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Option pricing in multivariate stochastic
volatility models of OU type

Johannes Muhle-Karbe Oliver Pfaffel  Robert Stelz€r

We present a multivariate stochastic volatility model wakerage, which is flexible
enough to recapture the individual dynamics as well as tterdependencies between
several assets while still being highly analytically tedte.

First we derive the characteristic function and give caads that ensure its analyticity
and absolute integrability in some open complex strip adaaro. Therefore we can use
Fourier methods to compute the prices of multi-asset ogptiglficiently. To show the
applicability of our results, we propose a concrete spetifia, the OU-Wishart model,
where the dynamics of each individual asset coincide wittpttpulai-OU BNS model.
This model can be well calibrated to market prices, which lustrate with an example
using options on the exchange rates of some major curreri€ieslly, we show that
covariance swaps can also be priced in closed form.
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1. Introduction

This paper deals with the pricing of options depending ori#wnderlying assets. While there is a
vast amount of literature on the pricing of single-assetonmgt see e.gCont and Tanko\2004) or
Schouteng2003 for an overview, the amount of literature considering thdtirasset case is rather
limited. This is most likely due to the fact that the tradétudtweenflexibility andtractability is par-
ticularly delicate in a multivariate setting. On the one dhaihe model under consideration should be
flexible enough to recapture stylized facts observed inapabn prices. When dealing with multiple
underlyings, this becomes challenging, since not only tidé/idual assets but also their joint beha-
viour has to be taken into account. On the other hand, onesrexealigh mathematical structure to
calculate option prices in the first place and to be able tbicde the model to market prices. Due to
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1. Introduction

an increasing number of state variables and parametesdsthiso not an easy task in a multidimen-
sional framework. In this article we want to propose a modeictv extends the one put forward in
Pigorsch and Stelz€2009 and seems to present a reasonable compromise betweerdngseting
requirements. The log-price proces¥es: (Y1,...,Y9) of d financial assets are modelled as

1
d% = (u+B(X))dt+ 27 dW +p(dLy), (1.1)
d%;, = (A% +ZAT)dt+dL, (1.2)

whereu € RY, Ais a reald x d matrix, andB, p are linear operators from the rek d matrices to
RY. MoreoverW is anR%valued Wiener process ahds an independent matrix subordinator, i.e. a
Lévy process which only has positive semidefinite incretsiddence the covariance procass an
Ornstein-Uhlenbeck (henceforth OU) type process withelin the positive semidefinite matrices,
cf. Barndorff-Nielsen and Stelz€2007). Thus we call {.1), (1.2 themultivariate stochastic volatility
model of OU typeThe positive semidefinite OU type processtroduces a stochastic volatility and,
what is difficult to achieve using several univariate mogdelstochastic correlation between the assets.
Moreover,% is mean reverting and increases only by jumps. The jumpesept the arrival of new
information that results in positive shocks in the volgtiland positive or negative shocks in the
correlation of some assets. Due to the leverage ;) they are correlated with price jumps. The
present model is a multivariate generalisation of the nangSian OU type stochastic volatility model
introduced byBarndorff-Nielsen and Shepaf@00]) (henceforth BNS model). For one underlying,
these models are found to be both flexible and tractabNigolato and Venardo§003. The key
reason is that the characteristic function of the returrcgse can often be computed in closed form,
which allows European options to be be priced efficienthingghe Fourier methods introduced by
Carr and Madar§19991 andRaible (2000. In the present study, we show that a similar approach is
also applicable in the multivariate case. Recebnth and Vo$2009 discussed a somewhat similar
model in the context of energy markets. However, they do setaldish rigorous conditions for the
applicability of Fourier pricing and do not calibrate theiodel to market prices.

Alternatively, the covariance proce&scan also be modelled by other processes taking values in
the positive semidefinite matrices. In particular, sevexghors have advocated to use a diffusion
model based on the Wishart process, cf. ®g.Fonseca, Grasselli and TebaldD07), Gourieroux
(2007, and the references therein. This leads to a multivariatelisation of the model éfeston
(1993. However, the treatment of square-root processes on tie afpositive semidefinite matrices
is mathematically quite involved (cf. e.Quchiero, Filipovic, Mayerhofer and Teichmaf2009).
Moreover, there exists empirical evidence suggesting wbktility jumps (together with the stock
price), cf.Jacod and Todorof2010, which cannot be recaptured by a diffusion model. Finalbne
of the multivariate Heston models seems to have been sdaligsslibrated to market prices until
NOw.

Another possible approach is to consider multivariate rfedoiesed on a concatenation of univariate
building blocks. This approach is taken e.gLirciano and Schouterf2006 using Lévy processes, by
Dimitroff, Lorenz and Szimayef2009, who consider a multivariate Heston model, andHubalek
and Nicolato(2005, who put forward a multifactor BNS model. However, all teesodels have
either a somewhat limited capability to catch complex depane structures or lead to tricky (factor)
identification issues. Apart from models where all paransedee determined by single-asset options,
we are not aware of successful calibrations of such models.

