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Inequalities for dealing with dete
torine�
ien
ies inGreenberger-Horne-Zeilinger-type experiments∗J. A
a
io de Barros†and Patri
k Suppes‡CSLI - Ventura HallStanford UniversityStanford, CA 94305-4115February 1, 2008Abstra
tIn this arti
le we show that the three-parti
le GHZ theorem 
an bereformulated in terms of inequalities, allowing imperfe
t 
orrelations dueto dete
tor ine�
en
ies. We show quantitatively that taking into a

ountthese ine�
ien
ies, the published results of the Innsbru
k experiment sup-port the nonexisten
e of lo
al hidden variables that explain the experi-mental results.The issue of the 
ompleteness of quantum me
hani
s has been a subje
t of in-tense resear
h for almost a 
entury. Re
ently, Greenberger, Horne and Zeilinger(GHZ) proposed a new test for quantum me
hani
s based on 
orrelations be-tween more than two parti
les [1℄. What makes the GHZ proposal distin
t fromBell's inequalities is that they use perfe
t 
orrelations that result in mathemat-i
al 
ontradi
tions. The argument, as stated by Mermin in [2℄, goes as follows.We start with a three-parti
le entangled state
|ψ〉 =

1√
2
(|+〉1|+〉2|−〉3 + |−〉1|−〉2|+〉3).This state is an eigenstate of the following spin operators:

Â = σ̂1xσ̂2yσ̂3y, B̂ = σ̂1y σ̂2xσ̂3y,

Ĉ = σ̂1y σ̂2yσ̂3x, D̂ = σ̂1xσ̂2xσ̂3x.
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From the above we have that the expe
ted 
orrelationsE(Â) = E(B̂) = E(Ĉ) =

1. However, D̂ = ÂB̂Ĉ, and we also obtain that, a

ording to quantum me-
hani
s, E(D̂) = E(ÂB̂Ĉ) = −1. It is easy to show that these 
orrelations yielda 
ontradi
tion if we assume that spin exist independent of the measurementpro
ess.GHZ's proposed experiment, however, has a major problem. How 
an oneverify experimentally predi
tions based on perfe
t 
orrelations? This was alsoa problem in Bell's original paper. To �avoid Bell's experimentally unrealisti
restri
tions�, Clauser, Horne, Shimony and Holt [3℄ derived a new set of inequal-ities that would take into a

ount imperfe
tions in the measurement pro
ess. Amain purpose of this arti
le is to derive a set of inequalities for the experimen-tally realizable GHZ 
orrelations. We show that the following four inequalitiesare both ne
essary and su�
ient for the existen
e of a lo
al hidden variable, or,equivalently [4℄, a joint probability distribution of A, B, C, and ABC, where
A,B,C are three ±1 random variables.

− 2 ≤ E(A) + E(B) + E(C) − E(ABC) ≤ 2, (1)
− 2 ≤ −E(A) + E(B) + E(C) + E(ABC) ≤ 2, (2)
− 2 ≤ E(A) − E(B) + E(C) + E(ABC) ≤ 2, (3)
− 2 ≤ E(A) + E(B) − E(C) + E(ABC) ≤ 2. (4)For the ne
essity argument we assume there is a joint probability distribution
onsisting of the eight atoms abc, . . . , abc, where we use a notation where a is

A = 1, a is A = −1, and so on. Then, E(A) = P (a) − P (a), where P (a) =
P (abc)+P (abc)+P (abc)+P (abc), and P (a) = P (abc)+P (abc)+P (abc)+P (abc),and similar equations hold for E(B) and E(C). Next we do a similar analysis of
E(ABC) in terms of the eight atoms. Corresponding to (1), we now sum overthe probability expressions for the expe
tations F = E(A) + E(B) + E(C) −
E(ABC), and obtain

F = 2[P (abc) + P (abc) + P (abc) + P (abc)]

−2[P (abc) + P (abc) + P (abc) + P (abc)].Sin
e all the probabilities are nonnegative and sum to ≤ 1, we infer (1) at on
e.The derivation of the other three inequalities is similar. To prove the 
onverse,i.e., that these inequalities imply the existen
e of a joint probability distribution,is slightly more 
ompli
ated. We restri
t ourselves to the symmetri
 
ase P (a) =
P (b) = P (c) ≡ p, P (ABC = 1) ≡ q and thus E(A) = E(B) = E(C) = 2p− 1,
E(ABC) = 2q− 1. In this 
ase, (1) 
an be written as 0 ≤ 3p− q ≤ 2, while theother three inequalities yield just 0 ≤ p + q ≤ 2. Let x ≡ P (abc) = P (abc) =
P (abc), y ≡ P (abc) = P (abc) = P (abc), z ≡ P (abc) and w ≡ P (abc). It iseasy to show that on the boundary 3p = q de�ned by the inequalities the values
x = 0, y = q

