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Abstract

We use a factorisation technique and representations of canonical transformations to con-

struct globally valid closed form expressions without singularities of semi-classical wave functions

for arbitrary smooth local potentials over a one-dimensional position space.

1 Introduction

In semi-classical treatments we construct approximate solutions of a quantum mechanical problem
from the knowledge of the solutions of the corresponding classical problem. The usual WKB pro-
cedure yields excellent results sufficiently far away from turning points. Yet at turning points this
approximation leads to singularities. This occurs for all energies below the maximal value of the
potential. Furthermore degenerate situations occur at maxima of this potential. Some kind of reg-
ularisation (uniformisation) is used near such points. The most common ad hoc solution uses Airy
functions near turning points and Pearcy functions near maxima [1].

The purpose of this paper is to present a semi-classical global approximation without singularities.
To achieve this we take advantage of the following facts:

First, the solution of a problem linear in momentum such as p + V (q) − E = 0 is trivial under
canonical quantisation. Second, the usual Hamiltonian H = p2/2 + V (q) can be factorised into two
factors of the first type. Third one of these factors can be converted to a simple momentum by
a canonical transformation. For quantum mechanics we need Fourier and gauge transformations
[2]. Their composition introduces errors of order h̄2 thus leading to an integral representation of
an approximate solution. A judicious selection of the integration path depending on the coordinate
yields converging integrals everywhere, thus guaranteeing a uniform approximation.

We shall show, that the saddle point approximation of the integral again yields the WKB solution,
and indicate how the path of integration has to be laid to avoid singularities at turning points and
extremal points of the potential. We will restrict our discussion to the one dimensional case and a
Hamiltonian with local potential, where the action for a given energy E is defined as

S(q) =

∫ q

ds[2(E − V (s))]1/2 (1)
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2 The factorisation

We start by introducing the function Ω(q, p, E) = H(q, p) − E. Then the wave function is an
eigenfunction with eigenvalue 0 of the operator version of Ω under the usual canonical quantisation.
If Ω were linear in p, we could bring it into the form

Ω = p− g(q, E) (2)

where g is the derivative of the action function (which would have only one branch in this case) and
the exact wave function would have the simple form

ψ(q) = c exp[iS(q)/h̄] (3)

For Hamiltonian functions of the standard form Ω is a polynomial of second degree in p and after
multiplication by 2 we can decompose it into the linear factors

Ω = [p− g(q, E)] ∗ [p+ g(q, E)] (4)

where the two functions g are the derivatives of the two branches of the action function which differ
only in their sign. It is again trivial to construct eigenfunctions with eigenvalue 0 for each factor.
But this does not solve the entire problem because of the ordering problem of quantum mechanics.
In order to obtain an hermitian operator we must write the factors in some symmetrical order, and
there are infinitely many ways to do so. Fortunately they only differ in h̄2 and higher orders in h̄.
Since we want to construct semi-classical solutions all these possibilities are equally correct for our
purpose and we can select the one which is most convenient. We choose

Ω = [p− g(q, E)]1/2 ∗ [p+ g(q, E)] ∗ [p− g(q, E)]1/2 (5)

Next we remember, that for canonical transformations which are represented by gauge transforma-
tions, this representation is quantum mechanically precise [2]. At this stage it helps to apply the
following canonical transformation

p→ p+ g(q, E), q → q (6)

to bring Ω into the form
Ω = p1/2[p+ 2 g(q, E)]p1/2 (7)

Now assume that χ̃(p) is the Fourier transform of the wave function χ(q), which is eigenfunction
with eigenvalue 0 of the operator version of [p+ 2 g(q, E)]. Then φ̃(p) = p−1/2χ̃(p) is eigenfunction
with eigenvalue 0 of the operator version of Ω of Eq. 7 in momentum representation.

3 Construction of the wave function

To obtain an expression for the final wave function ψ(q) we have to assemble all steps in reverse
order. First it is obvious that the function χ(q) has the form

χ(q) = c exp[i(2S(q, E)/h̄] (8)

such that its Fourier transform

χ̃(p) = c

∫
dr exp[i(rp+ 2S(r, E)/h̄] (9)

yields χ̃(p) as used above, Here, and in what follows, we put all uninteresting factors into the
normalisation constant c. According to Eq. 8 we obtain φ̃(p) and next φ(q) by an inverse Fourier
transform as

φ(q) = c

∫
dp

∫
drp−1/2 exp[i(−qp+ rp+ 2S(r, E))/h̄] (10)



The p integral can be done in closed form giving

φ(q) = c

∫
dr | q − r |−1/2 exp[2i S(r, E)/h̄] (11)