The remainder of this paper is organised as follows. Sex2dhand2.2 serve as an introduction
to the multivariate stochastic volatility model of OU typ&terwards, we derive the joint character-
istic function of (Y;,%;). We then show in SectioB.4 that a simple moment condition dnimplies
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analyticity and absolute integrability of the moment gatieg function ofY; in some open complex
strip around zero. Equivalent martingale measures aresiied in Sectio.5, where we also present
a subclass that preserves the structure of our model. Imo&e;twe recall how to use Fourier meth-
ods to compute prices of multi-asset options efficientlybstguently, we propose the OU-Wishart
model, wherd. is a compound Poisson process with Wishart distributed gurtigurns out that the
OU-Wishart model has margins which are in distribution ealeint to a8 -OU BNS model, one of the
tractable specifications commonly used in the univariase cioreover, the characteristic function
can be computed in closed form, which makes option pricing) @alibration particularly feasible.
In an illustrative example we calibrate a bivariate OU-Vdishmodel to market prices. As a final
application, we show that covariance swaps can also bedpiricelosed form in Sectiob. The Ap-
pendix contains a simple result on multidimensional amaliginctions which is proved to establish
the regularity of the moment generating function in Secich

Notation

Man(R) (resp.Mqgn(C)) represent the x n matrices with real (resp. complex) entries. We abbreviate
Ma(-) = Mqd(-). Sq¢ denotes the subspace Mfi(R) of all symmetric matrices. We writg] for the
cone of all positive semidefinite matrices, ﬁ]‘)ﬂ* for the open cone of all positive definite matrices.
The identity matrix inMq(R) is denoted byy. o(A) denotes the set of all eigenvaluesfof My(C).
We write Réz) and Im(z) for the real or imaginary part af € CY or z € My(C), which has to be
understood componentwise. The components of a vector oixaat denoted by subscripts, however
for stochastic processes we use superscripts to avoid @lguites.

OnRY, we typically use the Euclidean scalar produgty)gzs := X'y, and onMg(R) or Sq the
scalar products given b, B)y, ) := tr(ATB) or (A, B)g , ‘= tr(AB) respectively. However, due to the
equivalence of all norms on finite dimensional vector spaoest results here hold true independently
of the norm. We also writéx,y) = x"y for x,y € CY, although this is only a bilinear form but not a
scalar product oftd.

We denote by vecMy(R) — R® the bijective linear operator that stacks the columns of &ima
below one other. With the above norms, vec is a Hilbert spsaeétry. Likewise, for a symmetric
matrix S Sq we denote by ved[y) the vector consisting of the columns of the upper-diagoaat p
including the diagonal.

Furthermore, we employ an intuitive notation concernirtggnation with respect to matrix-valued
processes. For avimn(R)-valued Lévy procesk, andMgm(R) resp.My p(R)- valued processes,Y
integrable with respect to, the term f(t, XsdLsYs is to be understood as tle< p (random) matrix with

(i, ))-th entry sy 575 JoXEdLEYs.

2. The multivariate stochastic volatility model of OU type

For the remainder of the paper, fix a filtered probability €@, .7, (% )icjo.1),P) in the sense of
Jacod and Shiryae2003 1.1.3), where%, = {Q,0} andT > 0 is a a fixed terminal time.
2.1. Positive semidefinite processes of OU type

To formulate our model, we need to introduce the concept dfirnaubordinators as studied in
Barndorff-Nielsen and Pérez-Abré008.
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Definition 2.1. AnSg-valued levy Process k= (Li)icr, is calledmatrix subordinatarif L; — Ls € S
forallt > s.

The characteristic function of a matrix subordinaltds given byE (€"(?%)) = exp(y4 (Z)) for the
characteristic exponent

(@) =itr(n2)+ | (€ -1k (dX), ZeMy(R),
d

wherey € Sy andky is a Lévy measure oflq with ki (Sq\Sy) = 0 and [ x <1 [[X]| KL(dX) < 0.

Positive semidefinite processes of OU tgpe a generalisation of nonnegative OU type processes
(cf. Barndorff-Nielsen and Stelz¢2007). LetL be a matrix subordinator amtle My(R). The posit-
ive semidefinite OU type proce&s= (3 )cr, is defined as the unique strong solution to the stochastic
differential equation

d3; = (A% +SAT)dt+dL, ZoeSy. (2.1)

It is given by t
5 = MEett 4 / A gL et (9, (2.2)
0

SinceZ; € S§ forallt € R, this process can be used to model the stochastic evoluteoavariance
matrix. As in the univariate case there exists a closed forpression for the integrated volatility.
Suppose

04 0(A)+0(A). (2.3)

Then the integrated OU type processis given by
t
5 ::/ Sods— A L% — So—Ly), 2.4)
0

whereA : X — AX+ XAT. Note that conditionZ.3) implies that the operatdX is invertible, cf.Horn
and Johnsoi(i199Q Theorem 4.4.5). In the case whé&rés mean revertingi.e A only has eigenvalues
with negative real part, conditior2 3) is trivially satisfied.

