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Abstract

A sufficient condition for a state |ψ〉 to minimize the Robertson-Schrödinger
uncertainty relation for two observables A and B is obtained which for A with no
discrete spectrum is also a necessary one. Such states, called generalized intelligent
states (GIS), exhibit arbitrarily strong squeezing (after Eberly) of A and B. Systems
of GIS for the SU(1, 1) and SU(2) groups are constructed and discussed. It is shown
that SU(1, 1) GIS contain all the Perelomov coherent states (CS) and the Barut
and Girardello CS while the Bloch CS are subset of SU(2) GIS.

PACS’ numbers 03.65.Ca; 03.65.Fd; 42.50.Dv .

1 Introduction

The squeezed states of electromagnetic field in which the fluctuations in one of the quadra-
ture components Q and P of the photon annihilation operator a = (Q+iP )/

√
2 are smaller

than those in the ground state |0〉 have atracted due attention in the last decade (see for
example the review papers[1, 2] and references there in). In the recent years an interest is
devoted to the squeezed states for other observables[3]–[11]. One looks for non gaussian
states which exhibit Q-P squeezing[3]–[7] and/or for states in which the fluctuations of
other physical observables are squeezed[7]–[11].

The aim of the present paper is to construct SU(1, 1) and SU(2) squeezed intelligent
states and to consider some general properties of squeezing for an arbitrary pair of quan-
tum observables A and B in states which minimize the Robertson-Schrödinger uncertainty

∗This preprint was sent [with the here preserved mis-spellings Heizenberg, studed, ..., and the false
degeneracy of the eigenvalue of L(λ)] to Phys. Rev. Lett. in May 1993 (LF5064/ 03 Jun 93) and declined
from PRL in August 1993. An extended version of it appeared later in J. Math. Phys. 35, 2297 (1994).
Meanwhile similar (but not all) results were published by other authors in PRL and Phys. Rev. A.
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relation (R-S UR)[12]. We call such states generalized intelligent states (GIS) or squeezed
intelligent states when the accent is on their squeezing properties. The Q-P GIS are well
studed and known as squeezed states, two photon coherent states (CS) (see references
in[1, 2]), correlated states[13] or Schrödinger minimum uncertainty states[14]. The term
intelligent states (IS)[11] is refered to states that provide the equality in the Heizenberg
UR for A and B. The Q-P IS are also known as Heizenberg minimum uncertainty states.
The spin IS are introduced and studed in[11].

2 Generalized intelligent states

For any two quantum observables A and B the corresponding second momenta in a given
state obey the R-S UR[12, 13],

σ2

A σ
2

B ≥ 1

4
(〈C〉2 + 4σ2

AB), C ≡ −i[A,B], (1)

where σA, σB and σAB are the dispersions and the covariation of A and B,

σ2

A = 〈A2〉 − 〈A〉2,

σAB =
1

2
(〈AB +BA〉) − 〈A〉〈B〉. (2)

The states that provide the equality in the R-S UR (1) will be called here generalized
intelligent states (GIS). When the covariation σAB = 0 then the S-R UR coincides with
the Heizenberg one. In paper[13] it was proved that if a pure state |ψ〉 with nonvanishing
dispersion of the operator A minimizes the R-S UR then it is an eigenstate of the operator
λA + iB, where λ is a complex number, related to 〈C〉 and to σi(ψ), i = A,B,AB. Here
we prove that this is a sufficient condition for any state |ψ〉.

Proposition 1 A state |ψ〉 minimizes the R-S UR (1) if it is an eigenstate of the operator
L(λ) = λA+ iB,

L(λ)|z, λ〉 = z|z, λ〉, (3)

where the eigenvalue z is a complex number.