3 , z = 0, w = 1 − q de�ne a possible joint probability distribution,sin
e 3x+ 3y + z + w = 1. On the other boundary, 3p = q + 2 a possible jointdistribution is x = (1−q)
3 , y = 0, z = q, w = 0. Then, for any values of q and p2



within the boundaries of the inequality we 
an take a linear 
ombination of thesedistributions with weights 3p−q
2 and 1 − 3p−q

2 and obtain the joint probabilitydistribution, x = (1 − 3p−q

2 )1−q

3 , y = 3p−q

2
q

3 , z = (1 − 3p−q

2 )q, w = 3p−q

2 (1 − q),whi
h proves that if the inequalities are satis�ed a joint probability distributionexists, and therefore a lo
al hidden variable as well. The generalization to theasymmetri
 
ase is tedious but straightforward.The 
orrelations present in the GHZ state are so strong that even if weallow for experimental errors, the non-existen
e of a joint distribution 
an stillbe veri�ed. Let(i) E(A) = E(B) = E(C) ≥ 1 − ǫ,(ii) E(ABC) ≤ −1 + ǫ,where ǫ represents a de
rease of the observed 
orrelations due to experimentalerrors. To see this, let us 
ompute the value of F de�ned above, F = 3(1 −
ǫ) − (−1 + ǫ). But the observed 
orrelations are only 
ompatible with a lo
alhidden variable theory if F ≤ 2, hen
e ǫ < 1

2 . Then, in the symmetri
 
ase,there 
annot exist a joint probability distribution of A, B and C satisfying (i)and (ii) if ǫ < 1/2.We will give an analysis of what happens to the 
orrelations when the de-te
tors have e�
ien
y d ∈ [0, 1] and a probability γ of dete
ting a dark photonwithin the window of observation when no real photon is dete
ted. Our analysiswill be based on the experiment of Bouwmeester et al. [5℄. In their experiment,an ultraviolet pulse hits a nonlinear 
rystal, and pairs of 
orrelated photons are
reated. There is also a small probability that two pairs are 
reated within awindow of observation, making them indistinguishable. When this happens, byrestri
ting to states where only one photon is found on ea
h output 
hannel tothe dete
tors, we obtain the following state,
1√
2
|+〉T (|+〉1|+〉2|−〉3 + |−〉1|−〉2|+〉3),where the subs
ripts refer to the dete
tors and + and − to the linear polarizationof the photon. Hen
e, if a photon is dete
ted at the trigger T (lo
ated after apolarizing beam splitter) the three-photon state at dete
tors D1, D2, and D3 isa GHZ-
orrelated state (see FIG. 1).We will assume that double pairs 
reated have the expe
ted GHZ 
orrela-tion, and the probability negligible of having triple pair produtions or of havingfourfold 
oin
iden
e registered when no photon is generated. (Our analysis isdi�erent from that of �ukowski [6℄, who 
onsidered only ideal dete
tors.) Twopossibilities are left: i) a pair of photons is 
reated at the parametri
 down
onverter; ii) two pairs of photons are 
reated. We will denote by p1p2 thepair 
reation, and by p1...p4 the two-pair 
reation. We will assume that theprobabilities add to one, i.e. P (p1 . . . p4) + P (p1p2) = 1.We start with two photons. p1p2 
an rea
h any of the following 
ombinationsof dete
tors: TD1, TD2, TD3, D1D1, D1D2, D1D3, D2D2, D2D3, D3D3, TT .3
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FIG. 1Figure 1: S
heme for the Innsbru
k GHZ experiment. The GHZ 
orrelationsare obtained when all dete
tors T,D1, D2, and D3 register a photon within thesame window of time.For an event to be 
ounted as being a GHZ state, all four dete
tors must �re(this 
onditionalization is equivalent to the enhan
ement hypothesis). We takeas our set of random variables T,D1,D2,D3 whi
h take values 1 (if they �re)or 0 (if they don't �re). We will use t, d1, d2, d3 (t, d1, d2, d3) to represent thevalue 1 (0). We want to 
ompute P (td1d2d3 | p1p2) , the probability that alldete
tors T,D1, D2, D3 �re simultaneously given that only a pair of photonshas been 
reated at the 
rystal. We start with the 
ase when the two photonsarrive at dete
tors T and D3. Sin
e the e�
ien
y of the dete
tors is d, theprobability that both dete
tors dete
t the photons is d2, the probability thatonly one dete
ts is 2d(1 − d) and the probability that none of them dete
t is
(1− d)2. Taking γ into a

ount, then the probability that all four dete
tors �reis

P (td1d2d3 | p1p2 = TD3) = γ2 (d+ γ(1 − d))
2
,where p1p2 = TD3 represents the simultaneous (i.e. within a measurementwindow) arrival of the photons a the trigger T and at D3. Similar 
omputations
an be 
arried out for p1p2 = TD1, TD2, D1D3, D1D2, D2D3. For p1p2 = DiDithe 
omputation of P (td1d2d3 | p1p2 = DiDi) is di�erent. The probability thatexa
tly one of the photons is dete
ted at Di is d(1− d) and the probability thatnone of them are dete
ted is (1 − d)2. Then, it is 
lear that

