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ABSTRACT

The relativistic angular momentum is introduced as an extension of the non-relativistic

analysis of allowed states in the phase space for a quantum particle. The paper shows

the conceptual basis of the approach. An interesting feature of the present point of

view is that the indistinguishability of identical particles and the Pauli principle are

found as corollaries.
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1 Introduction.

Two papers have been recently published concerning the analysis of states allowed to

the particles in the phase space to calculate the energy levels of many electron atoms

/1/ and diatomic molecules /2/. The properties of the quantum angular momentum were

also found as a straightforward consequence of the basic assumptions described in

these papers. However the non-relativistic character of this approach did not enable to

infer any information about the spin angular momentum of electrons. The relativistic

quantum theory /3,4/ has introduced the spin as an intrinsic property of particles;

perturbation calculations of the energy levels including the spin-orbit and spin-spin

couplings are widely reported in literature, see e.g. /5/. On this respect, however, it is

interesting to inquire whether the existence of spin can be also inferred through an

extension of the non-relativistic approach to the angular momentum with the help of

Lorentz transformation. The present paper aims just to discuss the fundamental ideas

leading to the concept itself of spin through the analysis of the phase space; from a

conceptual point of view this point appears more attracting than the development of a

further more or less approximate numerical calculation algorithm including the spin

effects of specific interest for the solution of some particular quantum problem. The

paper is organized as follows:

-section 2 summarizes for clarity the physical background of the present approach;

-section 3 concerns some key-points about the relativistic angular momemtum;
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-section 4 introduces the approach to the angular momentum of quantum particles;

- the results obtained are discussed in section 5;

-the conclusions are reported in section 6.

2 Physical background of the non-relativistic approach.

The state of a quantum particle is described by a wave function ψ  defined as the

solution of the appropriate partial differential wave equation subjected to the pertinent

boundary conditions. Our knowledge about the system rests in general just on the

possibility to write down this wave equation and find its solution. By consequence, the

deterministic concepts of position or trajectory of classical physics are replaced by the

probability density, given by *ψψ  if 1* =∫ G9ψψ , of finding the particle in a given

region of space. The papers /1,2/ are based on a different, more agnostic, physical idea

according which one renounces "D� SULRUL" even to the probability character of our

knowledge. Rather, since the beginning one assumes the total uncertainty about both

position and momentum of the particle. For sake of clarity, this idea is explained with

the help of two examples, the first of which concerns just the angular momentum

3U0
rrr

×=  of a particle having a momentum 3
r

. According to the initial assumption,

the current position of the particle is regarded as completely unknown; the only

information available about U
r

 is that UU
rr ∆≤<0 , i.e. U

r∆  has the meaning of quantum
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uncertainty range for U
r

. The same holds also for the momentum of the particle; 3
r

 is

assumed unknown as well, while being 33
rr

∆≤<0 , i.e. 3
r

 must fall within its

uncertainty range 3
r

∆ . No hypotheses are necessary nor about U
r∆  neither about 3

r
∆ ;

this follows because no hypotheses have been made about U
r

 and 3
r

 themselves and

because the uncertainty ranges are defined merely as those including all the possible

current values of the dynamical variables. Even in lack of any detailed information

about the motion of the particle, the total number of states O  consistent with the

angular motion of the particle can be calculated just considering the widths U
r∆  and

3
r

∆  of the uncertainty ranges; clearly, in fact O  is not related to the actual, randomly

changing position and momentum of the particle, but rather to the total ranges allowed

to the dynamical variables describing its angular motion. Once having renounced “D

SULRUL” to any knowledge about the state of motion of the particle, O  is the only

information available. The maximum values allowed to U
r

 and 3
r

 are just U
r∆  and

3
r

∆  in agreement with the definition above. Therefore O  can be calculated simply

considering the particular case UU
rr ∆≡  and 33

rr
∆≡  where the dynamical variables

assume their maximum values, in practice, replacing U
r

 with U
r∆  and 3

r
 with 3

r
∆  in

00
r

= . Let us consider therefore ( )3U00
rr

,=  in the particular case
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( )3U00
rr ∆∆= ,  in order to find )(O00 = . The starting point to calculate O  is the

component Q00 Q
rr

⋅=  of 0
r

 along an arbitrary direction defined by the unit vector Q
r
.

