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Stochastic Resonance and Nonlinear Response by NMR Spectroscopy
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We revisit the phenomenon of quantum stochastic reso-
nance in the regime of validity of the Bloch equations. We
find that a stochastic resonance behavior in the steady-state
response of the system is present whenever the noise-induced
relaxation dynamics can be characterized via a single relax-
ation time scale. The picture is validated by a simple nuclear
magnetic resonance experiment in water.
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The interplay between dissipation and coherent driv-
ing in the presence of dynamical nonlinearities gives rise
to a variety of intriguing behaviors. The most paradig-
matic and counterintuitive example is the phenomenon
of stochastic resonance (SR), whereby the response of
the system to the driving input signal attains a maxi-
mum at an optimum noise level [1]. By now, stochastic
resonance has been demonstrated in several overdamped
bistable systems as diverse as lasers, semiconductor de-
vices, SQUID’s, and sensory neurons, the required noise
tuning being accomplished by either controlling the in-
jection of external noise or by suitably varying the tem-
perature of the noise-inducing environment.

Due to the broad typology of situations it can exem-
plify and its inherent simplicity, a preferred candidate for
theoretical analysis is represented by a driven dissipative
two-level system (TLS). The investigation has only re-
cently been taken into the quantum world, where some
prominent results have been established for the so-called
spin-boson model. The latter schematizes the archety-
pal situation of a driven quantum-mechanical tunneling
system in contact with a harmonic heat bath, the result-
ing dissipation being commonly addressed in the linear
Ohmic regime [2–6]. Within this framework, a quantum
SR phenomenon induced by a resonant irradiation with a
continuous-wave field has been characterized analytically
[3,5] and verified through exact numerical path-integral
calculations [3,6].

In the present work, we show that a stochastic res-
onance phenomenon occurs for a much wider class of
driven two-state quantum systems, whose relaxation dy-
namics can be accounted for by conventional Bloch equa-
tions. We find that, irrespective of the details of the mi-
croscopic picture, the essential requirement is the emer-

gence of a single relaxation time scale. The prediction
is neatly demonstrated by a nuclear magnetic resonance
experiment on a water sample.

Let us consider a two-state quantum system whose
density operator ρ is represented in terms of the Bloch
vector ~s as ρ = (1+~s·~σ)/2 i.e., si(t) = 〈σi(t)〉, i = 1, 2, 3,
in the customary pseudo-spin formalism [7]. Within the
semigroup approach for open quantum systems [8], the
most general (completely) positive relaxation dynamics
induced by the coupling to some environment is described
by a quantum Markov master equation of the form

ρ̇ = − i

h̄
[H(t), ρ] +

1

2

3
∑

k,l=1

akl {[σkρ, σl] + [σk, ρσl]} . (1)

The Hamiltonian H(t), which describes the interac-
tion of the TLS with the (classical) driving field, can
be expressed as H(t) = h̄ω0σ3/2 + V (t), V (t) =
h̄(2ω1) cos(Ωt)σ1/2, where the Larmor frequency ω0 =
(E2 − E1)/h̄ associated with the TLS energy splitting
and the Rabi frequency ω1 proportional to the alternating
field amplitude have been introduced. The above Hamil-
tonian is identical to the one describing a driven tunnel-
ing process in a symmetric double-well system with “lo-
calized” states provided by σ1-eigenstates: By rotating
the spin coordinate by π/2 about the ŷ-axis, one formally
recovers the picture of tunneling in the ẑ-representation
that is encountered in the literature [1–6,10]. The dissi-
pative component of the TLS dynamics is fully charac-
terized by the positive-definite 3 × 3 relaxation matrix
A = {akl}, determining the equilibrium state of the sys-
tem and the relaxation time scales connected with the
equilibration process. The Bloch equations correspond
to an especially simple realization of A, the non-zero el-
ements being specified in terms of 3 independent param-
eters: a11 = a22 = (2T1)

−1, a33 = (T2)
−1 − (2T1)

−1,
a12 = a∗

21
= i(

√
2T1)

−1seq. T1, T2, and seq are identified
as the longitudinal and transverse lifetimes, and the equi-
librium value of the population difference respectively.
Thus, Eq. (1) takes the following familiar form [9]:







ṡ1 = ω0s2 − T−1

2
s1 ,

ṡ2 = −ω0s1 − T−1

2
s2 + 2ω1 cos(Ωt)s3 ,

ṡ3 = −2ω1 cos(Ωt)s2 − T−1

1
(s3 − seq) .