2.2. Definition and marginal dynamics of the model

The following model was introduced and studiedRigorsch and Stelzgf009 from a statistical
point of view for 3,p = 0. Here we extend it to allow for a more general drift and arage term
in order to discuss its applicability to option pricing lats. The more general drift is necessary in
order to incorporate exponential martingale dynamics engtesent framework (cf. Theorel0),
whereas the leverage term significantly improves the clifom to market prices in Sectigh2

Let L be a matrix subordinator with characteristic expongntandW an independenk?-valued
Wiener process. Theultivariate stochastic volatility model of OU tyjmethen given by

1
d¥ = (u+B(%)dt+ % dW +p(dly), YoeR® (2.5)
d% = (AL +SAT)dt+dl, ZoeS§ (2.6)

with linear operatorg, p : Mg(R) — RY, u € RY andA € My(R) such that G o (A) + o (A).
We have specified thask premiumf and theleverage operatop in a quite general form. The
following specification turns out to be particularly trauia



2. The multivariate stochastic volatility model of OU type

Definition 2.2. We call3 and p diagonalif, for B1,...,84 € R andps,...,pq € R,
lell P1X11

B(X)= : , p(X)= : , VX eMy(R).
BaXdd PdXdd

In the following, we will denote for eache {1,...,d} by B'(X) and p'(X) thei-th component
of the vector3(X) or p(X) respectively. The marginal dynamics of the individual séave been
derived inBarndorff-Nielsen and Stelz€2009 Proposition 4.3).

Theorem 2.3. Letie {1,...,d}. Then we have

(%), o <uit+B‘(Zt+)+/:(zg)%dV\g —i—pi(Lt)) :

teR,

fidi . o . o
where = denotes equality of all finite dimensional distributions.

ar 0

Let us now consider the case whéYés a diagonal matrixA = ( ) , andp, p are diagonal

0 ad
as well. Then, for everye {1,...,d}, we have

o =+ Btz ow + ol @7
ds} = 2axdetdl. ©9

Apparently, every diagonal elemedt, i = 1,...,d, of a matrix subordinatok is a univariate subor-
dinator, and thug" is a nonnegative OU type process. Consequently, the mod#ida-th asset is
equivalent in distribution to a univariate BNS model.

2.3. Characteristic function

Let (-,-)y, {,-)y be bilinear forms as introduced in the notation, whéM/ may be eitheR?, CY or
Mq(-). Given a linear operatdf :V — W, theadjoint T* : W — V is the unique linear operator such
that (Tx y),y, = (X, T*y),, for all xe V andy € W. Directly by definition we obtain the following

Lemma 2.4. Letye RY, ze My(R) and te R,. Then the adjoints of the linear operators
A:X s AX+XAT,  B(t) X — XX,
(1) X > X2 BAZOX)Y +p(X)YT + 2y A (ANX)
on My(C) are given by
A" X ATXH XA B X P IX - X,
F(t)" X s X 4 p*(Xy) + B A (B*(Xy) - iZnyT> .

Our main objective in this section is to compute the jointrelageristic function ofY;, ;). This will
pave the way for Fourier pricing of multi-asset optionsiate. Note that we use the scalar product

((X1,Y1), (X2, Y2)) 1= X] Xo +tr(y] y2)
onRY x My(R).
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Theorem 2.5(Joint characteristic function)For every (y,z) € RY x Mg(R) and t< R, the joint
characteristic function ofY;, %) is given by

Elexpi ((y.2), (%,%)))] = exp{iy (Yo + ut) +itr(Zoe ' 2eM)

+itr (zo (eATtA* (B*(y) + isz> M_AT (B*(y) + izny> >>
+ /O o (eATsze‘\S+ p*(y)+ e A" (B*(y) + iiny> AT (B*(y) + izny>> dS} :

whereA—* := (A~1)* = (A*)~1 denotes the inverse of the adjointAf X — AX+ XAT, that is the
inverse ofA* : X — ATX + XA.

Note that forz = 0 we obtain the characteristic functiongf

Proof. SinceZ is adapted to the filtration generatedlbyand by the independence loBndw,

Elexp((.2), (1, 20))] — & I [ 2108 oL (o 85 0 (L )

_ Y Mot g [étr(szt>+in<B<zt+>+p<Lt>> exp<_%yth+y>} .
By (2.4) and using the fact that the trace is invariant under cyditrutations the last term equals
gy (Yoru g [étr(szB(A*l(zt—Zo—Lt>>yT+p<Lt>yT+ Sy AL( zc—m)} .
In view of (2.2), we have
S —So—Li= /Ot%(t—s)dLer%(t)Zo,
for the linear operatoZ(t) from Lemma2.4. Therefore
Elexn(i((y;2), (%, 21))]

—exp (in (Yo + ut) +itr (zTeAtZOe'“Tt +BAHBM)Z))y" + iényA > )

<€ [exp(ir (27 [t 9aLe 5 p (A ([ TaLe 9oL ) )T
0
+p(LyT + Yy A ( /t A9 dLer (9 - Lt> ) ﬂ
2 0
= exp(in (Yo + t) +itr (zTe’“zoef‘Tt +BA Y B()Z0))y" + I—nyAl(%’(t)Zo)>>

o ( L0-9)"4)

with the linear operatof’(t) from Lemma2.4, sinceA ! ( [1eMt-9dLseA" 9 — ;) € Sq. An im-
mediate multivariate generalisation of results obtaimegajput and RosinsKil989 Proposition 2.4)
(see alsdberlein and Raiblé1999 Lemma 3.1)) yields an explicit formula for the expectatadiove:

ffo{({ o0 )l )