The classical expression ( ) Q3U0 Q
rrr ⋅×=  is replaced by ( ) Q3U0 Q

rrr ⋅∆×∆=∆ . Rewriting

Q0∆  identically as ( ) 3UQ0 Q
rrr ∆⋅∆×=∆  one obtains 30 Q

rr
∆⋅∆=∆ ξ , being UQ

rrr
∆×=∆ξ .

If 3
r

∆  and ξ
r

∆  are orthogonal then Q0∆ =0; else, by writing the scalar product 3
rr

∆⋅∆ξ

as ( ) ξξξ ∆∆∆⋅∆ /
rr

3 , where ξ∆  is the modulus of ξ
r

∆ , the component

ξξξ ∆∆⋅∆=∆± /
rr

33  of 3
r

∆  along ξ
r

∆  gives ξξ 30 Q ∆∆±=∆ . In turn, this latter

equation gives hO0 Q ±=∆  where ⋅⋅⋅= 2,1O . These results are summarized as

hO0 Q ±=∆ where ⋅⋅⋅= ,2,1,0O 2,1

Ref /1/ shows also: (i) the impossibility to know simultaneously all the components

of angular momentum and (ii) that 22 )1( h+=∆ OO0  also follows from eq 2,1. O  is

arbitrary because no hypotheses has been made on U
r

, 3
r

, Q
r
 nor on U

r∆  and 3
r

∆ . As

expected, the quantities of relevant physical interest for the properties of the angular

momentum are U
r∆  and 3

r
∆ ; in fact, the key to introduce the quantization of Q0

was the step ( ) ( )3U03U0 QQ
rrrr ∆∆→ ,,  instead of the replacement of the dynamical
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variables with the respective operators: by consequence O  is now a number of states

and not the mathematical result of any boundary condition imposed to the

wavefunction describing the particle motion. The notation Q0∆  is therefore not

merely formal: it means physically that exists a range of discrete values for Q0

defined by the possible numbers O  of quantum states allowed to the particle. The

classical uncertainty imposed by considering U
r

 and 3
r

 as randomly changing

within U
r∆  and 3

r
∆  results expressed therefore from the quantum point of view

through the range of arbitrary values possible for O . This simple example explains

why in the present approach the actual values of the dynamical variables are of no

interest. Moreover, owing to the very general character of the ideas just introduced,

it appears since now that the quantum properties of particles inferred through the

total uncertainty are consistent with that obtained by solving the wave equation. In

effect, the steps shortly sketched above have been extended in /1/ to the cases of the

particle in a box, to the harmonic oscillator and to the energy levels of multielectron

atoms, in which case the results calculated are in a very good agreement with the

experimental data; in the same way were also calculated the fundamental vibrational

frequency, bond length and binding energy of homonuclear and etheronuclear

diatomic molecules treated as anharmonic oscillators /2/. It is also instructive for the

purposes of the present paper to summarize only the case of hydrogenlike atoms to
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show how this approach applies to calculate the electron energy levels. The classical

energy equation of an electron in the field of a nucleus with charge =  in the

reference system fixed on the center of mass is

ρµρµ
ρ

2

2

22

22

=H03
(( % −++= ( )2,, 03(( ρρ=

where µ  is the reduced mass, ρ  and ρ3  the moduli of radial distance and

momentum. The basic assumption that the electron is completely delocalized around

the nucleus requires to replace ρ  and ρ3 , now to be considered unknown, with the

respective uncertainty ranges ρ∆  and ρ3∆ . The same holds also for 0
r

 to be

replaced by 0
r

∆  as discussed above. Again, no hypotheses are necessary about ρ

and ρ3  and then about ρ∆  and ρ3∆ . At this point the only information available are

the numbers of quantum states Q  and O  related to the radial and angular motion of

the electron. Neverthless, the electron energy levels ),( OQ(  can be effectively

obtained by replacing ρ , ρ3  and 20  with ρ∆ , ρ3∆  and 20∆  in ( )2,, 03(( ρρ= ,

exactly as discussed above. The classical energy equation is rewritten as
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ρρµµ
ρ

