvFnc Ψ(r, t) for description of the SchEl’s behaviour.

Indeed, it is well known that the imaginary part of the energy of the McrPrt describes its
decay in the time and the imaginary part of the velocity of the McrPrt describes its going
out from the classical trajectory in the space, which is forbidden for the free motion of the
ClsMcrPrt. Therefore the module quadrate of the SchEl’s OrbWvFnc Ψ(r, t) | Ψ(r, t) |2, where
hasn’t any imaginary part (i.s.has no real part S1 of its action function S), describes only its
probability for its discovering (location) in a very small area of the space,close by the space point
having coordinates r,in the moment t of the time.The fluctuating alternation of the imaginary
parts of the SchEl’s energy and momentum (quantities of motion) may be considered as a
result of continuous exchange of some parts of its energy and momentum at the uninterrupted
alternative absorption and emission of the stochastic virtual photons (StchVrtPhtns) within
the fluctuating vacuum (FlcVcm).

In a consequence of what was asserted above in order to obtain the QntQdrDfr WvEqn of Sch

we must add to the kinetic energy (∇l S1)2

2m
of the NtnClsPrt in the following ClsQdrDifPrtEqt

of Hml-Jcb

− ∂S1

∂t
=

(∇j S1)
2

2m
+ U ; (14)

the kinetic energy (∇l S2)2

2m
of the BrnClsPrt. In such the natural way we obtain the following

analytic presentation of the QntQdrDfrWvEqt of Sch :

− ∂S1

∂t
=

(∇j S1)
2

2m
+

(∇j S2)
2

2m
+ U ; (15)

It is obviously to understand that the first term (∇l S1)2

2m
in the eq.(15) describes the kinetic

energy of the regular translation motion of the NtnClsPrt with its current velocity vl = ∇l S1

m

and the second term (∇l S2)2

2m
describes the kinetic energy of the random trembling oscillation

motion (RndTrmOscMtn) of the BrnClsPrt with its osmotic velocity ul = ∇l S2

m
. Therefore

we can rewrite the expression (15) in the following form :

Et =
mv2

2
+
mu2

2
+ U =

〈P 〉2
2m

+
〈(∆P )2〉

2m
+ U ; (16)

After elementary physical obviously suppositions some new facts have been brought to
light. Therefore the upper investigation entitles us to make the explicit assertion that the
most important difference between the QntQdrDfr WvEqt of Sch and the ClsQdrDfrPrtEqt
of Hml-Jcb is exhibited by the existence of the kinetic energy of the FrthRndTrmOscMtn in
the first one. Therefore when the SchEl is appointed in the Coulomb’s potential of the atomic
nucleus fine spread (FnSpr) electric charge (ElcChrg) Ze its total energy may be written in the
following form :

〈Et 〉 =
1

2m

[

〈Pr〉2 +
〈L〉2
〈r〉2

]

+
1

2m

[

〈(∆Pr)
2〉 +

〈(∆L)2〉
〈r〉2

]

− Ze2

〈r〉 (17)

As any SchEl has eigenvalues nr = 0 and l = 0 in a case of its ground state, so it follows
that 〈Pr〉 = 0 and 〈L〉 = 0 . As a consistency with the eq.(19) the eigenvalue of the SchEl’s
total energy Eo

t in its ground state in some H-like atom is contained only by two parts :

〈Eo
t 〉 =

1

2m

[

〈(∆Pr)
2〉 +

〈(∆L)2〉
(〈r〉)2

]

− Ze2

〈r〉 (18)
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Further the values of the dispersions 〈(∆Pr)
2〉 and 〈(∆L)2〉 can be determined by virtue of

the Heisenberg Uncertainty Relations (HsnUncRlt) :

〈(∆Pr)
2〉 × 〈(∆r)2〉 ≥ h̄2

4
(19)

〈(∆Lx)
2〉 × 〈(∆Ly)

2〉 ≥ h̄2

4
〈(∆Lz)

2〉 (20)

Thence the dispersion 〈(∆Pr)
2〉 will really have its minimal value at the maximal value of the

〈(∆r)2〉 == 〈r〉2.In this way the minimal dispersion value of the 〈(∆Pr)
2〉 can be determined

by the following equation :

〈(∆Pr)
2〉 =

h̄2

4〈r2〉 (21)

As the SchEl’s ground state has a spherical symmetry at l = 0 , then the following equalities
take place :

〈(∆Lx)
2〉 = 〈(∆Ly)

2〉 = 〈(∆Lz)
2〉 ; (22)

Hence we can obtain minimal values of the dispersions (22) through division of the eq.(19)
with the corresponding equation from the eq. (22). In that a way we obtain the following result
:

〈(∆Lx)
2〉 + 〈(∆Ly)

2〉 + 〈(∆Lz)
2〉 =

3h̄2

4
(23)

Just now we are in a position to rewrite the expression (19) in the handy form as it is
well-known :

