
ar
X

iv
:1

00
1.

32
23

v1
  [

q-
fin

.P
R

]  
19

 J
an

 2
01

0

Option pricing in multivariate stochastic
volatility models of OU type

Johannes Muhle-Karbe∗ Oliver Pfaffel† Robert Stelzer†

We present a multivariate stochastic volatility model withleverage, which is flexible
enough to recapture the individual dynamics as well as the interdependencies between
several assets while still being highly analytically tractable.

First we derive the characteristic function and give conditions that ensure its analyticity
and absolute integrability in some open complex strip around zero. Therefore we can use
Fourier methods to compute the prices of multi-asset options efficiently. To show the
applicability of our results, we propose a concrete specification, the OU-Wishart model,
where the dynamics of each individual asset coincide with the popularΓ-OU BNS model.
This model can be well calibrated to market prices, which we illustrate with an example
using options on the exchange rates of some major currencies. Finally, we show that
covariance swaps can also be priced in closed form.

AMS Subject Classification 2000:Primary: 91B28, Secondary: 60G51
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1. Introduction

This paper deals with the pricing of options depending on several underlying assets. While there is a
vast amount of literature on the pricing of single-asset options, see e.g.Cont and Tankov(2004) or
Schoutens(2003) for an overview, the amount of literature considering the multi-asset case is rather
limited. This is most likely due to the fact that the trade-off betweenflexibility andtractability is par-
ticularly delicate in a multivariate setting. On the one hand, the model under consideration should be
flexible enough to recapture stylized facts observed in realoption prices. When dealing with multiple
underlyings, this becomes challenging, since not only the individual assets but also their joint beha-
viour has to be taken into account. On the other hand, one needs enough mathematical structure to
calculate option prices in the first place and to be able to calibrate the model to market prices. Due to
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1. Introduction

an increasing number of state variables and parameters, this is also not an easy task in a multidimen-
sional framework. In this article we want to propose a model which extends the one put forward in
Pigorsch and Stelzer(2009) and seems to present a reasonable compromise between thesecompeting
requirements. The log-price processesY = (Y1, . . . ,Yd) of d financial assets are modelled as

dYt = (µ +β (Σt))dt+Σ
1
2
t dWt +ρ(dLt), (1.1)

dΣt = (AΣt +ΣtA
T)dt+dLt, (1.2)

whereµ ∈ R
d, A is a reald×d matrix, andβ , ρ are linear operators from the reald×d matrices to

R
d. Moreover,W is anRd-valued Wiener process andL is an independent matrix subordinator, i.e. a

Lévy process which only has positive semidefinite increments. Hence the covariance processΣ is an
Ornstein-Uhlenbeck (henceforth OU) type process with values in the positive semidefinite matrices,
cf. Barndorff-Nielsen and Stelzer(2007). Thus we call (1.1), (1.2) themultivariate stochastic volatility
model of OU type. The positive semidefinite OU type processΣ introduces a stochastic volatility and,
what is difficult to achieve using several univariate models, a stochastic correlation between the assets.
Moreover,Σ is mean reverting and increases only by jumps. The jumps represent the arrival of new
information that results in positive shocks in the volatility and positive or negative shocks in the
correlation of some assets. Due to the leverage termρ(dLt) they are correlated with price jumps. The
present model is a multivariate generalisation of the non-Gaussian OU type stochastic volatility model
introduced byBarndorff-Nielsen and Shepard(2001) (henceforth BNS model). For one underlying,
these models are found to be both flexible and tractable inNicolato and Venardos(2003). The key
reason is that the characteristic function of the return process can often be computed in closed form,
which allows European options to be be priced efficiently using the Fourier methods introduced by
Carr and Madan(1999b) andRaible(2000). In the present study, we show that a similar approach is
also applicable in the multivariate case. Recently,Benth and Vos(2009) discussed a somewhat similar
model in the context of energy markets. However, they do not establish rigorous conditions for the
applicability of Fourier pricing and do not calibrate theirmodel to market prices.

Alternatively, the covariance processΣ can also be modelled by other processes taking values in
the positive semidefinite matrices. In particular, severalauthors have advocated to use a diffusion
model based on the Wishart process, cf. e.g.Da Fonseca, Grasselli and Tebaldi(2007), Gourieroux
(2007), and the references therein. This leads to a multivariate generalisation of the model ofHeston
(1993). However, the treatment of square-root processes on the cone of positive semidefinite matrices
is mathematically quite involved (cf. e.g.Cuchiero, Filipović, Mayerhofer and Teichmann(2009)).
Moreover, there exists empirical evidence suggesting thatvolatility jumps (together with the stock
price), cf.Jacod and Todorov(2010), which cannot be recaptured by a diffusion model. Finally,none
of the multivariate Heston models seems to have been successfully calibrated to market prices until
now.

Another possible approach is to consider multivariate models based on a concatenation of univariate
building blocks. This approach is taken e.g. inLuciano and Schoutens(2006) using Lévy processes, by
Dimitroff, Lorenz and Szimayer(2009), who consider a multivariate Heston model, and byHubalek
and Nicolato(2005), who put forward a multifactor BNS model. However, all these models have
either a somewhat limited capability to catch complex dependence structures or lead to tricky (factor)
identification issues. Apart from models where all parameters are determined by single-asset options,
we are not aware of successful calibrations of such models.

The remainder of this paper is organised as follows. Sections 2.1 and2.2 serve as an introduction
to the multivariate stochastic volatility model of OU type.Afterwards, we derive the joint character-
istic function of(Yt ,Σt). We then show in Section2.4 that a simple moment condition onL implies
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2. The multivariate stochastic volatility model of OU type

analyticity and absolute integrability of the moment generating function ofYt in some open complex
strip around zero. Equivalent martingale measures are discussed in Section2.5, where we also present
a subclass that preserves the structure of our model. In Section 3, we recall how to use Fourier meth-
ods to compute prices of multi-asset options efficiently. Subsequently, we propose the OU-Wishart
model, whereL is a compound Poisson process with Wishart distributed jumps. It turns out that the
OU-Wishart model has margins which are in distribution equivalent to aΓ-OU BNS model, one of the
tractable specifications commonly used in the univariate case. Moreover, the characteristic function
can be computed in closed form, which makes option pricing and calibration particularly feasible.
In an illustrative example we calibrate a bivariate OU-Wishart model to market prices. As a final
application, we show that covariance swaps can also be priced in closed form in Section5. The Ap-
pendix contains a simple result on multidimensional analytic functions which is proved to establish
the regularity of the moment generating function in Section2.4.

Notation

Md,n(R) (resp.Md,n(C)) represent thed×n matrices with real (resp. complex) entries. We abbreviate
Md(·) = Md,d(·). Sd denotes the subspace ofMd(R) of all symmetric matrices. We writeS+d for the
cone of all positive semidefinite matrices, andS

++
d for the open cone of all positive definite matrices.

The identity matrix inMd(R) is denoted byId. σ(A) denotes the set of all eigenvalues ofA∈ Md(C).
We write Re(z) and Im(z) for the real or imaginary part ofz∈ C

d or z∈ Md(C), which has to be
understood componentwise. The components of a vector or matrix are denoted by subscripts, however
for stochastic processes we use superscripts to avoid double indices.

On R
d, we typically use the Euclidean scalar product,〈x,y〉

Rd := xTy, and onMd(R) or Sd the
scalar products given by〈A,B〉Md(R)

:= tr(ATB) or 〈A,B〉
Sd

:= tr(AB) respectively. However, due to the
equivalence of all norms on finite dimensional vector spaces, most results here hold true independently
of the norm. We also write〈x,y〉 = xTy for x,y ∈ C

d, although this is only a bilinear form but not a
scalar product onCd.