∆
−

∆
∆+

∆
+=

2

2

22
*

22

=H03
(( % ( )22** ,, 0033(( ∆≡∆≡∆≡= ρρρρ

Q  is given by ( ) 2/2 hρρ 3Q ∆∆= . The factor 2 within parenthesis accounts for the

possible states of spin of the electron. The factor ½ is due to the fact that really 2
ρ3

is consistent with two possible values ρ3±  of the radial component of the

momentum corresponding to the inwards and outwards motion of the electron with

respect to the nucleus. By consequence, being the uncertainty range ρ3∆  clearly the

same in both cases, the calculation of n  as h/2 ρρ 3∆∆  would mean to count

separately two different situations both certainly possible for the electron but really

corresponding to the same quantum state. These situations are in fact physically

indistinguishable because of the total uncertainty assumed “a priori” about the

motion of the electron; therefore the factor ½ avoids to count twice a given quantum

state. Again, n  and O  take in principle any integer values because the uncertainty

ranges ρ∆  and ρ3∆ include arbitrary values of ρ  and Pρ  and then are arbitrary

themselves. Replacing ρ3∆  with ρ∆/hQ  and 20∆  with 2)1( hOO +  in *(  the result is

ρρµρµ ∆
−

∆
+

+
∆

+=
2

2

2

2

22
*

2

)1(

2

=HOOQ
(( %

hh
,...3,2,1=Q      ,...2,1,0=O
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With elementary manipulations this equation reads

22

42

2

222
*

22

)1(

2

1

h

h
h

h

Q
H=OO

Q
=HQ(( %

µ
ρµ

µ
ρµ

−
∆

++





−

∆
+=

It is possible to minimize *(  putting equal to zero the quadratic term within

parenthesis, certainly positive; being ( )*min (( =  the result is

µ
ρ

2

22

=H
Q h=∆

22

42

2

2

22

)1(

h

h

Q
H=OO

(( %
µ

ρµ
−

∆
+

+=

Then the total quantum energy ),( OQ(  of the hydrogenlike atom results as a sum of

three terms: (i) the kinetic energy of the center of mass of the atom considered as a

whole, (ii) the quantized rotational energy of a system having a reduced mass µ  with

the electron at a distance ρ∆  from the nucleus and (iii) a negative term to be

necessarily identified as the non-relativistic binding energy HO(  of the electron. The

values allowed to O  must fulfill the condition QO ≤ . Let us rewrite in fact (  in a

reference system where the center of mass is at rest, 0=%( , utilizing the expression

of ρ∆  just found
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22

42

2 2
1

)1(

hQ
H=

Q
OO

(
µ





 −+=

If QO ≥  then the total energy (  would result 0≥ , i.e. the hydrogen atom would not be

in a bound state. Then, the stability of hydrogenlike atom requires an upper value 1−Q

for l . Hence it is possible to write n n lo= + +1, where no is of course still an integer.

One finds

( )2

42

12 ++
−=

OQ
H=(

R
HO

µ
,...3,2,1=RQ      ,...2,1,0=O  2,2

Therefore, all the possible terms expected for the non-relativistic energy are found in

a straightfoward and elementary way. The conceptual connection between the

classical and quantum energies ( ) ( ) ),(,,,, 22 OQ(03(03( →∆∆∆→ ρρ ρρ  is the same

as that discussed for the angular momentum: it is obtained again by replacing the

dynamical variables of the classical hamiltonian with the respective uncertainty

ranges rather than with the respective operators. This position, merely aimed to count

the quantum states allowed to the electron, explains why the calculations for the

cases shortly outlined here proceed through simple algebraic manipulations rather
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than by solving the appropriate wave equations. Moreover, these results also explain

why the current values of the dynamical variables can not appear in the final

expressions of the angular momentum and energy levels of hydrogenlike atoms even

when obtained from the respective wave equations. Ref /1/ shows that these ideas

hold also to calculate in straightforward way the energy levels of multielectron

atoms. Also now, n  and l  are not due to any quantization condition on the motion of

the electron but rather, owing to the initial total uncertainty about its dynamical