P (td1d2d3 | p1p2 = DiDi) = d (1 − d) γ3 + (1 − d)2γ4,and we have at on
e that
P (td1d2d3 | p1p2) = 6γ2 (d+ γ(1 − d))

2

+4γ3 (1 − d) (d+ γ) .4



We note that the events involving P (td1d2d3 | p1p2) have no spin 
orrelation,
ontrary to GHZ events.We now turn to the 
ase when four photons are 
reated. The probabilitythat all four are dete
ted is d4, that three are dete
ted is 4d3(1 − d), that twoare dete
ted is 6d2(1 − d)2, that one is dete
ted is 4d(1 − d)3, and that none isdete
ted is (1−d)4. If all four are dete
ted, we have a true GHZ-
orrelated statedete
ted. However, one 
an again have four dete
tions due to dark 
ounts. Wewill write p1...p4 = GHZ to represent having the four GHZ photons dete
ted,and p1...p4 = GHZ as having the four dete
tions as a non-GHZ state. We 
anwrite that
P (td1d2d3 | p1...p4 = GHZ) = d4 + γ (1 − d) d3 (5)and

P
(

td1d2d3 | p1...p4 = GHZ
)

= 3γd3(1−d)+6γ2d2(1−d)2+4γ3d(1−d)3+γ4(1−d)4.The last term in (5) 
omes from the unique role of the trigger T, that needs todete
t a photon but not ne
essarily one that has a GHZ 
orrelation.How do the non-GHZ dete
tions 
hange the GHZ expe
tations? What ismeasured in the laboratory is the 
onditional 
orrelation E (S1S2S3 | td1d2d3),where S1, S2 and S3 are random variables with values ±1, representing the spinmeasurement at D1, D2 and D3 respe
tively. We 
an write it as
E (S1S2S3 | td1d2d3) =

E (S1S2S3 | td1d2d3 & GHZ)P (GHZ)

P (GHZ) + P (GHZ)
.sin
e for non-GHZ states we expe
t a 
orrelation zero for the term

E
(

S1S2S3 | td1d2d3 &GHZ
)

P (GHZ)

P (GHZ) + P (GHZ)
.Negle
ting terms of higher order than γ2, using γ ≪ d, and P (p1p2) ≫ P (p1...p4),we obtain, from P (GHZ) = 6P (p1p2)γ

2d2+3P (p1...p4)γ(1−d)d3 and P (GHZ) =
P (p1...p4)

[

d4 + γ (1 − d) d3
]

, that
E (S1S2S3 | td1d2d3) =

E(S1S2S3 | td1d2d3&GHZ)
[

1 + 6 P (p1p2)
P (p1...p4)

γ2

d2

] . (6)This value is the 
orre
ted expression for the 
onditional 
orrelations if wehave dete
tor e�
ien
y taken into a

ount. The produ
t of the random vari-ables S1S2S3 
an take only values +1 or −1. Then, if their expe
tation is
E (S1S2S3 | td1d2d3) we have

P (S1S2S3 = 1 | td1d2d3) =
1 + E (S1S2S3 | td1d2d3)

2
.The varian
e σ2 for a random variable that assumes only 1 or −1 values is

4P (1) (1 − P (1)) . Hen
e, in our 
ase we have as a varian
e
σ2 = 1 − [E (S1S2S3 | td1d2d3)]

2
.5



Figure 2: Contour plot of the 
orrelation as a fun
tion of γ and d. The regionwhere the 
orrelation is 0.92 de�nes a region for the parameters γ and d that is
ompatible with the Innsbru
k results.We will estimate the values of γ and d to see how mu
h E (S1S2S3 | td1d2d3)would 
hange due to experimental errors. For that purpose, we will use typi
alrates of dete
tors [7℄ for the frequen
y used at the Innsbru
k experiment, as wellas their reported data [5℄. First, modern dete
tors usually have d ∼= 0.5 for thewavelengths used at Innsbru
k. We assume a dark-
ount rate of about 3 × 102
ounts/s. With a time window of 
oin
iden
e measurement of 2×10−9 s, we thenhave that the probability of a dark 
ount in this window is γ ∼= 6× 10−7. From[5℄ we use that the ratio P (p1p2)/P (p1...p2) is on the order of 1010. Substitutingthis three numeri
al values in (6) we have E (S1S2S3 | td1d2d3) ∼= 0.9. Fromthis expression it is 
lear that the 
hange in 
orrelation imposed by the dark-
ount rates is signi�
ant for the given parameters. However, it is also 
lear thatthe value of the 
orrelation is quite sensitive to 
hanges in the values of both
γ and d. We 
an now 
ompare the values we obtained with the ones observedby Bouwmeester et al. for GHZ and GHZ states [5℄. In their 
ase, they 
laimto have obtained a ratio of 1 : 12 between GHZ and GHZ states. In this
ase the 
orrelations are E (S1S2S3 | td1d2d3) ∼= 0.92. It is 
lear that a detailedanalysis of the parameters would be ne
essary to �t the experimental result tothe predi
ted 
orrelations that take the ine�
ien
ies into a