Proof. Let first restrict the parameter λ in the eigenvalue eqn. (3), Reλ 6= 0. Then
we express A and B in terms of L(λ) and L†(λ) and obtain

σ2

A(z, λ) =
〈C〉

2Reλ
, σ2

B(z, λ) = |λ|2 〈C〉
2Reλ

,

σAB(z, λ) = −〈C〉 Imλ

2Reλ
, (4)

where 〈C〉 = 〈λ, z|C|z, λ〉. The obtained second momenta (4) obey the equality in R-S
UR (1).

Let now the eigenvalue equation (3) holds for Reλ = 0. This means that the state |z, λ〉
is an eigenstate of the Hermitean operator rA+B where r = Imλ. We consider now the
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mean value of the non negative operator F †(r)F (r), where F (r) = rA+B− (r〈A〉+ 〈B〉)
and r is any real number. Herefrom we get the uncertainty relation

σ2

A σ
2

B ≥ σ2

AB , (5)

the equality holding in the eigenstates of F (r) only. One can consider the equality in (5)
as the desired equality in the Robertson-Schrödinger UR if in these states the mean value
of the operator C vanishes. And this is the case. Indeed, consider in |z, ir〉 the mean
values of the operators A(rA + B) and (rA + B)A. We easily get the coinsidence of the
two mean values, wherefrom we obtain 〈ir, z|C|z, ir〉 = 0 .

Thus all eigenstates |z, λ〉 are GIS. One can prove that when the operator A has no
discrete spectrum then for any |ψ〉 σA(ψ) 6= 0, thereby the condition (3) is also necessary
and all A-B GIS (for any B) are of the form |z, λ〉. Such are for example the cases of
canonical Q-P GIS[14] and the SU(1, 1) GIS, considered below. The above result stems
from the following property of the dispersion of quantum observables:

σA(ψ) = 0 ⇐⇒ A|ψ〉 = a|ψ〉. (6)

As a consequence of the second part of the proof of the Proposition 1 we have the
following

Proposition 2 If the commutator C = −i[A,B] is a positive operator then the operator
rA+B with real r has no eigenstates in the Hilbert space.

In terms of GIS |z, λ〉 the above Proposition 2 gives the restriction on λ: Reλ 6= 0 in
cases of positive C.

Before going to examples let us point out that the A-B IS |z, λ = 1〉 ≡ |z〉 are
noncorrelated and with equal variances,

L|z〉 = z|z〉, L = L(λ = 1) = A+ iB, (7)

σ2

A(z) =
1

2
〈z|C|z〉 = σ2

B(z). (8)

We shall call such states equal variances IS or non squeezed IS, addopting the Eberly
and Wodkiewicz[7] definition of A-B squeezed states. It is convenient to describe this
squeezing by means of the dimensionless parameter qA[8]

qA =
〈C〉/2 − σ2

A

〈C〉/2 , (9)

in terms of which the 100% squeezing corresponds to qA = 1. In the equal variances IS
|z〉 qA = 0 = qB.

Let now consider the cases when the commutator C = −i[A,B] is a positive operator:
〈ψ|C|ψ〉 > 0. In such cases Reλ 6= 0 and we can safely devide by 〈ψ|C|ψ〉. Then from
eqns (4) we get the quite general result for squeezing in GIS |z, λ〉 with positive C,

qA(z, λ) = 1 − 1

2Reλ
, qB(z, λ) = 1 − |λ|2

2Reλ
. (10)
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We see that the squeezing parameter q depends on λ only and 100% squeezing of A is
obtained at Reλ→ ∞ (and of B at λ = 0).

In many cases the IS |z〉 are constructed. Except of the canonicalQ-P case we point out
also the cases of lowering and raising operators of some semisimple Lie groups (the SU(2)
and the SU(1, 1)[15] for example) and for the quantum group SU(1, 1)q, constructed
recently[10]. The GIS |z, λ〉 are eigenstates of the linearly transformed operator

L −→ L(λ) = uL+ vL†, (11)

where u = (λ + 1)/2, v = (λ− 1)/2, L† = A − iB. If this is a similarity transformation
then GIS can be obtained by acting on |z〉 with the transforming operator S(λ) (the
generalized squeezing operator) as it was done by Stoler (see the reference in[1, 2]) in
the canonical case. In the examples below we construct GIS by solving the eigenvalue
equations of L(λ).