variables, represent numbers of allowed states. This fact has an important

consequence: any reference to a specific electron is conceptually lost since the

beginning. Instead of being properties of the electron, n  and l  are pertinent to the

ranges ρ∆  and ρ3∆  where any electron could be found; in effect, the uncertainty

principle itself concerns a given number of states regardless of the kind of particle

itself or its actual dynamical variables. In turn, it means that (  and the energy levels

of multielectron atoms are expressed in principle without any concern to which

electron in particular belongs to a given state. Hence, this approach implies

necessarily the indistinguishability of identical particles; in fact, it is physically

meanigless any possibility to distinguish particles whose dynamical variables have

been ignored conceptually, since the beginning and not as a sort of numerical

approximation merely aimed to simplify some calculation. The indistinguishability is

found now as a corollary rather than being introduced as a postulate.



13

It is clear at this point the interest to check whether or not the ideas so far discussed

hold again in the frame of a relativistic approach. This check is important in general,

because the consistency with the relativity is certainly a necessary conceptual

requirement for any physical theory. Moreover, owing to their non-relativistic

character, the papers /1,2/ were of course unable to explain why the numbers of states

n  and l  should fulfil the Pauli principle in order to calculate correctly the electron

energy levels of multielectron atoms and diatomic molecules. The next sections aim

to clarify this point just introducing the requirements of relativity into the present

approach.

3 The relativistic angular momentum.

The ideas introduced in the previous section must be modified when taking into

account the basic requirements of relativity. It is known in general that in relativity the

angular momentum of a system of particles is an antisymmetric four tensor built of two

three-vectors /6/: ( )3U0
M

rrr
×Σ=  and ( )2

4 / FU3WLF0
M

rrr
ε−Σ= , where the summation is

extended to the number M  of particles of the system. 40
r

 is defined by the center of

inertia of the system of particles. In the following we concern the case of a free

particle, i.e. 1=M . Let us consider to this purpose two inertial reference systems 5  and

5′  moving with relative constant velocity 9
r

 and a quantum particle whose linear
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momentum and proper distance from the origin are 3
r

 and U
r

 respectively in 5 . Then,

the proper length of the vector U
r

 appears contracted to a value U ′r  for an observer in

5′ . Let us assume without loss of generality that the origins of the reference systems

5  and 5′  coincide at the time 0=W  and are displaced by a distance W9δ
r

 after a time

range Wδ , being both W  and Wδ  defined in 5  . For an observer in 5′  /7/

9UU
rrr *λ−=′ 3,1a where

2

2

2

2
*

1
F
9

W
9
9U

9
9U

−

−⋅

−⋅=
δ

λ

rr
rr

3,1b

Analogous considerations hold to relate the linear momentum 3 ′
r

 in 5′  and 3
r

 in 5 . A

procedure similar to that followed to derive eq 3,1b, sketched in appendix A, gives

933
rrr

µ−=′       3,2a        where

2

2

22

2

1
F
9
F9

93

9
93

−

−⋅

−⋅=

ε

µ

rr
rr

          3,2b

where ε  is the energy of the particle. Then 3U0 ′×′=′
rrr

 in 5 ′  is calculated as a

function of 3U0
rrr

×=  in 5  through eqs 3,1 and 3,2
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9U3900
rrrrrr

×−×−=′ µλ* 3,3

Elementary manipulations, shortly sketched in appendix B, show that eq 3,3 is

identical to that obtained directly from the general theory of Lorentz transformations of

4-tensors

( )( ) 












 −×−−−⋅+

−
=′ U

F
3W9F909

9
90

F9
0

rrrrr
r

rr
2

22
222

1/1
/1

1 ε

The next section shows how the transformation properties of eq 3,3 enable to modify

eq 2,1, thus introducing the quantized relativistic angular momentum.