2. The multivariate stochastic volatility model of OU type

By Lemma2.4we have
QR UL ) ds _ GJout (€520t () +e T (B () 1y e -AT (B )+ 5y ) ) ds

This expression is well-defined, because

o2 py) + A (B¢ g ) oA (B + ") € MalR) -+,
for all s€ [0,t]. Indeed, this follows from

s <ny> S A (ny) = /OseAT“nyeA“du €Sy (2.9)

Finally, we infer from Lemma.4 that

w (A 2Bz + A ) ) =t (50 (B0A (B4 7)) )
which gives the desired result by noting thdtX;) = tr(z' ). O

2.4. Regularity of the moment generating function

In this section we provide conditions ensuring that the ati@ristic function of; admits an analytic
extensior®d to some open convex neighbourhood of @ Afterwards, we show absolute integrabil-
ity. The regularity results obtained in this section wiloal us to apply Fourier methods in Secti8n
to compute option prices efficiently.

Definition 2.6. For any te [0, T|, themoment generating functiaof Y, is defined as
Oy, (y) := E[exp(y V)],
for all y € CY such that the expectation exists.

Note thatdy, may not exist anywhere but 6RY, where it coincides with the characteristic function
of ;. The next lemma is a first step towards conditions for thetemee and analyticity of the moment
generating functiordy, in a complex neighbourhood of zero.

Lemma 2.7. Let L be a matrix subordinator witbumulant transforn® , that is

OLZ) =Y(—iZ)=tr(n2) + | ("*D —1)k (dX), ZeMqy(CT),

s;(
and lete > 0. Then®,_ is analytic on the strip
S ={ZeMq(C):||R&2)|| < €}, (2.10)

if and only if .
/ RN k¢ (dX) < oo for all R € Mg(R) with ||R|| < €. (2.11)
(IX1>1)
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Proof. If (2.11) holds, Duffie, Filipovic and Schachermay¢2003 Lemma A.2) implies thaZ —
E(e'?1)) = €2.(?) is analytic onS;. Due to AssumptionZ.11), dominated convergence yields that
O, is continuous ors;. The claim now follows from Lemma.1. Conversely, if©_ is analytic on
S, thenDuffie et al.(2003 Lemma A.4) implies thakE ("?1)) = (2 for all Z € S.. Thus, bySato
(1999 Theorem 25.17), Conditior2(11) holds. O

The next theorem generalisMécolato and Venardo@003 Theorem 2.2) to the multivariate case.
It holds for all sub-multiplicative matrix norms dwlg(R) that satisfy||yy" || = ||y||* for all y € RY,
where we use the Euclidean norm B4. For example, this holds true for the Frobenius and the
spectral norm (the operator norm associated to the Eudidean).

Theorem 2.8(Strip of analyticity) Suppose the matrix subordinator L satisfies
/{ &"RX) ki (dX) <o forall R € My(R) with ||R|| < &, (2.12)
[IX]|=1}

for somee > 0. Then the moment generating functidg of Y is analytic on the open strip

S == {yeC: |[Refy)|| < 6},

where ol
o p B

9= (@A 4 1) [|A-1]] 1B]|+vD>0 (2.13)

with
Pl ? 2¢
A= .

<(e2|Allt+1) A IR+ e AT

Moreover,

@y (y) = exp <YT(Y0 + Ht) 4 tr(ZoHy (1)) + /0 o (Hy(s)+p"(¥)) dS> (2.14)
forally € S, where
)=V ()4 g ) oA (B0 + ). 215
Proof. The main part of the proof is to show that the function
() = exp( Y7 0o+ )+ n(Zab (1) + [ O (H(5)+5"(1) )

is analytic onSy. First we want to find & such that for allu € RY with ||u|| < 8, it holds that
[|Hu(s) + p*(u)|| < € for all s€ [0,t]. Since

Hu(S) + p* ()] = HeATSA‘* (B*(u) + %uuT> s A <B*(u) + %uuT> +p"(u)

< @A) [|A Y [ul2+ (1ol -+ &A1 4-2) [~ 1181 ) flul]

we have to find the roots of the polynomial

09 = @A+ 1) [|A [+ (1ol + (A 1) ]A ] 18] x— .
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The positive one is given b§ as stated inZ.13. Note thatd > 0, because is a cup-shaped parabola
with p(0) = —€ < 0.
Now lety € Sy, i.e.y = u+iv with ||u|| < 6. Using Reyy") = uu™ —w' and @.9) we get

Re(Hy(5) + 0" (1)) = Huls) + 0" (1) — 5 (™A (W)~ A (W)

1 /s
=Hy(s)+p*(u) — 5/ AWM dr.
0
Because of[‘oseAT’vaeAr dr € ST, we have

: sATr r
/ r(REH(S+0°0)X) ¢ (dX) :/ etr((Hu(s)-',-p*(u))X)e*%tr«fo wretdr)x) kL (dX)
{IIX[1=1} {IIX]]=1}