3 SU(1, 1) squeezed intelligent states

In this section we construct and discuss K1-K2 GIS, where K1 and K2 are the generators
of the discrete series D+(k) of representations of SU(1, 1) with Cazimir operator C2 :=
k(k − 1). From the commutation relation [K1, K2] = −iK3 we see that one can apply
the corresponding formulas of the previous section with A = K1, B = −K2 and C = K3.
The operator K3 is positive with eigenvalues k + m where m = 0, 1, 2, . . . , . Then as a
consequence of the Proposition 2 the GIS |z, λ; k〉 exist only if Reλ 6= 0 and one can safely
use formulas (4) for the second momenta of K1,2 in the SU(1, 1) GIS |z, λ; k〉. Since the
operator K1 has no discrete spectrum the condition (3) is also necessary for GIS.

The SU(1, 1) equal variances IS |z; k〉 (the eigenstates of K1 − iK2 ≡ K−) have been
constructed and studed by Barut and Girardello as ‘new “coherent” states associated with
noncompact groups’[15]. These states form an overcomplete family of states and provide
a representation of any state |ψ〉 in terms of entire annalytic function 〈ψ|z; k〉 of z of order
1 and type 1 (exponential type). In the Hilbert space of such entire analytic functions the
generators of SU(1, 1) act as the following differential operators [15] (we shall call this
BG-representation)

K3 = k + z
d

dz
, K+ = K†

− = z ,

K− = 2k
d

dz
+ z

d2

dz2
. (12)

We use the BG-representation to construct the SU(1, 1) GIS |z′, λ; k〉 (we denote for a
while the eigenvalue by z′). The eigenvalue equation (3) now reads

[

u(2k
d

dz
+ z

d2

dz2
) + vz

]

Φz′(z) = z′Φz′(z) , (13)

where the parameters u, v have been defined in formula (11). By means of a simple
substitutions the above equation is reduced to the Kummer equation for the confluent
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hypergeometric function 1F1(a, b; z) [16], so that we have the following solution of eqn.
(13)

Φz′(z) = exp (cz) 1F1(a, b;−2cz) , (14)

a = k − z′

2uc
, b = 2k; c2 = −v

u
. (15)

This solution obey the requirements of the BG representation iff

|c| =
√

|v/u| < 1 ⇔ Reλ > 0 , (16)

which is exactly the restriction on λ imposed by the positivity of the commutator C ≡ K3,
according to the Proposition 2. No other constrains on z′ and λ are needed. Thus we
obtain the SU(1, 1) GIS |z′, λ; k〉 in the BG-representation in the form

〈k;λ, z′|z; k〉 = exp (c∗z) 1F1(a
∗, b;−2c∗z) , (17)

where the parameters a, b and c are given by formulas (3.4). Using the power series of

1F1(a, b; z)[16] we get the coinsidence of our solution (17) at λ = 1 (u = 1, v = 0) with
the solution of Barut and Girardello[15],

〈k;λ = 1, z′|z; k〉 = 0F1(2k; zz
′∗) = 〈k; z′|z; k〉. (18)

We note the twofold degeneracy of the eigenvalues of the operator L(λ 6= 1) as it is
seen from eqn. (3.4). We denote the two solutions as 〈±; k;λ, z′|z; k〉. The degeneracy is
removed at λ = 1 as it is known from the BG-solution. Thus this point is a branching
point for the operator L(λ). It worth noting that the degeneracy is also removed by the
following constrain on the two complex parameters z′ and λ in eqn. (3.6)

z′ = 2k
√
−uv = k

√
1 − λ2 . (19)