4 Introduction to the relativistic angular momentum.

Summing and subtracting the vector W9δ
r

 at right hand side of eq 3,1a one obtains

9UU *
rrr λ−=′ 4,1

being
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W9UU* δ
rrr −=             4,2a      and

2

2

2

2

1
F
9

W
9
9U

W
9
9U

−

−⋅

−−⋅=
δ

δλ

rr
rr

      4,2b

Eq 4,2b confirms that *U
r

 is a galileian transformation of U
r

; in effect, if F  tends to

infinity then 0→λ , so that U ′r  tends to *U
r

. In conclusion, U ′r  is equivalent to a

galileian transformation *U
r

 of U
r

 less a relativistic correction 9
r

λ  calculated with the

help of eq 4,2b. Hence, the moduli of U
r

 and *U
r

 must be equal

UU*
rr = 4,3

Then eqs 4,2a and 4,3 give

( )22 W9W9U δδ
rrr =⋅ 4,4

i.e.

W
9
9U δ

2

1
2

=⋅
rr

4,5
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Then it is possible to rewrite 0 ′
r

 as a function of *U
r

 utilizing eqs 3,2a and 4,1

( ) ( )939U3U0 *
rrrrrrr

µλ −×−=′×′=′

where λ  and µ  are given by eqs 4,2b and 3,2b respectively. Then we obtain

6/0
rrr

+=′ 4,6

where

( )93U/ *
rrrr

µ−×= 4,7a     and       396
rrr

×−= λ         4,7b

The relativistic linear momentum 3
r

 of a particle having rest mass P  and velocity Y
r

 is

2

2

1
F
Y

YP
3

−

=
rr

4,8

In the case of a free particle not subjected to any interactions one assumes that the

velocity Y
r

 is a constant. Replacing eq 4,5 into eq 4,2b, 6
r
 of eq 4,7b becomes
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2

2

2

2

11
2

1

F
Y

YP

F
9

W9
W96

−

×





















−

−=
rr

rr δδ 4,9

If F  is put equal to infinity the component /
r
 of 0 ′

r
, eq 4,7a, takes the classical form

YPU/ *
rrr

×=  because µ  vanishes according to eq 3,2b, whilst the component 6
r

vanishes. The vector 6
r
 is therefore a relativistic correction to /

r
.  Let us recall now

that Wδ  is a time range in 5 . The time range W ′δ  for an observer in 5′  corresponding to

Wδ  is defined by

2

2

1
F
9

WW −′= δδ 4,10

Then, eq 4,9 gives

( )
2

2

1
2

1

F
Y

YP
9WW6

−

×′−=
rrr

δδ 4,11
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It appears also in eq 4,11 that 6
r
 vanishes if ∞→F , because in this case WW δδ →′ . It is

now formally possible to exchange the vectors 22 /1 FY ν−r
 and 9

r
 in the cross

product of eq 4,11, thus obtaining

93

F
Y

6
rrr

×

−

=

2

2

1
2

1 ϕδ
4,12

where

( )YWW
rr δδϕδ −′= and 9P39

rr
= 4,13

Also, it is possible to recognize in eq 4,12 the vector Yϕδ r
 defined as follows

 

2

2

1
F
Y

Y

−

= ϕδϕδ
r

r
4,14

In turn, ϕδ r
 can be regarded as the Lorentz contraction of the proper length Yϕδ r

defined in a reference system moving with a constant velocity Y
r

, i.e. solidal with the

particle itself. Then 6
r
 of eq 4,12 is expressed as a function of Yϕδ r

 through eq 4,14
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9Y 36
rrr

×= ϕδ
2

1
4,15

To summarize: 0 ′
r

 in the reference system 5′  is expressed through a component /
r
,

given by eq 4,7a, plus a relativistic component 6
r
, given by eq 4,15 and due to the

contraction U ′r  of the proper length U
r

; in fact 6
r
 has been initially introduced because

in eq 4,1 the simple galileian transformation *U
r

 of U
r

 has been replaced by 9U*
rr λ− . It

is easy to realize that the angular momentum 6
r
 does not depend on the state of motion

of the particle, but rather it is an intrinsic property of the particle itself. In fact:

(i) according to eq 4,13, 93
r

 is related merely to the drift speed 9
r

 of the reference

system 5  with respect to 5 ′ . It is confirmed by the fact that 6
r
 of eq 4,7b could have

been identically written as ( )93396
rrrr

+×−= λ , i.e. replacing 3
r

 with 933
rr

+  without

affecting 0 ′
r

.