- / g ((Hu(8)+p7(U)X) g (dX) < oo
{IIXI1=1}

by Assumption 2.12), since||Hy(s) + p*(u)|| < €. Thus, by Lemma.7 the function

Sp €y OL(Hy(s) +p"(Y))

is analytic onS for everys € [0,t]. An application of Fubini’s and Morera’s theorem shows that
integration ovefO,t] preserves analyticity, cKonigsberge(2004 p. 228), henc& is analytic onS.
Obviously, we haveby, (iy) = G(iy) for all y € RY by Theorem2.5 and the definition of. Thus,
Duffie et al.(2003 Lemma A.4), finally impliesby = Gon &. O

With Theorem2.8 at hand, we can show

Theorem 2.9(Absolute integrability) If (2.12 holds for some > 0, the mapping w— Py, (y+iw)
is absolutely integrable, for all ¢ RY with ||y|| < 8, where8 is given as in Theorer®.8.

Proof. As in the proof of Theorer2.8, we obtain from
S
0

and Ree"@)) < |e(2)| = eReltr(2)) — gr(Re2)) for 7 € My(C), that

Re( /t / (etr<<Hy+iw<s>+p*<y+iw>>x>_1> KL(dX)dS) < / t / (e”“Hv(S)*P*(y))X)—l) kL(dX)ds
0 Js; - JoJsg

Using this inequality yields

(O (Y IW)] < Dy () BT A () A (oT))) & o (%A (T e A () s
= Oy (y)e 2((ATAO ) AT Z(S) (1) ds)ww)

with Z(t) as in Lemma2.4. Note thatA 1%(t)(Zo) + JS A~1%(s)(y)dse S, hence
L 10w(y+iw) dw @y(y) [ e B A0E A 0S) gy < e,

by Theorem2.8 and because the integrand is proportional to the densityrotiltivariate Normal
distribution. O
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2.5. Martingale Conditions and Equivalent Martingale Meas  ures

For notational convenience, we work in this section withrtiedel

1
d% = (H+B(%))dt+22dW+p(dL), YoeR, (2.16)
d%, = (W+ASL+SANdt+dl, SpeS;t, (2.17)

wherel is a drift-less matrix subordinator with Lévy measwuie Clearly, this is our multivariate
stochastic volatility model of OU type2(5), (2.6), except thau in (2.5) is replaced byu — p(y.),
such that there is no deterministic drift from the leveragentp(dLy).

In Mathematical Financey is used to model the joint dynamics of the log-returnsl assets with
price processe?{ = S')eYt', where we se‘r((g = 0 from now on and, hencé&y denotes the vector of
initial prices.

The martingale property of thdiscounted stock price@‘”S)tqo’T] for a constant interest rate
r > 0 can be characterised as follows.

Theorem 2.10. The discounted price proces "S)ico7] is @ martingale if and only if, for i=
1,....d,

/ &' )k (dX) < oo, (2.18)
(X1
and
B = 2% X5, (2.19)
=t — / (€ _ 1)k (dX). (2.20)
S§

Proof. Define§ := e ™ for all t € [0,T] and leti € {1,...,d}. By Itd's formula andJacod and
Shiryaev(2003 111.6.35), S'is a local martingale if and only if418), (2.19 and .20 hold. Thus it
remains to show that it is actually a true martingale understhted assumptions. Sindes a positive
local martingale, it is a supermartingale and hence a nuaténif and only ifE(§'r) = §) for all

i € {1,...,d}. This can be seen as follows. By Theor2r8, (2.19 and .20 we have

E(S)=SE (exp<(u' -nT+B'(%) +/0 (=52 dwd +PI(LT)>>

CThs (') 1) KL(dX) (e%(z¢)‘i+pi(LT)E (efg(ig)%dV\éi‘(Ls)se[o‘TO)
e Tk (00 1) () <epi<LT>)
=g

This proves the assertion. O

[
i)

As in Nicolato and Venardo&003 Theorem 3.1), it is possible to characterise the set oftali-e
valent martingale measures (henceforth EMMS), if the ugitey filtration is generated bW and
L. More specifically, it follows from the Martingale Repretaion Theorem (cfJacod and Shiryaev
(2003 111.4.34)), that the density proceZs = E(‘j—SL%) of any equivalent martingale measpean
be written as

22@@(/0' t,Ust\é+(Y—1)*(u'-—v'-)> (2.21)

10
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for suitable processeg andY in this case. Hergi" resp.vt denote the random measure of jumps
resp. its compensator (cfacod and Shiryagi2003 11.1) for more details). Under an arbitrary EMM,

L may not be a Lévy process, adlandL may not be independent. However, there is a subclass of
structure preservingEMMs under whichL remains a Lévy process independent\ofThis translates
into the following specifications o andY (cf. Nicolato and Venardo&003 Theorem 3.2) for the
univariate case):

Theorem 2.11(Structure preserving EMMs).ety: S — (0,) such that
(i) Js; (VYOX) = D2k (dX) < oo,
(i) fxon @ X KU(dX) <o, i=1,...d,
wherek(B) := [gy(X) kL(dX) for B € Z(S{). Define theR%-valued processik Jic(o1) as
st Jo: (209 — 1) k¥ (dX)