(2)

In microscopic derivations of (2), including the ones
based on the spin-boson model in the appropriate limit
[10,5], relaxation is caused by elementary processes in-
volving noise-assisted transitions between the TLS en-
ergy levels or purely dephasing events with no energy ex-
change between the system and the environment. The
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overall relaxation rates T−1

1,2 are obtained by integrat-
ing such fluctuation and dissipation effects over the en-
vironmental modes, weighted by the appropriate noise
spectral densities. Since the latter contain the coupling
strength between the system and the environment, relax-
ation rates are themselves directly proportional to the
underlying noise intensity. Note that the above treat-
ment in terms of a constant matrix A is only valid for
external fields that are relatively weak on the TLS energy
scale i.e., 2|ω1| ≪ ω0. In spite of the many restrictions
involved, it is remarkable that the Bloch equations (2)
are of such a wide applicability to cover the majority of
magnetic or optical resonance experiments.

For times long compared to the time scales T1,2 of the
transient dynamics, the motion of the system reaches
a steady-state behavior that is insensitive to the ini-
tial condition and acquires the periodicity of the driv-
ing. In particular, the asymptotic TLS coherence prop-
erties are captured by the off-diagonal matrix element
s1(t), s2(t). It is standard practice to formulate an in-
put/output problem, where the TLS is regarded as a dy-
namical system generating s1(t) = 〈σ1(t)〉 as the output
signal in response to a given input drive V (t). By letting
limt→∞〈σ1(t)〉 = s∞

1
(t) denote the limiting steady-state

value of s1(t), a figure of merit for the system response
is the so-called fundamental spectral amplitude [1],

η(Ω, ω1) = |s∞
1

(t)| = h̄(2ω1)|χ(Ω, ω1)| , (3)

where the connection to the complex susceptibility
χ(Ω, ω1) = χ′(Ω, ω1) − iχ′′(Ω, ω1) is made explicit.

The competition between driving and dissipative forces
sets the boundary between the linear vs. nonlinear re-
sponse regimes. In the limit where ω1 ≪ T−1

1,2 , only first-
order contributions in ω1 are significant and the suscep-
tibility χ(Ω, ω1) = χ(Ω) in (3) can be calculated within
ordinary linear response theory. The linear regime im-
plies that absorption of energy from the applied field
occurs without disturbing populations from their equi-
librium value seq. Linear behavior breaks down when-
ever ω1

>∼ T−1

1,2 . Strongly nonlinear-response regimes can
be entered for arbitrarily weak fields as long as the cou-
pling to the environment and the induced noise effects are
weak enough. For both linear and nonlinear driving, the
amplitude η(Ω, ω1) of the output signal also depends on
the various parameters characterizing the noise process.
Quite generally, the phenomenon of stochastic resonance
can be associated with the appearance of non-monotonic

dependencies upon noise parameters, leading to the op-
timization of the response at a finite noise level.

We focus on the Bloch equations (2) with resonant
driving, Ω = ω0. It is then legitimate to invoke
the rotating-wave approximation and replace the al-
ternating field V (t) with V (t) = h̄ω1 cos(Ωt)σ1/2 −
h̄ω1 sin(Ωt)σ2/2. The rotating-frame description of the
Bloch vector ~µ is introduced via the time-dependent rota-
tion R = exp(iΩσ3t/2) i.e., ρR = R ρ R−1 = (1+~µ ·~σ)/2,

~µ = (u, v, w) [7]. The steady-state solution to the Bloch
equations is well known [11,12]. In particular, χ′ and χ′′

are read from the dispersive and absorptive components
u, v of the Bloch vector respectively, and the spectral am-
plitude η(Ω = ω0, ω1) = (u2+v2)1/2. A simple expression
is found for the nonlinear response:

η(Ω = ω0, ω1) = seq
ω1T2

1 + ω2
1
T1T2

. (4)

Suppose now that we have the capability of manipulat-
ing the strength of the coupling of the TLS to its environ-
ment, thereby changing the relaxation times T1, T2. For a
fixed driving amplitude ω1, η displays purely monotonic
behaviors if T1, T2 are varied independently. However,
if a single relaxation time is present, T1 = T2 = T12, η
develops a local maximum characterized by

T ∗
12

= ω−1

1
, η(Ω = ω0, ω1, T

∗
12

) =
seq

2
. (5)

The occurrence of such a peak in the steady-state re-
sponse as a function of the noise strength can be pictured
as a stochastic resonance effect in the TLS. Physically,
the condition for the maximum in (5) can be thought
of as a synchronization between the periodicity of the
rotating-frame vector in the absence of relaxation and
the additional time scale emerging when dissipation is
present. In semiclassical terms, a constraint of the form
T1 = kT2, k = const., indicates that the spectral densi-
ties of the fluctuating environmental fields along different
directions are not independent upon each other. Simple
examples include noise processes that effectively originate
from a single direction or that equally affect the system
in the three directions. In fact, the existence of a single

relaxation time is a feature shared with earlier investi-
gations of quantum SR based on the driven spin-boson
model [3,5], where it arises as a necessary consequence
of the initial assumption that environmental forces ex-
clusively act along the tunneling axis. However, we em-
phasize that our discussion is done without reference to a
specific model, encompassing in principle a larger variety
of physical situations.

