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Toy Models Unifying Dark Energy and Dark Matter

Sandro Silva e Costa∗
Departamento de F́ısica – UFMT – Av. Fernando Correa da Costa, s/no – 78060-900 – Cuiab́a - MT - Brazil

(Received on 12 October, 2005)

It is very common to find numerical studies of dark energy and dark matter. Among these, one can find the
interesting proposal of unifying dark matter and dark energy with the use of a single component with an ‘exotic’
equation of state. However, there is a certain shortage of analyses involving exact analytic models following this
proposal. Therefore, here are presented examples of simple exact cosmological models which can reproduce
some of the desired properties of an unified dark matter/energy fluid.

I. INTRODUCTION

Today, standard models of the universe are made of five ba-
sic components: photons, barions, neutrinos, dark matter and
dark energy. The question “what are dark energy and dark
matter?” has a standard answer: weakly interacting massive
particles (WIMPs) combined either to a cosmological con-
stant (Λ-CDM models) or to some scalar field (quintessence
models).

Another proposal consists of supposing that maybe both
dark energy and dark matter could be in fact two different
faces of a single component, named quartessence [1]. Ba-
sic quartessential cosmological models possess a single fluid
whose main characteristic is an exotic equation of state.

Numerical studies of this quartessential scenario can be eas-
ily found in the recent literature [2]. But there is a certain
shortage of analyses with exact analytical models. Therefore,
a basic idea to overcome such deficiency is to choose mod-
els where you can do the math first and then think about the
physics later.

II. CLASSICAL SINGLE FLUID MODELS

Friedmann’s equation of General Relativity,
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plus conservation of energy in an expanding universe,
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and an equation of state of the kindp= p(ρ) give the behavior
of the scale factora(t).

The simplest models use the linear relation

p = (γ−1)ρ , (3)

whereγ is a free parameter, and this yields the result
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from where comes the general solutions
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with α≡ 3γ−2 andγ 6= 2/3, and
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for γ = 2/3, both valid forΛ = 0 and whereη is a ‘conformal
time’.

If Λ > 0 it is possible to obtain analytical solutions only for
some values ofγ. For example,
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for γ = 4/3, and
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for γ = 2/3.
A 0th order cosmological test for quartessential models is

to compare them to such ‘classical’ single fluid cosmological
solutions.

III. EXOTIC EQUATIONS OF STATE

The most usual exotic equation of state found in the litera-
ture is a generalization of the Chaplygin gas,

p =−Mρ−α , (9)

with M andα parameters to be determined numerically and/or
statistically. But why use such equation? From energy con-
servation comes that
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FIG. 1: Graphs ofa(t) for a classical single fluid model withp= ρ/3
andΛ 6= 0.

FIG. 2: Graphs ofa(t) for a model withp= ρ/3−Mρ1/2 andΛ = 0.

and forα = 1 one has

a→ ∞ : ρ→M , a→ 0 : ρ→ a−3 . (11)

This kind of behavior can be implemented with another ap-
proach: by adding non-linear terms to the usual linear equa-
tion of state, i.e.,

p = (γ−1)ρ+ f (ρ) . (12)

The non-linear termf (ρ) can be chosen to produce analytical
results and mimic both dark matter and energy.

Therefore, the steps to be followed are:

1. firstly select exotic equations of state which give ana-
lytical solutions;

2. then see which solutions can mimic dark matter and en-
ergy, passing through cosmological tests of0th, 1st, 2nd

and higher orders.

One example of a generalized equation of state is

p = (γ−1)ρ−Mρ−α, (13)

with α 6=−1. From this, one obtains, by energy conservation,
with γ 6= 0,
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whereM′ ≡ Mρ−(1+α)
0 . Choosing, for example,α = −1/2

andγ = 4
3 one has the solution
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while for γ = 2
3 one has
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These results are comparable to the ones obtained in classical
single fluid models (see Figures 1 and 2) and in models with
Λ = Λ(t) [3].

The search for functionsf (ρ) which produce analytical re-
sults can go on and on. But for all the proposals of exotic
equations of state one must check what kind of energy/matter
these equations can represent, their stability, growth of pertur-
bations, etc [4].

IV. CONCLUSIONS

Since the hunting season for dark matter and dark energy
models is still open, several proposals must be considered.
Quartessence is a simple idea and as such can be used as food
for thoughts (even if wrong). But does quartessence have a
future? The answer may be on the next corner, and analytical
results may help, providing forward steps.
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