We denote by vec :Md(R)→ R
d2

the bijective linear operator that stacks the columns of a matrix
below one other. With the above norms, vec is a Hilbert space isometry. Likewise, for a symmetric
matrix S∈ Sd we denote by vech(S) the vector consisting of the columns of the upper-diagonal part
including the diagonal.

Furthermore, we employ an intuitive notation concerning integration with respect to matrix-valued
processes. For anMm,n(R)-valued Lévy processL, andMd,m(R) resp.Mn,p(R)- valued processesX,Y
integrable with respect toL, the term

∫ t
0 XsdLsYs is to be understood as thed× p (random) matrix with

(i, j)-th entry∑m
k=1 ∑n

l=1

∫ t
0 Xik

s dLkl
s Yl j

s .

2. The multivariate stochastic volatility model of OU type

For the remainder of the paper, fix a filtered probability space (Ω,F ,(Ft)t∈[0,T ],P) in the sense of
Jacod and Shiryaev(2003, I.1.3), whereF0 = {Ω, /0} andT > 0 is a a fixed terminal time.

2.1. Positive semidefinite processes of OU type

To formulate our model, we need to introduce the concept of matrix subordinators as studied in
Barndorff-Nielsen and Pérez-Abreu(2008).
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2. The multivariate stochastic volatility model of OU type

Definition 2.1. AnSd-valued Ĺevy Process L= (Lt)t∈R+ is calledmatrix subordinator, if Lt −Ls∈ S
+
d

for all t > s.

The characteristic function of a matrix subordinatorL is given byE(eitr(ZL1)) = exp(ψL(Z)) for the
characteristic exponent

ψL(Z) = itr(γLZ)+
∫

S
+
d

(eitr(XZ)−1)κL(dX), Z ∈ Md(R),

whereγL ∈ S
+
d andκL is a Lévy measure onSd with κL(Sd\S+d ) = 0 and

∫
{||X||≤1} ||X|| κL(dX)< ∞.

Positive semidefinite processes of OU typeare a generalisation of nonnegative OU type processes
(cf. Barndorff-Nielsen and Stelzer(2007)). Let L be a matrix subordinator andA∈ Md(R). The posit-
ive semidefinite OU type processΣ= (Σt)t∈R+ is defined as the unique strong solution to the stochastic
differential equation

dΣt = (AΣt +ΣtA
T)dt+dLt , Σ0 ∈ S

+
d . (2.1)

It is given by

Σt = eAtΣ0eATt +

∫ t

0
eA(t−s)dLseAT(t−s). (2.2)

SinceΣt ∈ S
+
d for all t ∈R+, this process can be used to model the stochastic evolution of a covariance

matrix. As in the univariate case there exists a closed form expression for the integrated volatility.
Suppose

0 /∈ σ(A)+σ(A). (2.3)

Then the integrated OU type processΣ+ is given by

Σ+
t :=

∫ t

0
Σsds= A−1(Σt −Σ0−Lt), (2.4)

whereA : X 7→ AX+XAT. Note that condition (2.3) implies that the operatorA is invertible, cf.Horn
and Johnson(1990, Theorem 4.4.5). In the case whereΣ is mean reverting, i.eA only has eigenvalues
with negative real part, condition (2.3) is trivially satisfied.

2.2. Definition and marginal dynamics of the model

The following model was introduced and studied inPigorsch and Stelzer(2009) from a statistical
point of view for β ,ρ = 0. Here we extend it to allow for a more general drift and a leverage term
in order to discuss its applicability to option pricing later on. The more general drift is necessary in
order to incorporate exponential martingale dynamics in the present framework (cf. Theorem2.10),
whereas the leverage term significantly improves the calibration to market prices in Section4.2.

Let L be a matrix subordinator with characteristic exponentψL andW an independentRd-valued
Wiener process. Themultivariate stochastic volatility model of OU typeis then given by

dYt = (µ +β (Σt))dt+Σ
1
2
t dWt +ρ(dLt), Y0 ∈R

d (2.5)

dΣt = (AΣt +ΣtA
T)dt+dLt, Σ0 ∈ S

+
d (2.6)

with linear operatorsβ ,ρ : Md(R)→ R
d, µ ∈R

d andA∈ Md(R) such that 0/∈ σ(A)+σ(A).
We have specified therisk premiumβ and theleverage operatorρ in a quite general form. The

following specification turns out to be particularly tractable.
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2. The multivariate stochastic volatility model of OU type

Definition 2.2. We callβ andρ diagonalif, for β1, . . . ,βd ∈ R andρ1, . . . ,ρd ∈ R,

β (X) =




β1X11
...

βdXdd


 , ρ(X) =




ρ1X11
...

ρdXdd


 , ∀X ∈ Md(R).

In the following, we will denote for eachi ∈ {1, . . . ,d} by β i(X) and ρ i(X) the i-th component
of the vectorβ (X) or ρ(X) respectively. The marginal dynamics of the individual assets have been
derived inBarndorff-Nielsen and Stelzer(2009, Proposition 4.3).

Theorem 2.3. Let i∈ {1, . . . ,d}. Then we have

(
Yi

t

)
t∈R+

f idi
=

(
µit +β i(Σ+

t )+
∫ t

0
(Σii

s)
1
2 dWi

s +ρ i(Lt)

)

t∈R+

,

where
f idi
= denotes equality of all finite dimensional distributions.

Let us now consider the case whereA is a diagonal matrix,A=

(
a1 0

...
0 ad

)
, andβ , ρ are diagonal

as well. Then, for everyi ∈ {1, . . . ,d}, we have

dYi
t

f idi
= (µi +βiΣii

t )dt+Σii
t dWi

t +ρi dLii
t , (2.7)

dΣii
t = 2aiΣii

t dt+dLii
t . (2.8)

Apparently, every diagonal elementLii , i = 1, . . . ,d, of a matrix subordinatorL is a univariate subor-
dinator, and thusΣii is a nonnegative OU type process. Consequently, the model for the i-th asset is
equivalent in distribution to a univariate BNS model.

2.3. Characteristic function

Let 〈·, ·〉V , 〈·, ·〉W be bilinear forms as introduced in the notation, whereV,W may be eitherRd, Cd or
Md(·). Given a linear operatorT : V →W, theadjoint T∗ : W →V is the unique linear operator such
that〈Tx,y〉W = 〈x,T∗y〉V for all x∈V andy∈W. Directly by definition we obtain the following

Lemma 2.4. Let y∈ R
d, z∈ Md(R) and t∈ R+. Then the adjoints of the linear operators

A : X 7→ AX+XAT, B(t) : X 7→ eAtXeATt −X,

C (t) : X 7→ eAtXeATtz+β (A−1(B(t)X))yT+ρ(X)yT+
i
2

yyTA−1(B(t)X)

on Md(C) are given by

A∗ : X 7→ ATX+XA, B(t)∗ : X 7→ eATtXeAt −X,

C (t)∗ : X 7→ eATtXzTeAt +ρ∗(Xy)+B(t)∗A−∗
(

β ∗(Xy)+
i
2

XyyT
)
.