Apart from this conceptual difference, the SR phe-
nomenon evidenced above is characterized by the same
distinctive features found for the spin-boson model on
resonance [3,5]. According to (5), the maximum steady-
state response is independent of the driving amplitude,
whereas the position of the peak shifts toward shorter
relaxation times with increasing ω1. Thus, weaker noise
strengths require weaker input fields to attain a large
response. This brings the nonlinear nature of the SR
mechanism to light, for weaker dissipation more eas-
ily pushes the system into a regime where ω1T12

>∼ 1.
No SR peak occurs in the limit ω1T12 ≪ 1 where lin-
ear response theory applies and η → seq(ω1T12) ≪ seq.
Thus, SR results in efficient noise-assisted signal ampli-
fication. Breakdown of linear behavior is more convinc-
ingly demonstrated by looking at the dependence of the
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response (4) upon the external field strength. It is easily
checked that the condition (5) simultaneously optimizes
the response against ω1, with ω∗

1
= (T1T2)

−1/2. However,
it is only when T1 = kT2 that the existence of such an

optimal field amplitude coexists with a SR effect.

Nuclear Magnetic Resonance (NMR) provides a natu-
ral candidate for a direct experimental verification of the
predicted phenomenon. In NMR, the Bloch equations
(2) describe the motion of the magnetization vector ~M
of spin 1/2 nuclei (1H) that are subjected to a static
magnetic field B0 along the ẑ-axis and a radio-frequency
signal with amplitude 2|B1| ≪ B0 applied at frequency
Ω along the x̂-axis. The mapping is established by iden-
tifying ~s = ~M , seq = M0, ω0 = γB0, ω1 = γB1, M0 and
γ denoting the equilibrium magnetization and the gyro-
magnetic ratio respectively. Relaxation processes arise
due to a multiplicity of microscopic mechanisms [12].
For a liquid spin 1/2 sample, the leading contribution
arises from fluctuations of the local dipolar field caused
by bodily motion of the nuclei. The longitudinal relax-
ation time T1 is essentially determined by the x̂- and ŷ-
components of the local magnetic fields at the Larmor
frequency, while the transverse lifetime T2 takes extra
contributions from static components of the ẑ-field, im-
plying that T2 ≤ 2T1 ordinarily [12,13]. Let us assume
as above that Ω = ω0. Once the steady state is reached,
the magnetization vector ~M precesses about the ẑ-axis
with the periodicity of the r.f. field. The variation of
the dipole moment in the tranverse plane induces a mea-
surable e.m.f. in a Faraday coil. This provides access
to the relevant quantity η of Eqs. (3)-(4), which repre-
sents the length of the transverse magnetization vector,
(u2 + v2)1/2 = (M2

x(t) + M2

y (t))1/2.
Our experiment consists in probing the steady-state

magnetization response of water as a function of the noise

strength inducing the natural relaxation processes. The
1H Larmor frequency at B0 = 9.4 T is ω0/2π = 400 MHz,
with relaxation times T1 = 3.6 s, T2 = 2.5 s. The sample
can be brought to a regime where T1 ≃ T2 upon addition
of the paramagnetic salt copper sulfate (CuSO4). With
concentrations in the range between 40 mM and 100 mM,
collision events with the impurity dominate the nuclear
relaxation dynamics. This effectively pushes the system
into a regime of rapid motion where the correlation time
of the local magnetic fields seen by the nuclei is very short
on the scale ω−1

0
, thereby ensuring that T1 = T2 = T12

[13]. Higher concentrations of the CuSO4 additive result
in a shorter relaxation time T12 hence implying an effec-
tive tuning of the noise strength. All measurements were
performed at room temperature with a Bruker AMX400
spectrometer on five water samples with additive concen-
tration in the above range.

Independent measurements of T1 and T2 were made to
confirm that the amount of CuSO4 was sufficient to make
them equal. T1 was measured via an inversion recovery
technique [13], by looking at the recovery curve of Mz(t)

after the application of a π pulse causing Mz(0) = −M0.
Values of T2 were inferred from the decay of the echo
signals in a standard Carr-Purcell sequence where π ro-
tations were used to refocus dephasing due to inhomoge-
neous broadening [13]. For the 5 concentrations utilized,
T1 and T2 were found to be within 1 ms of the average
value T12 which is listed for each sample in Table I.