Using the properties of the function 1F1(a, b; z) [16] we get from (17) in both (±) cases

the same expression exp (z
√

−v∗/u∗) which can be seen to be nothing but the BG-

representation of the Perelomov SU(1, 1) CS |ζ ; k〉[17] with ζ =
√

−v/u ,

|ζ ; k〉 = (1 − |ζ |2)k exp (ζK+) |k; k〉 . (20)

If we impose z′ = −2k
√
−uv we get CS| − ζ ; k〉. One can directly check (using the

SU(1, 1) commutation relations only) that CS (20) are indeed eigenstates of L(λ), eqn.
(11), with eigenvalue (19) provided ζ2 = −v/u . We calculate explicitly the first and
second momenta of the generators Ki in CS |ζ ; k〉 (for σKi

see also[8])

σK1K2
= −2k

Re ζ Im ζ

(1 − |ζ |2)2
,

σ2

K1
=
k

2

|1 + ζ2|2
(1 − |ζ |2)2

, σ2

K2
=
k

2

|1 − ζ2|2
(1 − |ζ |2)2

(21)

and convince that the equality in the R-S UR (1) is satisfied.
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Thus all the Perelomov SU(1, 1) CS are GIS. They are represented by the points of
the two dimensional surface (19) in the four dimensional space of points (z, λ). The BG
CS[15] form another subset of SU(1, 1) GIS isomorfic to the plane λ = 1.

We note that the aboved formulas for the first and second momenta of Ki in CS |ζ ; k〉
hold also for the (non square integrable) Lipkin-Cohen representation with Bargman index
k = 1/4 (but not for k = 3/4 ),

K1 =
1

4
(Q2 − P 2), K2 = −1

4
(QP + PQ),

K3 =
1

4
(Q2 + P 2). (22)

Due to the expressions ofKi in terms of the canonical pairQ,P the CS |ζ ; k = 1/2, 1/4, 3/4〉
(|ζ ; k = 1/4, 3/4〉 are eigenstates of the squared boson operator a2) are of interest for Q-P
squeezing[4, 14, 18]. One can also calculate the fluctuations of Q and P [18] and show that
CS |ζ ; k = 1/4〉 exhibit about 56% ordinary squeezing (Bužek[4]). The squeezing of K1,2

in CS |ζ ; k〉 has been studed in[8]: the 100% squeezing (in the sense of the parameter q,
eqn. (9) for K1 is obtained at ζ = i. We note however that

σ2

i (ζ ; k) ≥ k

2
= σ2

i (0; k), i = K1, K2 ,

i.e. no squeezing of σi in |ζ ; k〉 in comparison with the ground state |0; k〉.
In conclusion to this section we note that for SU(1, 1) GIS the squeezing operator S(λ)

exists and can be defined by means of the relation |z, λ; k〉 = S(λ)|z; k〉 since the spectra
of L and L(λ) coinside. It belongs again to the SU(1, 1) (but not to the series D+(k) since
one can show that it is not unitary) and its matrix elements 〈k; z|S|z; k〉 are explicitly
given by the functions (17) with z′ = z. These diagonal matrix elements determine S
uniquely due to the analyticity property of the BG-representation[15]. We recall that
the same property of the diagonal matrix elements holds in the canonical (Glauber) CS
representation (see for example[2] and references therein).

4 SU(2) squeezed intelligent states

Let now A,B and C be the generators J1,−J2 and −J3 of SU(2) group, i.e. the spin
operators of spin j = 1/2, 1, . . . ,. In this example the commutator C = −J3 is not positive
(the limit Reλ = 0 can be taken) and the operator A = J1 has a disctete spectrum (some
of its eigenstates are examples of exceptional GIS which are not eigenstates of L(λ)).
In paper[11] there were constructed the eigenstates (in their notations) |wN(τ)〉 of the
operator J(α) = J1 − iαJ2, where N = 0, 1, 2 . . . , 2j, τ 2 = (1 − α)/(1 + α), α being
arbirary complex number. These states are eigenstates also of L(λ) = λJ1 − iJ2, thereby
they all are J1-J2 GIS, minimizing the R-S UR (1). They can be represented in the general
form |zN , λ; j〉 with the eigenvalues zN = (j −N)