Our main objective in this section is to compute the joint characteristic function of(Yt ,Σt). This will
pave the way for Fourier pricing of multi-asset options later on. Note that we use the scalar product

〈(x1,y1),(x2,y2)〉 := xT1 x2+ tr(yT1 y2)

onR
d ×Md(R).
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2. The multivariate stochastic volatility model of OU type

Theorem 2.5 (Joint characteristic function). For every(y,z) ∈ R
d ×Md(R) and t∈ R+, the joint

characteristic function of(Yt ,Σt) is given by

E[exp(i 〈(y,z),(Yt ,Σt)〉)] = exp
{

iyT(Y0+µt)+ itr(Σ0eATtzeAt)

+itr

(
Σ0

(
eATtA−∗

(
β ∗(y)+

i
2

yyT
)

eAt −A−∗
(

β ∗(y)+
i
2

yyT
)))

+

∫ t

0
ψL

(
eATszeAs+ρ∗(y)+eATsA−∗

(
β ∗(y)+

i
2

yyT
)

eAs−A−∗
(

β ∗(y)+
i
2

yyT
))

ds

}
,

whereA−∗ := (A−1)∗ = (A∗)−1 denotes the inverse of the adjoint ofA : X 7→ AX+XAT, that is the
inverse ofA∗ : X 7→ ATX+XA.

Note that forz= 0 we obtain the characteristic function ofYt .

Proof. SinceΣ is adapted to the filtration generated byL, and by the independence ofL andW,

E[exp(〈(y,z),(Yt ,Σt)〉)] = eiyT(Y0+µt)E

[
eitr(zTΣt)+iyT(β(Σ+

t )+ρ(Lt))E

(
eiyT

∫ t
0 Σ

1
2
s dWs

∣∣∣(Ls)s∈R+

)]

= eiyT(Y0+µt)E

[
eitr(zTΣt)+iyT(β(Σ+

t )+ρ(Lt))exp

(
−1

2
yTΣ+

t y

)]
.

By (2.4) and using the fact that the trace is invariant under cyclic permutations the last term equals

eiyT(Y0+µt)E
[
eitr(zTΣt+β(A−1(Σt−Σ0−Lt))yT+ρ(Lt)yT+ i

2yyTA−1(Σt−Σ0−Lt))
]
.

In view of (2.2), we have

Σt −Σ0−Lt =

∫ t

0
B(t −s)dLs+B(t)Σ0,

for the linear operatorB(t) from Lemma2.4. Therefore

E[exp(i 〈(y,z),(Yt ,Σt)〉]

=exp

(
iyT(Y0+µt)+ itr

(
zTeAtΣ0eATt +β (A−1(B(t)Σ0))y

T+
i
2

yyTA−1(B(t)Σ0)

))

× E

[
exp

(
itr

(
zT
∫ t

0
eA(t−s)dLseAT(t−s)+β

(
A−1

(∫ t

0
eA(t−s)dLseAT(t−s)−Lt

))
yT

+ρ(Lt)y
T+

i
2

yyTA−1
(∫ t

0
eA(t−s)dLseAT(t−s)−Lt

)))]

=exp

(
iyT(Y0+µt)+ itr

(
zTeAtΣ0eATt +β (A−1(B(t)Σ0))y

T+
i
2

yyTA−1(B(t)Σ0)

))

× E

[
exp

(
itr

((∫ t

0
C (t −s)dLs

)T

Id

))]

with the linear operatorC (t) from Lemma2.4, sinceA−1
(∫ t

0 eA(t−s)dLseAT(t−s)−Lt

)
∈ Sd. An im-

mediate multivariate generalisation of results obtained in Rajput and Rosinski(1989, Proposition 2.4)
(see alsoEberlein and Raible(1999, Lemma 3.1)) yields an explicit formula for the expectationabove:

E

[
exp

(
itr

((∫ t

0
C (t −s)dLs

)T

Id

))]
= exp

(∫ t

0
ψL (C (s)∗Id) ds

)
.

6



2. The multivariate stochastic volatility model of OU type

By Lemma2.4we have

e
∫ t

0 ψL(C (s)∗Id)ds= e
∫ t

0 ψL

(
eATszTeAs+ρ∗(y)+eATsA−∗(β ∗(y)+ i

2yyT)eAs−A−∗(β ∗(y)+ i
2yyT)

)
ds
.

This expression is well-defined, because

eATszTeAs+ρ∗(y)+eATsA−∗
(

β ∗(y)+
i
2

yyT
)

eAs−A−∗
(

β ∗(y)+
i
2

yyT
)
∈ Md(R)+ iS+d ,

for all s∈ [0, t]. Indeed, this follows from

eATsA−∗
(

yyT
)

eAs−A−∗
(

yyT
)
=

∫ s

0
eATuyyTeAudu∈ S

+
d . (2.9)

Finally, we infer from Lemma2.4 that

tr

(
β (A−1(B(t)Σ0))y

T+
i
2

yyTA−1(B(t)Σ0)

)
= tr

(
Σ0

(
B(t)∗A−∗

(
β ∗(y)+

i
2

yyT
)))

,

which gives the desired result by noting that tr(zΣt) = tr(zTΣt).

2.4. Regularity of the moment generating function

In this section we provide conditions ensuring that the characteristic function ofYt admits an analytic
extensionΦ to some open convex neighbourhood of 0 inC

d. Afterwards, we show absolute integrabil-
ity. The regularity results obtained in this section will allow us to apply Fourier methods in Section3
to compute option prices efficiently.

Definition 2.6. For any t∈ [0,T], themoment generating functionof Yt is defined as

ΦYt (y) := E[exp(yTYt)],

for all y ∈ C
d such that the expectation exists.

Note thatΦYt may not exist anywhere but oniRd, where it coincides with the characteristic function
of Yt . The next lemma is a first step towards conditions for the existence and analyticity of the moment
generating functionΦYt in a complex neighbourhood of zero.

Lemma 2.7. Let L be a matrix subordinator withcumulant transformΘL, that is

ΘL(Z) = ψL(−iZ) = tr(γLZ)+
∫

S
+
d

(etr(XZ)−1)κL(dX), Z ∈ Md(C),

and letε > 0. ThenΘL is analytic on the strip

Sε := {Z ∈ Md(C) : ||Re(Z)||< ε}, (2.10)

if and only if ∫

{||X||≥1}
etr(RX)κL(dX)< ∞ for all R∈ Md(R) with ||R||< ε . (2.11)

7



2. The multivariate stochastic volatility model of OU type

Proof. If (2.11) holds,Duffie, Filipovic and Schachermayer(2003, Lemma A.2) implies thatZ 7→
E(etr(ZL1)) = eΘL(Z) is analytic onSε . Due to Assumption (2.11), dominated convergence yields that
ΘL is continuous onSε . The claim now follows from LemmaA.1. Conversely, ifΘL is analytic on
Sε , thenDuffie et al.(2003, Lemma A.4) implies thatE(tr(ZL1)) = eΘL(Z) for all Z ∈ Sε . Thus, bySato
(1999, Theorem 25.17), Condition (2.11) holds.

The next theorem generalisesNicolato and Venardos(2003, Theorem 2.2) to the multivariate case.
It holds for all sub-multiplicative matrix norms onMd(R) that satisfy

∣∣∣∣yyT
∣∣∣∣ = ||y||2 for all y∈ R

d,
where we use the Euclidean norm onRd. For example, this holds true for the Frobenius and the
spectral norm (the operator norm associated to the Euclidean norm).

Theorem 2.8(Strip of analyticity). Suppose the matrix subordinator L satisfies
∫

{||X||≥1}
etr(RX)κL(dX)< ∞ for all R∈ Md(R) with ||R||< ε , (2.12)

for someε > 0. Then the moment generating functionΦYt of Yt is analytic on the open strip

Sθ := {y∈ C
d : ||Re(y)||< θ},

where

θ :=− ||ρ ||
(e2||A||t +1) ||A−1|| − ||β ||+

√
∆ > 0 (2.13)

with

∆ :=

( ||ρ ||
(e2||A||t +1) ||A−1|| + ||β ||

)2

+
2ε

(e2||A||t +1) ||A−1|| .