CuSO4 (mM) T12 (ms) ± 1 ms

40 45.5
50 36.5
60 28.5
75 25.0
100 18.0

TABLE I. Relaxation time T12 = T1 = T2 as a function of

the CuSO4 paramagnetic impurity concentration for the 5

water samples used in the experiment.

For each sample, the response to a long external r.f.
pulse was measured for various values of the driving am-
plitude. For a given driving amplitude, the duration of
the pulse was increased up to about 200 ms and the
reading was continued until a constant e.m.f. value was
reached, confirming that all transient responses had suf-
ficiently decayed. Under these conditions, the observed
steady-state value is equivalent to the one produced by
a cw-irradiation as assumed in Eqs. (2). A delay long
with respect to T12 was waited between each pulse to
allow the sample to return to equilibrium. The value of
the r.f. amplitude was determined by extrapolating mea-
surements of the nutation rate ν1 = ω1/2π at a high field
setting down to the relevant lower-field domain in the
neighbourhood of ω1 ≈ T−1

12
. While the relative error be-

tween two r.f. setting is found to be small, the systematic
error associated with the extrapolation turns out to be
significant. A linear correction of the frequency scale was
included in the analysis to compensate for such error.

The experimental results are shown in Figs. 1 and 2.
Fig. 1 evidences the SR peak for three values of the driv-
ing amplitude. A bell-shaped maximum in the response
profile is clearly visible, as well as the expected shifting
of the peak location with increasing ω1. For each curve,
the SR condition T ∗

12
≈ ω−1

1
of Eq. (5) is in fairly good

agreement with the observed behavior, existing discrep-
ancies being accounted for by the residual error affecting
the determination of ω1. In Fig. 2 the complementary
characterization of the SR effect in terms of nonlinear
response to the driving field is displayed for three val-
ues of T12. In each case, ordinary linear response theory
is valid for small ω1 to the left side of the maximum.
Thus, SR reveals itself as a signal optimization marking
the crossover between linear and nonlinear response.

Beside validating the predictions from the Bloch equa-
tions (2), our experimental results also support the con-
clusions independently reached in earlier theoretical anal-
yses [3,5]. A few remarks are in order concerning the
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specific case of NMR. First, the present experiment is
not a stochastic NMR experiment [14]. While the ob-
vious similarity is that both methods probe the nuclear
spin system by looking at the transverse magnetization
response, in stochastic NMR the system is directly ex-
cited by noise, which is therefore always extrinsic (and
classical) in origin. More importantly, as mentioned al-
ready, the solutions to the Bloch equation have a long
history as a tool to investigate magnetic resonance be-
haviors. In particular, the existence of an optimum r.f.
amplitude ω∗

1
= (T1T2)

−1/2 is a feature pointed out long
ago by Bloch himself [9]. However, only the SR paradigm
provides the motivation to regard relaxation features as
controllable output parameters and to look at the usual
response behavior along different axes in the parameter

space. Even once this is done, this does not automatically
lead to SR. Rather, it is the recognition that a single axis
T1 = T2 is effectively needed to bring out the fingerprint
of the phenomenon and the novel element added to the
standard NMR analysis.

In summary, we established both theoretically and ex-
perimentally the occurrence of stochastic resonance in
two-state quantum systems whose relaxation dynamics
are described by Bloch equations. In addition to sub-
stantially broadening the existing paradigm for stochastic
resonance in quantum systems, our results point to the
possibility of characterizing intrinsic relaxation behavior
via resonance effects. By offering an optimized way for
input/output transmission against noise, stochastic res-
onance carries a great potential for systems configured
to perform specific signal processing and communication
tasks [1]. In particular, full exploitation of stochastic
resonance phenomena could potentially disclose a useful
scenario for reliable transmission of quantum information
in the presence of environmental noise and decoherence.
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FIG. 1. Normalized steady-state response η/seq vs. re-
laxation time T12 for resonant driving Ω/2π = 400 MHz at
different driving amplitudes: ω1/2π= 6.3 Hz (circles), 5.5 Hz
(crosses), 4.8 Hz (squares). Solid lines: theoretical predictions
from Eq. (4), after systematic correction for the frequency (no
free parameters).

5 10 15

0.2

0.3

0.4

0.5

Rabi Frequency (Hz)

N
or

m
al

iz
ed

 R
es

po
ns

e

FIG. 2. Normalized steady-state response η/seq vs. Rabi
frequency ω1/2π for resonant driving Ω/2π = 400 MHz at
different relaxation times: T12= 18.0 ms (circles), 28.5 ms
(squares), 45.5 ms (diamonds). Solid lines as above.
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