Eo
t =

1

2m

[

h̄2

4r2
+

3h̄2

4r2

]

− Z e2

r
=

1

2

h̄2

mr2
− Z e2

r
; (24)

Subsequently the minimal value of the Eo
t may be determined by minimization of the ex-

pression (23) in respect of the radius r. In such a way we could obtain the minimizing equality
:

∂Eo
t

∂r
|r = ro

=
−h̄2

mr3
+
Z e2

r2
= 0 ; (25)

Thence we can obtain the value of the SchEl’s orbital radius r in its ground state of an
H-like atom as a result of the minimizing eq.(23)

ro =
h̄2

2me2
=

ao

Z
; (26)

Here ao is the Bohr’s radius of the SchEl’s ground state in the H-like atom.Further we can
obtain the averaged value of the SchEl’s total energy Eo

t when it occupies its ground state by
the substitution of the following equilibrium value of the orbital radius r from the eq.(22) :

〈Eo
t 〉 = − mZ2e4

2h̄2 ; (27)

Since then it is easily to understand by means of upper account that if he ClsMcrPrt
s motion is going along the clear definitized smooth thin trajectory in accordance with the
NrlClsMch,then the QntMcrPrt’s motion is perform in the form of the RndTrbOscMtn rough
broad roadway near classical one of any NtnClsPrt within NrlClsMch. As a result of that we
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can suppose that the unusual dualistic behaviour of QntMcrPrt can be described by dint of the
following physical quantities within NrlQntMch :

rj = r̄j + δrj ; pj = p̄j + δpj ; (28)

Indeed, because of existence of δrj 6= 0 and δpj 6= 0 within the NrlQntMch the value
of the MchMm’s square 〈L2〉 of the SchEl is different from the value of averaged MchMmn’s
square 〈L〉2 of the LrEl in the NrlClsMch. Really,by dint of the Heisenberg Commutation
Relations (HsnCmtRlt) :

Lx Ly − Ly Lx = i h̄ Lz ; Ly Lz − Lz Ly = i h̄ Lx ; Lz Lx − Lx Lz = i h̄ Ly ; (29)

we can write two analogous inequalities : the inequality (20) and the following corresponding
inequality :

〈(∆Ly)
2〉 × 〈(∆Lz)

2〉 ≥ 〈(∆Lx)
2〉 ; 〈(∆Lz)

2〉 × 〈(∆Lx)
2〉 ≥ 〈(∆Ly)

2〉 (30)

We can suppose in following that in a case when the SchEl is placed in the external potential
of cylindrical symmetry its MchMn’s component along the axis Z has averaged value< Lz >

= lh̄ In a spite of that the averaged value of the MchMn’s square must be determined by the
following equality :

〈L2〉 = (〈Lz〉)2 + 〈(∆Lx)
2〉 + 〈(∆Ly)

2〉 + 〈(∆Lz)
2〉 ; (31)

Further the values of the quantities 〈(∆Lx)
2〉 〈(∆Ly)

2〉 and 〈(∆Lz)
2〉 can be determined

by virtue of the inequalities (29) and (30) in the following form :

〈(∆Lx)
2〉 = 〈(∆Ly)

2〉 =
lh̄2

2
and 〈(∆Lz)

2〉 =
h̄2

4
(32)

Then it is quite naturally that we must obtain the averaged value of the MchMn’s square
at experiment,which is well-founded by my physical point of view:

〈L2〉 = l2h̄2 +
lh̄2

2
+
lh̄2

2
+
h̄2

4
= h̄2 (l +

1

2
)2 (33)

I think my successful picturesque example illustrates very exactly the extraordinary situation
of the QntMcrPrt within the NrlQntMch. Hence the difference between the NtnClsBhv of the
NtnClsMcrPrt, described by the laws of the NtnClsMch, the BrnStchBch of the BrnClsMcrPrt,
described by the laws of the ClsStchMch, and the FrthStchBhv of the FrthQntMcrPrt, described
by the laws of the NrlQntMch may be roughly understand by means of three different values of
the action function S. It turns out, when the action function S(r, t) has only a real value S1,
then the NtnMcrPrt moves along its classical well contured smooth and narrow path ;when the
action function S(r, t) has only an imaginary value S2, then the BrnMcrPrt moves stochastically
on a frequently broken and very scattered orientated line of small pieces ; when the action
function S has a complex value, then the QntMcrPrt moves in the quantized dual form : as the
real part S1 of the action function S and its derivatives determine the classical motion and
its current velocity v and the imaginary part S2 of the action function S and its derivatives
determine the forced stochastic motion and its spreading (osmotic) velocity u. This spreading
of the thin and smooth classical trajectory through wide path of the cylindrical form with differ
radii and centers, being on often breaking of small pieces forces us to put the OrbWvFnc Ψ(r, t)
for description of the SchEl’s behaviour.
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