Moreover,

ΦYt (y) = exp

(
yT(Y0+µt)+ tr(Σ0Hy(t))+

∫ t

0
ΘL (Hy(s)+ρ∗(y)) ds

)
(2.14)

for all y ∈ S, where

Hy(s) := eATsA−∗
(

β ∗(y)+
1
2

yyT
)

eAs−A−∗
(

β ∗(y)+
1
2

yyT
)
. (2.15)

Proof. The main part of the proof is to show that the function

G(y) := exp

(
yT(Y0+µt)+ tr(Σ0Hy(t))+

∫ t

0
ΘL (Hy(s)+ρ∗(y)) ds

)

is analytic onSθ . First we want to find aθ such that for allu ∈ R
d with ||u|| < θ , it holds that

||Hu(s)+ρ∗(u)||< ε for all s∈ [0, t]. Since

||Hu(s)+ρ∗(u)||=
∣∣∣∣
∣∣∣∣e

ATsA−∗
(

β ∗(u)+
1
2

uuT
)

eAs−A−∗
(

β ∗(u)+
1
2

uuT
)
+ρ∗(u)

∣∣∣∣
∣∣∣∣

≤ 1
2
(e2||A||t +1)

∣∣∣∣A−1
∣∣∣∣ ||u||2+

(
||ρ ||+(e2||A||t +1)

∣∣∣∣A−1
∣∣∣∣ ||β ||

)
||u|| ,

we have to find the roots of the polynomial

p(x) :=
1
2
(e2||A||t +1)

∣∣∣∣A−1
∣∣∣∣x2+

(
||ρ ||+(e2||A||t +1)

∣∣∣∣A−1
∣∣∣∣ ||β ||

)
x− ε .
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2. The multivariate stochastic volatility model of OU type

The positive one is given byθ as stated in (2.13). Note thatθ > 0, becausep is a cup-shaped parabola
with p(0) =−ε < 0.
Now let y∈ Sθ , i.e.y= u+ iv with ||u||< θ . Using Re(yyT) = uuT−vvT and (2.9) we get

Re(Hy(s)+ρ∗(y)) = Hu(s)+ρ∗(u)− 1
2

(
eATsA−∗(vvT)eAs−A−∗(vvT)

)

= Hu(s)+ρ∗(u)− 1
2

∫ s

0
eATrvvTeAr dr.

Because of
∫ s

0 eATrvvTeAr dr ∈ S
+
d , we have

∫

{||X||≥1}
etr(Re(Hy(s)+ρ∗(y))X) κL(dX) =

∫

{||X||≥1}
etr((Hu(s)+ρ∗(u))X)e

− 1
2 tr
((∫ s

0 eAT rvvTeAr dr
)

X
)

κL(dX)

≤
∫

{||X||≥1}
etr((Hu(s)+ρ∗(u))X)κL(dX)< ∞

by Assumption (2.12), since||Hu(s)+ρ∗(u)||< ε . Thus, by Lemma2.7the function

Sθ ∈ y 7→ ΘL(Hy(s)+ρ∗(y))

is analytic onS for every s∈ [0, t]. An application of Fubini’s and Morera’s theorem shows that
integration over[0, t] preserves analyticity, cf.Königsberger(2004, p. 228), henceG is analytic onSθ .
Obviously, we haveΦYt (iy) = G(iy) for all y ∈ R

d by Theorem2.5 and the definition ofG. Thus,
Duffie et al.(2003, Lemma A.4), finally impliesΦYt ≡ G onSθ .

With Theorem2.8at hand, we can show

Theorem 2.9(Absolute integrability). If (2.12) holds for someε > 0, the mapping w7→ ΦYt (y+ iw)
is absolutely integrable, for all y∈ R

d with ||y||< θ , whereθ is given as in Theorem2.8.

Proof. As in the proof of Theorem2.8, we obtain from

Re(Hy+iw(s)) = Hy(s)−
1
2

∫ s

0
eATswwTeAsds

and Re(etr(Z))≤ |etr(Z)|= eRe(tr(Z)) = etr(Re(Z)) for Z ∈ Md(C), that

Re

(∫ t

0

∫

S
+
d

(
etr((Hy+iw(s)+ρ∗(y+iw))X)−1

)
κL(dX)ds

)
≤
∫ t

0

∫

S
+
d

(
etr((Hy(s)+ρ∗(y))X)−1

)
κL(dX)ds.

Using this inequality yields

|ΦYt (y+ iw)| ≤ ΦYt (y)e
− 1

2 tr(Σ0(eATtA−∗(wwT)eAt−A−∗(wwT)))− 1
2

∫ t
0 tr(γL(eATsA−∗(wwT)eAs−A−∗(wwT)))ds

= ΦYt (y)e
− 1

2〈(A−1B(t)(Σ0)+
∫ t
0 A−1B(s)(γL)ds)w,w〉

with B(t) as in Lemma2.4. Note thatA−1B(t)(Σ0)+
∫ t

0 A−1B(s)(γL)ds∈ S
+
d , hence

∫

Rd
|ΦYt (y+ iw)|dw≤ ΦYt (y)

∫

Rd
e−

1
2〈(A−1B(t)(Σ0)+

∫ t
0 A−1B(s)(γL)ds)w,w〉dw< ∞,

by Theorem2.8 and because the integrand is proportional to the density of amultivariate Normal
distribution.
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2. The multivariate stochastic volatility model of OU type

2.5. Martingale Conditions and Equivalent Martingale Meas ures

For notational convenience, we work in this section with themodel

dYt = (µ +β (Σt))dt+Σ
1
2
t dWt +ρ(dLt), Y0 ∈ R

d, (2.16)

dΣt = (γL +AΣt +ΣtA
T)dt+dLt, Σ0 ∈ S

++
d , (2.17)

whereL is a drift-less matrix subordinator with Lévy measureκL. Clearly, this is our multivariate
stochastic volatility model of OU type (2.5), (2.6), except thatµ in (2.5) is replaced byµ − ρ(γL),
such that there is no deterministic drift from the leverage termρ(dLt).

In Mathematical Finance,Y is used to model the joint dynamics of the log-returns ofd assets with
price processesSi

t = Si
0eYi

t , where we setYi
0 = 0 from now on and, hence,S0 denotes the vector of

initial prices.
The martingale property of thediscounted stock prices(e−rt St)t∈[0,T ] for a constant interest rate

r > 0 can be characterised as follows.

Theorem 2.10. The discounted price process(e−rt St)t∈[0,T ] is a martingale if and only if, for i=
1, . . . ,d, ∫

{||X||>1}
eρ i (X)κL(dX)< ∞, (2.18)

and

β i(X) =−1
2

Xii , X ∈ S
+
d , (2.19)

µi = r −
∫

S
+
d

(eρ i (X)−1)κL(dX). (2.20)

Proof. Define Ŝt := e−rt St for all t ∈ [0,T] and let i ∈ {1, . . . ,d}. By Itô’s formula andJacod and
Shiryaev(2003, III.6.35), Ŝi is a local martingale if and only if (2.18), (2.19) and (2.20) hold. Thus it
remains to show that it is actually a true martingale under the stated assumptions. SinceŜ is a positive
local martingale, it is a supermartingale and hence a martingale if and only ifE(Ŝi

T) = Ŝi
0 for all

i ∈ {1, . . . ,d}. This can be seen as follows. By Theorem2.3, (2.19) and (2.20) we have

E(Ŝi
T) = Ŝi

0E

(
exp

(
(µ i − r)T +β i(Σ+

T )+
∫ T

0
(Σii

s)
1
2 dWi

s +ρ i(LT)

))

= Ŝi
0e

−T
∫
S
+
d
(eρ i (X)−1)κL(dX)

E

(
e−

1
2(Σ

+
T )

ii+ρ i(LT)E

(
e
∫ T

0 (Σii
s)

1
2 dWi

s

∣∣∣∣(Ls)s∈[0,T ]

))

= Ŝi
0e

−T
∫
S
+
d
(eρ i (X)−1)κL(dX)

E
(

eρ i (LT)
)

= Ŝi
0.