ount, but at thispoint one 
an see that values 
lose to an experimentally measured 0.92 
an beobtained with appropriate 
hoi
es of the parameters d and γ (see FIG. 2). Thisexpe
ted 
orrelation also satis�es

E (S1S2S3 | td1d2d3) > 1 − 1

2
. (7)This result is enough to prove the nonexisten
e of a joint probability distribu-6



tion. We should note that the standard deviation in this 
ase is
σ ∼=

√

(1 + 0.92) (1 − 0.92) = 0.39. (8)As a 
onsequen
e, sin
e 0.92−0.39 = 0.53, the result 0.92 is bounded away fromthe 
lassi
al limit 0.5 by more than one standard deviation (see FIG. 3).We showed that the GHZ theorem 
an be reformulated in a probabilisti
 wayto in
lude experimental ine�
ien
ies. The set of four inequalities (1)-(4) setslower bounds for the 
orrelations that would prove the nonexisten
e of a lo
alhidden-variable theory. Not surprisingly, dete
tor ine�
ien
ies and dark-
ountrates 
an 
hange 
onsiderably the 
orrelations. How do these results relate toprevious ones obtained in the large literature of dete
tor ine�
ien
ies in exper-imental tests of lo
al hidden-variable theories. We start with Mermin's paper[9℄, where an inequality for F similar to ours but for the 
ase of n-
orrelatedparti
les is derived. Mermin does not derive a minimum 
orrelation for GHZ'soriginal setup that would imply the non-existen
e of a hidden-variable theory,as his main interest was to show that the quantum me
hani
al results divergeexponentially from a lo
al hidden-variable theory if the number of entangledparti
les in
rease. Braunstein and Mann [8℄ take Mermin's results and estimatepossible experimental errors that were not 
onsidered here. They 
on
lude thatfor a given e�
ien
y of dete
tors the noise grows slower than the strong quantumme
hani
al 
orrelations. Reid and Munru [10℄ obtained an inequality similar toour �rst one, but there are sets of expe
tations that satisfy their inequality andstill do not have a joint probability distribution. In fa
t, as we mentioned ear-lier, our 
omplete set of inequalities is a ne
essary and su�
ient 
ondition tohave a joint probability distribution.We have used an enhan
ement hypothesis, namely, that we only 
ountedevents with all four simultaneous dete
tions, and showed that with the 
oin
i-den
e 
onstraint a joint probability did not exist in the Innsbru
k experiment.Enhan
ement hypotheses have to be used when dete
tor e�
ien
ies are low,but they may lead to loopholes in the arguments about the nonexisten
e oflo
al hidden-variable theories. Loophole-free requirements for dete
tor ine�-
ien
ies are based on the analysis of [11℄ for the Bell 
ase and for [12℄ for theGHZ experiment without enhan
ement. However, in the Innsbru
k setup en-han
ement is ne
essary, as the ratio of pair to two-pair produ
tion is of theorder of 1010 [5℄. Until experimental methods are found to eliminate the use ofenhan
ement in GHZ experiments, no loophole-free results seem possible.FIG. 3 shows the number of standard deviations, as 
omputed above, bywhi
h the existen
e of a joint distribution is violated. We 
an see that if we
hange the experiment su
h that we redu
e the dark-
ount rate to 50 per se
-ond, instead of the assumed 300, a large improvement in the experimental re-sult would be expe
ted. Dete
tors with this dark-
ount rate and the assumede�
ien
y are available [7℄. We emphasize that there are other possible exper-imental manipulations that would in
rease the observed 
orrelation, e.g. theratio P (p1p2)/P (p1...p2), but we 
annot enter into su
h details here. The pointto hold in mind is that FIG. 3 provides an analysis that 
an absorb any su
h7
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            FIG. 3. 
Figure 3: Number of σ's separating any observed 
orrelation and the 
riti
alboundary 0.5. The square represents the reported 
orrelation for the Innsbru
kexperiment, and the diamond represents the expe
ted 
orrelation if the dark
ount is redu
ed to 50 
ounts/s.
hanges or other sour
es of error, not just the dark-
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