Now we make a substitution of the integration variable introducing s as new integration variable
according to r = q − s2 arriving at

φ(q) = c

∫
ds exp[2i S(q − s2, E)/h̄] (12)

Finally to arrive at ψ(q) we must undo the canonical transformation Eq. 6. This is done by multi-
plying the wave function by the gauge factor exp[−i S(q, E)/h̄] and we obtain

ψ(q) = c exp[−i S(q, E)/h̄]

∫
ds exp[2i S2(q − s2, E)/h̄] (13)

This is the formal global solution we wished to obtain, once we determine the path of integration.
Yet for formal manipulations the fact that we have this closed form may be quite important. For
example we can readily see that we retrieve the WKB approximation by a power expansion, as long
as we are far away from any turning point. Then we formally expand S(q− s2, E) in a power series
in s2 and only keep the first two terms giving S(q, E)−s2∂S(q, E)/∂q. Plugging in into Eq. 21 gives

ψ(q) = exp[−iS(q, E)/h̄]

∫
ds exp[2is2∂S(q, E)/∂q/h̄]

= c(∂S(q, E)/∂q)−1/2 exp[−iS(q, E)/h̄] (14)

which is the usual WKB solution. To arrive at this result we have taken the stationary phase
contribution of the point s = 0 to the s integral. The exponent can have further stationary points at
values sc of s such that q− s2c is a turning point. However, in general, S varies as (s− sc)

3/2 in the
vicinity of such argument values; therefore its second derivative goes as (s−sc)

−1/2. Accordingly, the
contribution of such points to the saddle point evaluation of the integral has weight zero. Therefore
the point s = 0 is the only point giving contributions in saddle point evaluation of the integral.

4 The integration path

We have started from a second order differential equation. Therefore we must be able to obtain two
linearly independent solutions. One way is to reverse the sign of S, the other is by appropriate choices
of the integration path for the variable s in the complex plane. The integrand is the exponential of
some function f(s), the square bracket in Eq. 20. Along some sectors for the angle α of the complex
variable s the function f(s) acquires large negative real parts and the integrand decays exponentially.
Let us call these intervals Ij . For the sectors in between the integrand explodes exponentially. An
appropriate choice for the integration path is to come in from infinity in one angle sector Iin, to pass
near the origin and to return to infinity in a different sector Iout. Some combinations of the two
intervals will produce the same solution, and some the solution identically zero. But there should be
two different choices leading to two different solutions. In general the function f(s) can have isolated
singularities, whose position depends on q and E. Then we may eventually deform the integration
path into one, encircling some of these singularities.

By a good choice of the integration path we can also be sure that the solution does not have
singularities. To understand this, let us fix a value of E and consider q in a small neighbourhood of
an arbitrary fixed point q0. Assume for the moment that the potential V (q) is an analytic function.
Then the integrand may have some singularities in isolated points in s, but outside of them it is
analytic. We call the singular points sj. As we vary q the singular points in s will also move in



general but remain in small neighbourhoods of sj(q0). When we choose the integration path such
that it avoids all these little neighbourhoods, then we obtain a function ψ(q) which is analytic in
the neighbourhood of the point q0. When we vary q over large ranges, then we have eventually to
shift the integration path accordingly to avoid singularities.

The two most important situations where we need the explicit path of the integral are near the
maximum of potentials and near turning points. It can be shown that in the first case, if we use the
quadratic approximation for the extremum we retrieve the exact solution, i.e. the Pearcy function.
In the second case it does not seem easy to find a path that yields the exact solution, but by choosing
a path that fulfills the above conditions, we obtain a solution that has no singularities and numerical
inspection shows it to be quite close to the Airy function.

5 Conclusions

We have obtained an integral representation for a semi-classical approximation, of the wave-function
of a standard Hamiltonian with local potential. The method involves a factorisation, which causes
errors in higher orders of h̄, which is acceptable for a semi-classical approximation. As we may
expect the usual WKB method results from a saddle-point approximation of this integral. Judicious
choices of the path of the integral in the complex plane lead to approximate solutions which have no
singularities and thus converge everywhere adequately. The method may be readily generalized to
Hamiltonians which are of higher order in the momenta. In particular examples it might be useful
to modify the method slightly by multiplying and dividing by additional factors. This can in many
cases provide the exact solution for all values of the energy. In a future publication we will present
such examples in detail.

The advantages of this method consist in the fact that the points where WKB breaks down are
not treated piecemeal, but are covered by the same integral representation. Whenever we wish to
make an analytic statement about semi-classics this can be a great advantage.
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