1
HHBEY+5| 1 |+ : —1r |,
i Js; (€% — 1) k¥ (dX)

h=—2

Nl

wherel = (1,...,1)T € RY. Then Z= & ([ YsdWs+ (y— 1) x (u- — Vb)) is a density process, and the
probability measure Q defined l%% = Z7 is an equivalent martingale measure. Moreove® W W —
JoWsds is a Q-standard Brownian motion, and L is an independeiftieds Q-matrix subordinator
with Lévy measure;. The Q-dynamics diY,) are given by

dy' = <r —/+(ep'<x> —1)k)/(dX) - %z{') dt+ <z§ dV\(Q> +p'(dy), i=1,....d,
Sd
dz; = (M_ + A+ ZtAT) dt+dL;.
Proof. Sincey— 1> —1, Z is strictly positive byJacod and Shiryaef2003 1.4.61). The martingale
property ofZ follows along the lines of the proof dicolato and Venardo&@003 Theorem 3.2).
The remaining assertions follow froKallsen(2006 Proposition 1) and the Lévy-Khintchine for-

mula by applying the Girsanov-Jacod-Memin Theorem akatisen (2006 Proposition 4) to the
R24(¢+1) valued process

~ Q
L= < V\(/) > +vech(L),
whereW® :=W — [; fids O

The previous theorem shows that it is possible to use a mddéleosame type under the real-
world probability measur® and some EMMY, e.g. to do option pricing and risk management within
the same model class. The model parameters uQdean be determined by calibration, the model
parameters undét by statistical methods.

3. Option pricing using integral transform methods

In this section we first recall results Bberlein, Glau and Papapantole@®©09 on Fourier pricing in
general multivariate semimartingale models. To this estG+ (Stl)eYl, ... ,%eYd) be ad-dimensional

11



3. Option pricing using integral transform methods

semimartingale such that the discounted price pro@ES’éS)te[oﬁT] is a martingale under some pri-
cing measur&), for some constant instantaneous interestirate.

We want to determine the pridég(e '™ f(Yr —s)) of a European option with payoff(Yr —s) at
maturity T, wheref : RY — R, is a measurable function asd= (—log(S}), ..., —log($)). Denote
by f theFourier transformof f. The following theorem is frorkberlein et al(2009 Theorem 3.2) and
represents a multivariate generalisation of integraldfiamm methods first introduced in the context
of option pricing byCarr and Madari1999 andRaible(2000.

Theorem 3.1(Fourier Pricing) Fix R< RY, let g(x) := e~ (RX f(x) for x € RY, and assume that
(i) gelinL®, (i) Py (R) <o, (i) W Dy (R+iw) belongs to L.

Then
e (Rg)—IT ) o
Eqle T (Yr ) = g /Rd e U9y (R+iu) F(iR - u)du. 3.1)
Observe that Theorenzs8and2.9show that Conditiongi) and(iii) are satisfied for our multivari-
ate stochastic volatility model of OU typ&.), (2.6) if condition (2.12 holds, i.e. ifL has enough
exponeniial moments. More specifically, the ved®dnas to lie in the intersection of the domains of
®y, andf.
We now present some examples. As is well-known, the Fouaesform of the payoff function of
aplain vanilla call optionwith strikeK > 0, f(x) = (¢*—K)™ is given by

Kl+iz

@ iz(1+iz) (3.2
for ze C with Im(z) > 1. The Fourier transforms of many other single-asset ogfiéa barrier, self-
quanto and power options as well as multi-asset optionslikst-of and best-of options can be found
e.g. in the survegberlein et al(2009. From Hubalek and Nicolatg2009 we have the following

formulae for basket and spread options.

Example 3.1. (i) The Fourier transform of (x) = (K — z‘j’:le?‘i )™, K> 0, that is the payoff func-
tion of abasketput option, is given by

(g = kristn Ml (@)

Fr2+i3j-17)

for all ze C with Im(z;) <0, j = 1,...,d. The price of the corresponding call can easily be
derived using the put-call-paritfK —x)™ = (x — K)™ —x+ K. Since we have separated the
initial valuessin (3.1), we can use FFT methods to compute the prices of weightdatsafor
several weights efficiently.

(i) The Fourier transform of the payoff function ofsareadcall option, f(x) = (€4 — e —K)™,
K >0, is given by o
~ KIH2itiz2 T (izp)l (—izg —izp — 1)
f(z) = - . .
iZy(1+iz1) M(—izz—1)

for all ze C with Im(z;) > 1, Im(z,) < 0 and Im(z; + 2) > 1.

Since the Fourier transform ¢ — e*2)* does not exist anywhere, we cannot use The@eio
price zero-strike spread options. Nevertheless, we camedeisimilar formula directly.

12



4. Calibration of the OU-Wishart model

Proposition 3.2(Spread options with zero strikepuppose that

Pyiyz)(R1-R)<eo  forsomeR>1.

Then the price of @ero-strike spread optioith payoff(Sie't — e'¥)* is given by

du,

(s2—s1)—%—IT . O] R+iu,1—R—iu
Eole (- )) = o =T [ gty D0 )

- (R+iu)(R+iu—1)
where § = —In(S}) and 3 = — In().