This proves the assertion.

As in Nicolato and Venardos(2003, Theorem 3.1), it is possible to characterise the set of all equi-
valent martingale measures (henceforth EMMs), if the underlying filtration is generated byW and
L. More specifically, it follows from the Martingale Representation Theorem (cf.Jacod and Shiryaev
(2003, III.4.34)), that the density processZt = E(dQ

dP|Ft) of any equivalent martingale measureQ can
be written as

Z = E

(∫ ·

0
ψsdWs+(Y−1)∗ (µL −νL)

)
(2.21)

10



3. Option pricing using integral transform methods

for suitable processesψ andY in this case. HereµL resp.νL denote the random measure of jumps
resp. its compensator (cf.Jacod and Shiryaev(2003, II.1) for more details). Under an arbitrary EMM,
L may not be a Lévy process, andW andL may not be independent. However, there is a subclass of
structure preservingEMMs under whichL remains a Lévy process independent ofW. This translates
into the following specifications ofψ andY (cf. Nicolato and Venardos(2003, Theorem 3.2) for the
univariate case):

Theorem 2.11(Structure preserving EMMs). Let y: S+d → (0,∞) such that

(i)
∫
S
+
d
(
√

y(X)−1)2κL(dX)< ∞,

(ii)
∫
{||X||>1}eρ i(X) κy

L(dX)< ∞, i = 1, . . . ,d,

whereκy
L(B) :=

∫
By(X)κL(dX) for B∈ B(S+d ). Define theRd-valued process(ψt)t∈[0,T ] as

ψt =−Σ− 1
2

t


µ +β (Σt)+

1
2




Σ11
t
...

Σdd
t


+




∫
S
+
d
(eρ1(X)−1)κy

L(dX)
...∫

S
+
d
(eρd(X)−1)κy

L(dX)


−1r


 ,

where1= (1, . . . ,1)T ∈R
d. Then Z= E (

∫ ·
0 ψsdWs+(y−1)∗(µL −νL)) is a density process, and the

probability measure Q defined bydQ
dP =ZT is an equivalent martingale measure. Moreover, WQ :=W−∫ ·

0 ψsds is a Q-standard Brownian motion, and L is an independent driftless Q-matrix subordinator
with Lévy measureκy

L. The Q-dynamics of(Y,Σ) are given by

dYi
t =

(
r −

∫

S
+
d

(eρ i(X)−1)κy
L(dX)− 1

2
Σii

t

)
dt+

(
Σ

1
2
t dWQ

t

)i

+ρ i(dLt), i = 1, . . . ,d,

dΣt = (γL +AΣt +ΣtA
T)dt+dLt .

Proof. Sincey−1> −1, Z is strictly positive byJacod and Shiryaev(2003, I.4.61). The martingale
property ofZ follows along the lines of the proof ofNicolato and Venardos(2003, Theorem 3.2).

The remaining assertions follow fromKallsen(2006, Proposition 1) and the Lévy-Khintchine for-
mula by applying the Girsanov-Jacod-Memin Theorem as inKallsen (2006, Proposition 4) to the
R

1
2d(d+1)-valued process

L̃ =

(
WQ

0

)
+vech(L),

whereWQ :=W− ∫ ·0 ψsds.

The previous theorem shows that it is possible to use a model of the same type under the real-
world probability measureP and some EMMQ, e.g. to do option pricing and risk management within
the same model class. The model parameters underQ can be determined by calibration, the model
parameters underP by statistical methods.

3. Option pricing using integral transform methods

In this section we first recall results ofEberlein, Glau and Papapantoleon(2009) on Fourier pricing in
general multivariate semimartingale models. To this end, letS= (S1

0eY1
, . . . ,Sd

0eYd
) be ad-dimensional

11



3. Option pricing using integral transform methods

semimartingale such that the discounted price process(e−rt St)t∈[0,T ] is a martingale under some pri-
cing measureQ, for some constant instantaneous interest rater > 0.

We want to determine the priceEQ(e−rT f (YT − s)) of a European option with payofff (YT − s) at
maturityT, where f : Rd → R+ is a measurable function ands := (− log(S1

0), . . . ,− log(Sd
0)). Denote

by f̂ theFourier transformof f . The following theorem is fromEberlein et al.(2009, Theorem 3.2) and
represents a multivariate generalisation of integral transform methods first introduced in the context
of option pricing byCarr and Madan(1999b) andRaible(2000).

Theorem 3.1(Fourier Pricing). Fix R∈ R
d, let g(x) := e−〈R,x〉 f (x) for x∈ R

d, and assume that

(i) g∈ L1∩L∞, (ii) ΦYT (R)< ∞, (iii) w 7→ ΦYT (R+ iw) belongs to L1.

Then

EQ(e
−rT f (YT −s)) =

e−〈R,s〉−rT

(2π)d

∫

Rd
e−i〈u,s〉ΦYT (R+ iu) f̂ (iR−u)du. (3.1)

Observe that Theorems2.8and2.9show that Conditions(ii) and(iii) are satisfied for our multivari-
ate stochastic volatility model of OU type (2.5), (2.6) if condition (2.12) holds, i.e. ifL has enough
exponential moments. More specifically, the vectorR has to lie in the intersection of the domains of
ΦYT and f̂ .

We now present some examples. As is well-known, the Fourier transform of the payoff function of
aplain vanilla call optionwith strikeK > 0, f (x) = (ex−K)+ is given by

f̂ (z) =
K1+iz

iz(1+ iz)
(3.2)

for z∈ C with Im(z)> 1. The Fourier transforms of many other single-asset options like barrier, self-
quanto and power options as well as multi-asset options likeworst-of and best-of options can be found
e.g. in the surveyEberlein et al.(2009). FromHubalek and Nicolato(2005) we have the following
formulae for basket and spread options.

Example 3.1. (i) The Fourier transform off (x) = (K−∑d
j=1exj )+, K > 0, that is the payoff func-

tion of abasketput option, is given by

f̂ (z) = K1+i ∑d
j=1 zj

∏d
j=1 Γ(iz j)

Γ(2+ i ∑d
j=1zj)

for all z∈ C with Im(zj) < 0, j = 1, . . . ,d. The price of the corresponding call can easily be
derived using the put-call-parity(K − x)+ = (x−K)+ − x+K. Since we have separated the
initial valuess in (3.1), we can use FFT methods to compute the prices of weighted baskets for
several weights efficiently.

(ii) The Fourier transform of the payoff function of aspreadcall option, f (x) = (ex1 −ex2 −K)+,
K > 0, is given by

f̂ (z) =
K1+iz1+iz2

iz1(1+ iz1)

Γ(iz2)Γ(−iz1− iz2−1)
Γ(−iz1−1)

for all z∈ C with Im(z1)> 1, Im(z2)< 0 and Im(z1+z2)> 1.