(ii) Yϕδ r
 is, by its own definition, a proper length solidal to the particle, therefore an

internal degree of freedom of the particle rather than a vector characterized in some

way by its state of motion.

(iii) for a free particle 2/ FY3
rr

ε= , therefore ( ) FLUWY0 /4 εrrr
−= . The conservation law of

angular momentum requires that 40
r

 of a free particle be a constant. Being ε  constant
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too, one infers /6/ that FRQVWUWY =− rr
; this merely means that the vector U

r
 moves with a

velocity Y
r

.

The results so far obtained, although deduced assuming initially a constant velocity νr

of the particle in eq 4,8, hold in general: in fact, the meaning of 6
r
 does not change

even for a different state of motion of the particle, being lost any reference to the

particular value of νr . Rather, 6
r
 is here merely a consequence of Lorentz

transformations for the inertial references 5  and 5′ . At this point we assume that the

basic ideas to derive the non-relativistic quantum angular momentum still hold here

and can be applied to handle also the cross product 93
rr ×νϕδ  of eq 4,15 in the same

way as shortly sketched in paragraph 2 for the non-relativistic vectors. In other words,

also these relativistic dynamical variables are treated as quantities whose allowed

values fall within ranges having the physical meaning of quantum uncertainties. Then,

the procedure summarized in section 2 shows immediately that the component of the

cross product 93
rr ×νϕδ  along an arbitrary direction defined by Q

r
 is equal to hV± ,

being V  an integer including zero. In conclusion, the component of 6
r
 along Q

r
 is

hV6 ] 2

1±= ,...2,1,0=V 4,16
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The component of the total angular momentum of the particle is then, thanks to eq 4,6

hh VO0 ] 2

1±±= 4,17

The properties of the additional angular momentum 6
r
, for instance the impossibility to

know simultaneously its x, y and z components, are found with the same procedure

followed in /1/ for /
r
.

5. Discussion

The results obtained in the previous paragraph have shown that the Lorentz

transformations are conditions enough and necessary for the existence of an angular

momentum quantum number V  additional with respect to O . All the considerations so

far carried out require only that F  is finite: any comparison between the velocity of the

quantum particle with respect to F  is in principle irrelevant. In fact, the above

discussion has shown that only ∞=F  means in any case 0=6
r

 and YPU/ *
rrr

×= ,

regardless of the value of Y
r

, thus obtaining only the non-relativistic component hO  of

the angular momentum. This conclusion follows when both coniugate dynamical

variables fulfil the Lorentz transformations. In particular, it is essential that: (i) the

relativistic dynamical variables be regarded as randomly changing within the
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respective quantum uncertainties and (ii) the number of allowed states in the

relativistic phase space be calculated through these quantum uncertainties. In effect,

the idea to extend the approach shortly sketched in section 2 to the relativistic case is

reasonable because the Lorentz transformations change merely the analytical

expressions of momenta and coniugate lengths but not their own physical meaning. On

this respect, it is interesting the fact that the analysis of states in the relativistic phase

space allows to describe also a form of angular momentum that, strictly speaking, is an

intrinsic property of the quantum particle rather than a true kinematical property. An

important consequence of these results is inferred considering an arbitrary number 1

of identical particles whose state is described by positions and linear momenta falling

within proper uncertainty ranges of the phase space. As shown above, the number of

states allowed for the angular momentum of each particle is given now by a number O ,

depending on the motion of the particle, and by a number V , characteristic of the

particle itself regardless of its state of motion. Let us consider now separately the cases

where V  is either even, including zero, or odd. It is immediate to realize that in the

former case a given number of states WRWQ  in the phase space can be defined regardless

of the actual number of particles: in fact, being O  arbitrary and both V  and 2/V

integers, a situation where, say, h50=]0  could result because, for instance,

502/ =+ VO  for one particle or 22/ =+ VO  for each one of 25 particles. In other words,
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it means that any increasing of the number of particles in a system does not lead to a

situation in the phase space physically distinguishable from the previous one: hence

the number of particles consistent with a given quantum state is in principle arbitrary,

i.e. an arbitrary number of V  even particles can be found in a given quantum state. The

conclusion is completely different when considering a system of particles

characterized by V  odd; in this case the properties of the phase space are not longer

indistinguishable with respect to the addition of particles because now the respective

values of ]0  jump from ...integer, half-integer, integer ... values upon addition of each

further particle: any change of the number of particles necessarily gives a total

component of ]0  different from the previous one. In other words, any further odd V

particle added to the system is really described by a new quantum state distinguishable

from those already existing, then necessarily a quantum state different from that of the

other particles.