Observe that unlike fak > 0, we only have to compute a one-dimensional integral tarohéte the
price of a zero-strike spread option. This will be advantagein the calibration procedure in Section
4.

Proof. Let R> 1 and definefk (x) = (e — K)* for K > 0, andgk (x) = e ®*fx (x). By Fourier inver-
sion and 8.2) we have

fey (X) =

1 aR+iu)xg(1-R-iu)y
- - - d
ZIT/R (R+iu)(R+iu—1) .

for all y € R. Hence, for the functiohe (x) := (e — F&¥)* = fa-s (X— 1) We get

R+iu)xe(lf R—iu)y
(R+iu)(R+iu—1) du

hey():_eRSQ s1)— /e|U5251

Finally, by Fubini's theorem

52 S1)— U(s—s1) R+|u)xe(1 R—iu)y
Falhy? () = /R2/ (R+iu)(R+iu—1) duRyz.vp) (dx.dy)

R+iRLu—1)

where the application of Fubini’s theorem is justified by

R-Hu xel R—lu (17R)y -
/]R?/‘ R ‘d“PYWZ)(dWV) /RZ /R|91(U)|dUFfYT17YTz)(dx,dy)

+iu)(R+iu—1)
< 101lls Pryayz) (R 1I-R) <o

since||1||, 1 < o« as shown irEberlein et al(2009 Example 5.1). O

4. Calibration of the OU-Wishart model

We now put forward a specific parametric specification of tleeleh discussed in Sectich To this
end, lethe N, © ¢ Sg and letX be ad x n random matrix with i.i.d standard normal entries. Then

the matrixM := ©2XXTO? is said to beWishart distributed written M ~ #4(n,©). Note that this
definition can be extended to noninteger d — 1 using the characteristic function

Z > def(ly — 2i20) 2", 4.1)

13



4. Calibration of the OU-Wishart model

seeGupta and Naga200Q Theorem 3.3.7). Sinde € S almost surely, we can define a compound
Poisson matrix subordinatdrwith intensityA and#4(n, ©) distributed jumps. We call the resulting
multivariate stochastic volatility model of OU typggU-Wishart model

Since we havelg, €%k (dX) = def(lq - 2RO)~2" by (4.1), we see thak has exponential mo-

ments as long agR|| < ﬁ, where||-|| denotes the spectral norm. That meaRd42 holds for

€= ZIIOP and we can apply the integral transform methods from theique section to compute
prices of multi-asset options.

By (2.7) and @.8), each asset follows a BNS model at the marging, i andp are chosen to be
diagonal. In particular, fon= 2 we see that",i = 1,...,d, is a compound Poisson subordinator with
exponentially distributed jumps, thus we have in distithutthe '-OU BNS modelvith stationary
Gamma distribution at the margins, cf. eljcolato and Venardo&003 Section 2.2). In particular,
the characteristic functions of the single assets are kriowlosed form. Note that while the charac-
teristic function of the stationary distribution of the misval OU type process is still known for#£ 2,
it no longer corresponds to a Gamma distribution in this case

Remark 4.1. There exists a subclass of structure preserving ENNI. Theoren.11) such that we
have an OU-Wishart model under b&andQ. This means thdt is a compound Poisson process with
#4(n,0) distributed jumps and intensity underP, and#4(n, G)) distributed jumps with mtensﬂxx
underQ. We only need to assume that the Wishart distribution undér B andQ has a Lebesgue
density, i.,en,n>d—1ando, Oc Sj*. Then one simply has to takeas the quotient of the according
Lévy densities. Hence, bgupta and Naga200Q 3.2.1),y has to be defined as

fl) det®)
n) det©)z"

NII—‘ NII—‘

y(X) = A <2§(ﬁn)d a(

Fa

4.1. The OU-Wishart model in dimension 2

-1
) del(X)% (A-n) ——tr((e—l_e—l)x)’ XGSJ.

NI I\JIH

We work directly under a pricing measuge In two dimensions, and for diagond| p, our model is
given by
o) = () 3(E) o (G ) 008+ (2at2)
Yt2 U 2 222 ztlZ 222 2 pZst22
d(ztll zt12> -~ ((yl o>+< 28,71t (a1+a2)zt12>> dis d(Ltll Lt12>
12 z22) 7 \\0 (a1 +ap)Zf? 28372 LE? L2

with initial values 11 <12
0 sz
Yo = <O> , 20= (le z(2)2> €83,

and parameterg;,y» > 0, a1,a < 0, p1,02 € R. L is a compound Poisson process with intengdity
and#5>(n,©)-jumps, wheren = 2 and

O O\ o
0= €SS
(@12 922> 2

14



4. Calibration of the OU-Wishart model

Single-asset option pricing

Since the margins are (in distribution}OU BNS models, we have a closed form expression for the
moment generating function &, which can be used to price single-asset options. It is gyen

art

1

Ele") = exp{yuput + 0 - yEd+ o (o (@ -1 -t 6 -y

A éE-h
+ 2a1(f, — &) (Eln (f—Pl)’l) —2a1f2t> }

with & = 55— and

1 1
fi= E(ezalt —D(i—y1)+py1, fo= —4—a1(Y% — Y1)+ Pyi,

which can be obtained by simple integration (alsoNitolato and Venardo§&003 Table 2.1) cor-
rected for a typo inf; and f,). Note that one can use the recursion formula statggradshteyn and
Ryzhik (2007, 2.155) to obtain a closed form expression #6i(n, ©)-jumps withn € 2N, too.
Multi-asset option pricing