Since the Fourier transform of(ex1 −ex2)+ does not exist anywhere, we cannot use Theorem3.1to
price zero-strike spread options. Nevertheless, we can derive a similar formula directly.

12



4. Calibration of the OU-Wishart model

Proposition 3.2(Spread options with zero strike). Suppose that

Φ(Y1
T ,Y

2
T )
(R,1−R)< ∞ for some R> 1.

Then the price of azero-strike spread optionwith payoff(S1
0eY1

T −S2
0eY2

T )+ is given by

EQ(e
−rT (S1

T −S2
T)

+) =
eR(s2−s1)−s2−rT

2π

∫

R

eiu(s2−s1)
Φ(Y1

T ,Y
2
T )
(R+ iu,1−R− iu)

(R+ iu)(R+ iu−1)
du,

where s1 =− ln(S1
0) and s2 =− ln(S2

0).

Observe that unlike forK > 0, we only have to compute a one-dimensional integral to determine the
price of a zero-strike spread option. This will be advantageous in the calibration procedure in Section
4.

Proof. Let R> 1 and definefK(x) = (ex−K)+ for K > 0, andgK(x) = e−RxfK(x). By Fourier inver-
sion and (3.2) we have

fey(x) =
1

2π

∫

R

e(R+iu)xe(1−R−iu)y

(R+ iu)(R+ iu−1)
du,

for all y∈ R. Hence, for the functionhey(x) := (S1
0ex−S2

0ey)+ = fey−s2(x−s1) we get

hey(x) =
1

2π
eR(s2−s1)−s2

∫

R

eiu(s2−s1)
e(R+iu)xe(1−R−iu)y

(R+ iu)(R+ iu−1)
du.

Finally, by Fubini’s theorem

EQ(heY2
T
(Y1

T )) =
eR(s2−s1)−s2

2π

∫

R2

∫

R

eiu(s2−s1)
e(R+iu)xe(1−R−iu)y

(R+ iu)(R+ iu−1)
duP(Y1

T ,Y
2
T )
(dx,dy)

=
eR(s2−s1)−s2

2π

∫

R

eiu(s2−s1)
Φ(Y1

T ,Y
2
T )
(R+ iu,1−R− iu)

(R+ iu)(R+ iu−1)
du,

where the application of Fubini’s theorem is justified by

∫

R2

∫

R

∣∣∣ e(R+iu)xe(1−R−iu)y

(R+ iu)(R+ iu−1)

∣∣∣duP(Y1
T ,Y

2
T )
(dx,dy) =

∫

R2
eRxe(1−R)y

∫

R

|ĝ1(u)|duP(Y1
T ,Y

2
T )
(dx,dy)

≤ ||ĝ1||L1 Φ(Y1
T ,Y

2
T )
(R,1−R)< ∞,

since||ĝ1||L1 < ∞ as shown inEberlein et al.(2009, Example 5.1).

4. Calibration of the OU-Wishart model

We now put forward a specific parametric specification of the model discussed in Section2. To this
end, letn∈ N, Θ ∈ S

+
d and letX be ad×n random matrix with i.i.d standard normal entries. Then

the matrixM := Θ 1
2 XXTΘ 1

2 is said to beWishart distributed, written M ∼ Wd(n,Θ). Note that this
definition can be extended to nonintegern> d−1 using the characteristic function

Z 7→ det(Id −2iZΘ)−
1
2n, (4.1)
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4. Calibration of the OU-Wishart model

seeGupta and Nagar(2000, Theorem 3.3.7). SinceM ∈ S
+
d almost surely, we can define a compound

Poisson matrix subordinatorL with intensityλ andWd(n,Θ) distributed jumps. We call the resulting
multivariate stochastic volatility model of OU typeOU-Wishart model.

Since we have
∫
S
+
d

etr(RX)κL(dX) = det(Id −2RΘ)−
1
2n by (4.1), we see thatL has exponential mo-

ments as long as||R|| < 1
2||Θ|| , where||·|| denotes the spectral norm. That means (2.12) holds for

ε := 1
2||Θ|| , and we can apply the integral transform methods from the previous section to compute

prices of multi-asset options.
By (2.7) and (2.8), each asset follows a BNS model at the margins, ifA, β andρ are chosen to be

diagonal. In particular, forn= 2 we see thatLii , i = 1, . . . ,d, is a compound Poisson subordinator with
exponentially distributed jumps, thus we have in distribution theΓ-OU BNS modelwith stationary
Gamma distribution at the margins, cf. e.g.Nicolato and Venardos(2003, Section 2.2). In particular,
the characteristic functions of the single assets are knownin closed form. Note that while the charac-
teristic function of the stationary distribution of the marginal OU type process is still known forn 6= 2,
it no longer corresponds to a Gamma distribution in this case.

Remark 4.1. There exists a subclass of structure preserving EMMsQ (cf. Theorem2.11) such that we
have an OU-Wishart model under bothPandQ. This means thatL is a compound Poisson process with
Wd(n,Θ) distributed jumps and intensityλ underP, andWd(ñ,Θ̃) distributed jumps with intensitỹλ
underQ. We only need to assume that the Wishart distribution under both P andQ has a Lebesgue
density, i.e.n, ñ> d−1 andΘ,Θ̃∈ S

++
d . Then one simply has to takey as the quotient of the according

Lévy densities. Hence, byGupta and Nagar(2000, 3.2.1),y has to be defined as

y(X) =
λ̃
λ

(
2

1
2(ñ−n)d Γd

(
1
2ñ
)

Γd
(

1
2n
) det(Θ̃)

1
2 ñ

det(Θ)
1
2n

)−1

det(X)
1
2(ñ−n)e−

1
2 tr((Θ̃−1−Θ−1)X), X ∈ S

+
d .

4.1. The OU-Wishart model in dimension 2

We work directly under a pricing measureQ. In two dimensions, and for diagonalA, ρ , our model is
given by

d

(
Y1

t
Y2

t

)
=

((
µ1

µ2

)
− 1

2

(
Σ11

t
Σ22

t

))
dt+

(
Σ11

t Σ12
t

Σ12
t Σ22

t

) 1
2

d

(
W1

t
W2

t

)
+

(
ρ1 dL11

t
ρ2 dL22

t

)

d

(
Σ11

t Σ12
t

Σ12
t Σ22

t

)
=

((
γ1 0
0 γ2

)
+

(
2a1Σ11

t (a1+a2)Σ12
t

(a1+a2)Σ12
t 2a2Σ22

t

))
dt+d

(
L11

t L12
t

L12
t L22

t

)

with initial values

Y0 =

(
0
0

)
, Σ0 =

(
Σ11

0 Σ12
0

Σ12
0 Σ22

0

)
∈ S

++
2 ,

and parametersγ1,γ2 ≥ 0, a1,a2 < 0, ρ1,ρ2 ∈ R. L is a compound Poisson process with intensityλ
andW2(n,Θ)-jumps, wheren= 2 and

Θ =

(
Θ11 Θ12

Θ12 Θ22

)
∈ S

+
2 .
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4. Calibration of the OU-Wishart model

Single-asset option pricing

Since the margins are (in distribution)Γ-OU BNS models, we have a closed form expression for the
moment generating function ofY1, which can be used to price single-asset options. It is givenby

E[ey1Y1
t ] = exp

{
y1µ1t +

e2a1t −1
4a1

(y2
1−y1)Σ11

0 +
1

4a1

(
1

2a1
(e2a1t −1)− t

)
(y2

1−y1)γ1

+
λ

2a1( f2−ξ )

(
ξ ln

(
ξ − f1

ξ −ρ1y1

)
−2a1 f2t

)}

with ξ = 1
2Θ11

and

f1 =
1

4a1
(e2a1t −1)(y2

1−y1)+ρ1y1, f2 =− 1
4a1

(y2
1−y1)+ρ1y1,

which can be obtained by simple integration (also cf.Nicolato and Venardos(2003, Table 2.1) cor-
rected for a typo inf1 and f2). Note that one can use the recursion formula stated inGradshteyn and
Ryzhik (2007, 2.155) to obtain a closed form expression forW2(n,Θ)-jumps withn∈ 2N, too.