Two remarks are necessary at this point.

The first remark concerns the question posed in section 2, i.e. why  the numbers of

states Q  and O  appearing in eqs 2,1, 2,2 and in the expressions of many-electron atoms

and diatomic molecules reported in /1,2/ must fulfil the Pauli principle in order that the

results be effectively correct. The simple answer is that Q , O  and V  must necessarily

increase as long as increases the number of electrons simply because each electron

must be in its own quantum state; then Q  and O  can remain the same only if the further
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quantum state necessary for a new electron can be accounted for by both possibilities

for ]0  of eq 4,17.

The second remark concerns the physical meaning of 6
r
 itself. It is evident at this point

the connection of the present results with the behaviour of bosons and fermions as

concerns the Pauli principle. According to this latter no more than one fermion can

occupy the VDPH quantum state; the present conclusion was that the quantum state of

each V  odd particle is necessarily different from that of other particles. These

statements are only formally different but clearly equivalent in principle. This supports

the idea that 6
r
 is just the spin angular moment, in which case the discussion above

shows that the Pauli principle is really a corollary according to the present point of

view. On this respect, it is significant to remind that also the indistinguishability of

identical quantum particles follows in the present approach as a corollary for the

reasons discussed in detail in /1/ and shortly sketched in section 2.

6 Conclusion.

The present approach has described the angular momentum as a straightforward

consequence of the quantum uncertainty in the space phase of conjugate relativistic

dynamical variables. It is remarkable that the two fundamental statements of quantum

mechanichs, i.e. the indistingushability of identical particles and the Pauli principle,
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are obtained as corollaries rather than being postulates imposed “D�SULRUL”. It appears

therefore that, really, information is gained while renouncing to any kind of

information about the dynamical variables of the particles themselves. This approach is

the first step towards to the description of the relativistic many electron atom, taking

into account not only the coulombian repulsion but also the coupling between the spin

and orbital angular momenta of the electrons. Work is in advanced progress on this

subject.
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APPENDIX A

In the case where two inertial reference systems 5  and 5′  move with relative velocity

[9  oriented along the x-axis the transformations of lengths and momenta are /7/
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−
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ε

being ε  the energy of the particle. A general vector formula of transformation for the

momentum is easily found assuming that 9933[
rrr

/⋅=  and 9933[
rrr

/⋅′=′ . Let us insert

[3 ′  and [3  in the above formula and take into account that the component of the

momentum normal to the velocity is not affected by the Lorentz contraction, i.e.
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Utilizing also this latter result we obtain with elementary manipulations
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APPENDIX B

Utilizing eqs 3,1b and 3,2b for *λ  and µ , eq 3,3 reads

9U
F

9
93

93
W

9
9U

00
rr

rr
rr

rrrr
×








+





−⋅−×








+





−⋅+=′

β
ε

βββ

2

22

/1
1

1
1

where        2

2

1
F
9−=β

Collecting β  this equation gives
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On the other hand, it is immediate to show that
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9
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9
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0
rr

r
rr

rr
rr

rrr
⋅=×⋅−×⋅+ 222 B1

In fact, recalling that ( ) ( ) ( ) 321231321 XXXXXXXXX
rrrrrrrrr ⋅−⋅=××  eq B1 reads
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( ) ( )[ ] 0=××+⋅−⋅ 909U9339U
rrrrrrrrr

Furthermore, being 3U0
rrr

×= , then ( ) ( ) ( )3U9U393U9
rrrrrrrrr

⋅−⋅=××  so that effectively the

left hand side of the last equation vanishes, thus proving eq B1. On the other hand,

replacing eq B1 into eq 3,3 one immediately finds just the transformation equation of

the 4-tensor angular momentum reported at the end of section 3.
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