√
λ2 − 1. Among them (for N = 0 and

N = 2j) are the Bloch (the spin or the SU(2)) CS |τ ;−j〉 and |−τ ;−j〉 (τ is any complex
number)

|τ ;−j〉 = (1 + |τ |2)−j exp (τJ+)| − j〉. (23)
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The mean values of Ji, i = 1, 2, 3 and J2
i (and the dispersions σJ1

and σJ2
) in Bloch

CS are known[11, 19]. Calculating also the covariation,

σJ1,J2
(τ) = 2j

Re τ Im τ

(1 + |τ |2)2
(24)

we can directly check that in CS |τ〉 the equality in the R-S UR (1) holds for the spin
operators J1,2. Thus the Bloch CS are a subset of the SU(2) GIS.

Let us briefly discuss the properties of the SU(2) GIS. First of all for a given parameter
λ there are 2j+1 independent GIS |zN , λ; j〉. There is only one equal variances IS, namely
| − j〉, the point λ = 1 being again the branching point of the L(λ). From this fact it
follows that squeezing operator does not exist. Since the commutator C = i[J1, J2] = −J3

the limit Reλ = 0 in GIS is alowed and in the fluctuations formulas (4) as well since
at this limit 〈C〉 = 〈J3〉 = 0. The operator A = J1 has a discrete spectrum, therefore
σA ≥ 0. From the explicit formula

σ2

J1
(τ) =

j

2

|1 − τ 2|2
(1 + |τ |2)2

(25)

we see that this fluctuation vanishes at τ 2 = 1. Therefore in virture of the property (6)
the Bloch CS |τ = ±1;−j〉 are eigenstates of J1 which can be checked also directly, the
eigenvalues being ±j. The other eigenstates of J1 are exactly those exceptional states
which minimize the R-S UR (1) but are not of the form |z, λ〉 (i.e. dont obey eqn.(3)).
The final note we make about SU(2) GIS is that except for the eigenvalue zN = 0 (when
N = j) all the others are not degenerate (unlike the SU(1, 1) case).

5 Concluding remarks

We have presented a method for construction of squeezed intelligent states (called here
generalized intelligent states (GIS)) for any two quantum observables A and B in which
100% squeezing (after Eberly) can be obtained. GIS minimize the Robertson-Schrödinger
uncertainty relation and can be considered as a generalization of the canonical Q-P
squeezd states[13]. When the operators A and/or B are exspressed in terms of the canon-
ical pair Q,P one can look in the A-B GIS for the squeezing of Q end/or P as well. Such
are for example the cases of SU(1, 1) GIS for the representations with Bargman indexes
k = 1/4, 1/2, 3/4. The SU(1, 1) GIS form a larger set of states which contains as two
different subsets the Perelomov CS and the Barut and Girrardello CS.

The method is based on the minimization of the Robertson-Schrödinger UR (1) for
which the eigenvalue equation (3) for the operator L(λ) = λA+iB is a sufficient condition.
In case of A with continuous spectrum this is also a necessary conditon independently on
B. In view of this the method provides the possibility (when one is interested in squeezing
of the fluctuations of A) to look for the best squeezing partner of A. Thus for example
if A = P then one can show that the eigenstates of L(λ) exist for a series B = Qn,
n = 1, 5, 9, . . . ,.

When the A-B GIS can be obtained from the equal variances IS |z〉 by means of the
invertable squeezing operator S(λ) the latter belongs to SU(1, 1) as it can be derived
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from (11). This fact shows that SU(1, 1) plays important role in a wide class of squeezing
phenomina (not only in Q-P case).
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