Multi-asset option pricing

By (2.14) and (4.1), the joint moment generating function of(Y1,Y2) is given by

E[eyTYt ] = exp

(
yTµt + tr(Σ0Hy(t))+

∫ t

0
tr(γLHy(s))ds+λ

∫ t

0

1
det(I2−2(Hy(s)+ρ∗(y))Θ)

ds−λ t

)

with Hy as in (2.15), A =
(

a1 0
0 a2

)
, γL =

(
γ1 0
0 γ2

)
andρ∗(y) =

(
ρ1y1 0

0 ρ2y2

)
. Whereas the first integral

above is easy to calculate, the second one is not. More specifically, it is not possible to obtain a closed
form expression in terms of ordinary functions, unless one setsa1 = a2 =: a. In this case

E[ey1Y1
t +y2Y2

t ] =exp

{
y1µ1t +y2µ2t +

e2at −1
4a

tr

(
Σ0

(
y2

1−y1 y1y2

y1y2 y2
2−y2

))

+
1
4a

(
γ1(y

2
1−y1)+ γ2(y

2
2−y2)

)( 1
2a

(e2at −1)− t

)

+
λ

2ab0

[
b1

d

(
arctan

(
2b2+b1

d

)
−arctan

(
2b2e2at +b1

d

))

+
1
2

ln

(
b0+b1+b2

b2e4at +b1e2at +b0

)]
+

λ
b0

t −λ t

}

with coefficients

b0 := 1+4det(B−C)+2tr(B−C),

b1 :=−8det(B)+4tr(B)tr(C)−4tr(BC)−2tr(B),

b2 := 4det(B),

and matrices

B :=
1
4a

(
y2

1−y1 y1y2

y1y2 y2
2−y2

)
Θ, C :=

(
ρ1y1 0

0 ρ2y2

)
Θ.
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4. Calibration of the OU-Wishart model

Using det(A+B) = det(A)+det(B)+ tr(A)tr(B)− tr(AB) for A,B∈ M2(R), this follows from

det(I2−2(Hy(s)+ρ∗(y))Θ) = det(I2−2(e2as−1)B−2C) = b0+b1e2as+b2e4as,

and straightforward integration. Likewise, one can also derive a closed form expression forn= 4,6, . . .
usingGradshteyn and Ryzhik(2007, 2.18(4)).

Consequently, one faces a tradeoff at this point. One possibility is to retain the flexibility of different
mean reversion speedsai by evaluating the remaining integral using numerical integration. Alternat-
ively, one can restrict attention to identical mean reversion speeds in order to have a closed-form
expression of the moment generating function at hand. The impact of this decision on the calibration
performance is discussed in Section4.2below.

Remark 4.2(High Dimensionality). The above model can also be defined ford> 2, but of course, the
Fourier formula (3.1) is numerically infeasible in high dimensions. Nevertheless, the calibration of a
high dimensional OU-Wishart model is possible by only evaluating options ontwounderlyings. Using
zero strike spread options and provided the characteristicfunction is known explicitly, this means that
one only has to evaluate single integrals numerically, as inthe univariate case. Indeed, combining
Barndorff-Nielsen and Stelzer(2009, Proposition 4.5) and the fact that every symmetric sub-matrix of
a Wishart distributed matrix is again Wishart distributed,cf. Gupta and Nagar(2000, Theorem 3.3.10),
it follows that the joint dynamics of each pair of assets follows a 2-dimensional OU-Wishart model
as above. Hence, we can calibrate the model using only two-asset options (e.g. spread options). The
price to pay is that the resulting model only incorporates pairwise dependencies, since the respective
covariances completely determine the underlying Wishart distribution.

4.2. Empirical illustration

The aim of this subsection is to show that a calibration of theOU-Wishart model to market prices
is feasible. To the best of our knowledge, this has not been done for any of the other multivariate
stochastic volatility models with non-trivial dependencestructure proposed in the literature. Since
multi-asset options are mostly traded over-the-counter, it is difficult to obtain real price quotes. To
circumvent this problem, we proceed as inTaylor and Wang(2009) and considerforeign exchange
ratesinstead, where a call option on some exchange rate can be seenas a spread option between two
others. Let us emphasise that our calibration routine should not be seen as a finished product, but
much rather as a first test.

We consider a 2-dimensional OU-Wishart model as above whereour first asset is the EUR/USD
exchange rateS$/e = S$/e

0 eY1
, that is the price of 1e in $, and our second asset is the GBP/USD

exchange rateS$/£ = S$/£
0 eY2

, i.e. the price of 1£ in $. Since we model directly under a martingale
measure, we set

µ1 = r$− re−
λρ1

1
2Θ11

−ρ1
, µ2 = r$− r£−

λρ2
1

2Θ22
−ρ2

.

By Hull (2003, 13.4), it follows that the price in $ of a plain vanilla call option onS$/e or S$/£ is given
by e−(r$−re)TE((S$/e

T −K)+) or e−(r$−r£)TE((S$/£
T −K)+), respectively. Now observe that the $-payoff

of a plain vanilla call option on the EUR/GBP exchange rateS£/e is given byS$/£
T (S£/e

T −K)+ =

(S$/e
T −KS$/£

T )+, hence it can be regarded as a spread option onS$/e−S$/£ where the initial value of

the second asset is replaced byKS$/£
0 . Since it is a zero-strike spread option, we can use Proposition

3.2to valuate it.
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4. Calibration of the OU-Wishart model

We obtained the option price data on September 11, 2009 from EUWAX. The EUR/USD exchange
rate at that time wasS$/e

0 = 1.4578$, the GBP/USD exchange rate wasS$/£
0 = 1.6683$ and the

EUR/GBP exchange rate was 0.8738£. As a proxy for the instantaneous riskless interest rate we
took the 3-month LIBOR for each currency, viz.re = 0.732%,r£ = 0.299% andr$ = 0.627%. All
call options here are plain vanilla call options of Europeanstyle. We used 153 call options on the
EUR/USD exchange rate, 37 call options on the GBP/USD exchange rate, and 88 call options on the
EUR/GBP exchange rate, all of them for different strikes and4-5 different maturities. We always used
the mid-value between bid and ask price.

The calibration was performed by choosing the model parameters so as to minimise the mean
squared error between market and model prices. The results can be found in Table4.1. The overall
root mean squared error (RMSE) is 0.0586. If one considers only the marginal models for EUR/USD
and GBP/USD one has a RMSE of 0.0683 and 0.0425 respectively.For comparison, we calibrated
two independentΓ-OU BNS models to the margins separately and obtained a slightly lower RMSE of
0.0610 and 0.0320 respectively. This stems from the fact that the additional dependence parameters do
not enter the pricing formulas for single asset options, whereas the intensity of the compound Poisson
process is the same for all assets in our multivariate framework, unlike when using two univariate
models. This means that we arenot overfittingthe marginal distributions with an excessive amount of
additional parameters, but much rather using a simplified version of a standard model. Nevertheless,
the calibration does not appear to be worsened too much by using this simplification.

To depict the good fit visually we provide Figure1, where market and model prices are compared for
a sample of different strikes and maturities. In Figure2 we compare the corresponding Black-Scholes
implied volatilities.

If one sets the mean reversion parameter of both assets equal, a := a1 = a2 < 0, one has a closed
form solution for the moment generating function of(Y1,Y2). This decreases the runtime consid-
erably. The corresponding calibrated parameters can be found in the second row of Table4.1. The
overall RMSE is 0.0591 and therefore only differs from the one for different mean reversion speeds
by about 0.85 %. At the margins, we have 0.0686 or 0.0439 respectively. Therefore this specification
appears to be an appealing alternative if computation time is an issue.

Finally, we also examined the impact of the leverage term. For ρ1 = 0 = ρ2, the overall RMSE
increases to the considerably higher value of 0.1191, that means by about 101.5 %. At the margins
we have 0.1164 and 0.0639, respectively. The calibrated parameters can be found in the third row of
Table4.1. These empirical results suggest that it is highly advisable to include a leverage operatorρ
in the model. This is in line with statistical studies underP.

Table 4.1: Calibrated parameters. First row: different mean reversion (a1 6= a2). Second row: same
mean reversion (a1 = a2). Third row: no leverage case (ρ1 = 0= ρ2)

λ a1 ρ1 Θ11 Σ11
0 γ1 a2 ρ2 Θ22 Σ22

0 γ2 Θ12 Σ12
0

0.415 -0.313 1.538 0.012 0.017 0 -0.606 -0.211 0.036 0.016 0.003 0.017 0.012
0.369 -0.405 1.388 0.014 0.018 0.003 -0.405 -0.274 0.033 0.015 0 0.017 0.012
0.891 -0.680 / 0.014 0.019 0 -0.680 / 0.020 0.015 0 0.010 0.012

We tested the sensitivity of the calibration with respect tothe initial values of the optimisation
routine. In particular, we found that a calibration to modelprices could recover the true parameters
very well from a broad range of initial values.
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Figure 1: Calibration of the OU-Wishart model. Market prices (circle) against model prices (plus).
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Figure 2: Comparison of the Black-Scholes implied volatility of market prices (dot) and model prices
(solid line).

5. Covariance swaps

In this final section, we show that it is possible to price swaps on the covariance between different
assets in closed form. This serves two purposes. On the one hand, options written on the realised cov-
ariance represent a family of payoffs that only make sense inmodels where covariances are modeled
as stochastic processes rather than constants. On the otherhand, the ensuing calculations exemplify
once more the analytical tractability of the present framework.

We consider again our multivariate stochastic volatility model of OU type under an EMMQ. In ad-
dition, we suppose that the matrix subordinatorL is square integrable, i.e.

∫
{||X||>1} ||X||2κL(dX)< ∞.

The pricing of options written on the realised variance resp. the quadratic variation as its continuous-
time limit have been studied extensively in the literature,cf. e.g.Carr and Lee(2008) and the ref-
erences therein. Since we have a nontrivial correlation structure in our model, one can also consider
covariance swapson two assetsi, j ∈ {1, . . . ,d}, i.e. contracts with payoff[Yi ,Y j ]T −K with covari-
ance swap rate K= E([Yi ,Y j ]T) (see e.g.Carr and Madan(1999a), Da Fonseca, Grasselli and Ielpo
(2008) or Swischuk(2005) for more background on these products). Now we show how to compute
the covariance swap rate. We have

[Yi,Y j ]T = [Yi ,Y j ]cT + ∑
s≤T

∆Yi
s∆Y j

s = (Σ+
T )

i j +ρ i(X)ρ j(X)∗µL
T(dX),
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5. Covariance swaps

and sinceκL(dX)dt is the compensator ofµL, this yields

E([Yi,Y j ]T) = (E(Σ+
T ))

i j +T
∫

S
+
d

ρ i(X)ρ j(X)κL(dX). (5.1)

Note that byPigorsch and Stelzer(2009, Proposition 2.4) resp. since|ρ i(X)ρ j(X)| ≤ ||ρ ||2||X||2,
our integrability assumption onL implies that the expectation is finite. The first summand can be
calculated as follows. By settingy = 0 in Theorem2.5 we obtain the characteristic function ofΣt .
Differentiation yields

E(ΣT) = eATΣ0eATT +eATA−1(E(L1))e
ATT −A−1(E(L1)),

whereE(L1) = γL +
∫
S
+
d

X κL(dX). Using Equation (2.4) we obtain

E(Σ+
T ) = A−1(E(ΣT)−TE(L1)−Σ0),

so we only need to knowE(L1). The second summand in (5.1) can analogously be computed by
differentiating the characteristic function of the matrixsubordinatorL.

In our OU-Wishart model, whereL is a compound Poisson matrix subordinator plus drift with
Wd(n,Θ)-distributed jumps, we have byGupta and Nagar(2000, Theorem 3.3.15) that

E(L1) = γL +λnΘ.

If ρ is diagonal, the second term in (5.1) simplifies to

Tρiρ j

∫

S
+
d

Xii Xj j ν(dX) = Tρiρ jλn
(
2Θ2

i j +nΘii Θ j j
)
,

again byGupta and Nagar(2000, Theorem 3.3.15). Thus we have a closed form expression for the
covariance swap rate:

K =
(

A−1
[
eAT(Σ0+A−1(γL +λnΘ))eATT −A−1(γL +λnΘ)−T(γL +λnΘ)−Σ0

])i j

+Tρiρ jλn
(
2Θ2

i j +nΘii Θ j j
)
.

For example, in the 2-dimensional OU-Wishart model from Section 4.1we have fori = 1 and j = 2

K =
1

a1+a2

[(
e(a1+a2)T −1

)(
Σ12

0 +
λnΘ12

a1+a2

)
−TλnΘ12

]
+Tρ1ρ2λn

(
2Θ2

12+nΘ11Θ22
)
.

As in Carr and Lee(2008), pricing of options on the covariance can be dealt with using the Fourier
methods from Section3, since the joint characteristic function of(Σ+,ρ i(X)ρ j(X)∗µL(dX)) can be
calculated similarly as in the proof of Theorem2.5.
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A. Appendix

A. Appendix

The following simple result on multidimensional analytic functions is needed in the proof of Lemma
2.7.

Lemma A.1. Let Dε = {z∈ C
n : ||Re(z)|| < ε} for someε > 0. Suppose f: Dε → C is an analytic

function of the form f= eF , where F: Dε → C is continuous. Then F is analytic in Dε .

Proof. Let z= (z1,z2, . . . ,zn) ∈ Dε and definez−1 = (z2, . . . ,zn). Then fz−1 : w 7→ f (w,z−1) defines
an analytic function without zeros on the open convex setDε ,z−1 := {w ∈ C : (w,z−1) ∈ Dε}. By
e.g.Fischer and Lieb(1994, Satz V.1.4), there exists an analytic functiong1

z−1
: Dε ,z−1 → C such that

exp(g1
z−1

) = fz−1. HenceF(w,z−1)− g1
z−1

(w) ∈ 2π iZ on Dε ,z−1. Since bothF andg are continuous,
their difference is constant and it follows thatw 7→ F(w,z−1) is analytic onDε ,z−1. Analogously, one
shows analyticity ofF in all other components. The assertion then follows from Hartog’s Theorem
(cf. e.g.Hörmander(1967, Theorem 2.2.8)).
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