By (2.14 and @.1), the joint moment generating function Of*,Y?) is given by

Ee"¥) = ex <T CHt(Sory (1) + [ tryHy()ds+A | ! ds—)\t>
- P TR o Ty o detlz—2(Hy(5) + p*(¥))©)

with Hy as in .15, A= (aol aoz) W= <’3 g) and p*(y) = <p10y1 pzoyz). Whereas the first integral
above is easy to calculate, the second one is not. More sgaigifiit is not possible to obtain a closed
form expression in terms of ordinary functions, unless @isa = a, =: a. In this case

eZat -1 2
E[e V2] —ex { t t tr (z (yl iooye >>
[ ] Pq ikt + Yokt + — o yys  —ys

+4—1a (2 —y1) + o (Y3 — y2)) <2—1(,i(ezat -1 —t>

A by 2b, + by 2bzezat + by
+m |:E <arCtan< d ) — arCtan<ﬁ> )

+%In< bo + D1 4 by ﬂ +it—)\t}

boefat + bye?at + by bo

with coefficients

bo:=1+4de{B-C)+2tr(B—C),
b1 := —8de(B) + 4tr(B)tr(C) — 4tr(BC) — 2tr(B),
by = 4de(B),

and matrices

1 (Va=v1  Yiye > <PlY1 0 )
B:=— (71 ©, C:= O]
4a < Vi Ya—VY2) 0 payo
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4. Calibration of the OU-Wishart model

Using defA+ B) = det(A) 4 det(B) +tr(A)tr(B) — tr(AB) for A,B € My(RR), this follows from
det(l; — 2(Hy(s) + p*(y))O) = det(l, — 2(6°— 1)B— 2C) = by + €% 4 bpe®,

and straightforward integration. Likewise, one can alsivéea closed form expression foe=4,6, . ..
usingGradshteyn and Ryzhii2007, 2.18(4)).

Consequently, one faces a tradeoff at this point. One piigsib to retain the flexibility of different
mean reversion speedsby evaluating the remaining integral using numerical irdéign. Alternat-
ively, one can restrict attention to identical mean rewersspeeds in order to have a closed-form
expression of the moment generating function at hand. Tipadtof this decision on the calibration
performance is discussed in Sectib2 below.

Remark 4.2 (High Dimensionality) The above model can also be defineddos 2, but of course, the
Fourier formula 8.1) is numerically infeasible in high dimensions. Nevertsslghe calibration of a
high dimensional OU-Wishart model is possible by only estihg options ortwo underlyings. Using
zero strike spread options and provided the charactefistiztion is known explicitly, this means that
one only has to evaluate single integrals numerically, athénunivariate case. Indeed, combining
Barndorff-Nielsen and Stelz¢2009 Proposition 4.5) and the fact that every symmetric sulrimnat

a Wishart distributed matrix is again Wishart distributefd Gupta and Nagg200Q Theorem 3.3.10),

it follows that the joint dynamics of each pair of assetsdet a 2-dimensional OU-Wishart model
as above. Hence, we can calibrate the model using only teet-aptions (e.g. spread options). The
price to pay is that the resulting model only incorporateiswise dependencies, since the respective
covariances completely determine the underlying Wishiattidution.

4.2. Empirical illustration

The aim of this subsection is to show that a calibration of@é-Wishart model to market prices
is feasible. To the best of our knowledge, this has not bee® dor any of the other multivariate
stochastic volatility models with non-trivial dependersteucture proposed in the literature. Since
multi-asset options are mostly traded over-the-countes, difficult to obtain real price quotes. To
circumvent this problem, we proceed asTiaylor and Wang2009 and consideforeign exchange
ratesinstead, where a call option on some exchange rate can beseespread option between two
others. Let us emphasise that our calibration routine shoat be seen as a finished product, but
much rather as a first test.

We consider a 2-dimensional OU-Wishart model as above wierdirst asset is the EUR/USD
exchange rat&¥/€ = §/€eYl, that is the price of € in $, and our second asset is the GBP/USD

exchange rat&%% = §/£eY2, i.e. the price of £ in $. Since we model directly under a martingale
measure, we set

A A
1&7 u2:r$_r£_li_
20, P1

Hi=Tg—Te—
20,, _p2

By Hull (2003 13.4), it follows that the price in $ of a plain vanilla caption onS¥€ or S¥% is given

by e (se)TE((SY€ —K)*) ore~ (5o TE((SY5 —K)*), respectively. Now observe that the $-payoff
of a plain vanilla call option on the EUR/GBP exchange &€ is given by§/£(§/€ —K)* =
(S¥€ —KSY5)* hence it can be regarded as a spread optio&6h— S¥£ where the initial value of

the second asset is replacedlb%/ £ Since itis a zero-strike spread option, we can use Prdaposit
3.2to valuate it.
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4. Calibration of the OU-Wishart model

We obtained the option price data on September 11, 2009 fildWw/AX. The EUR/USD exchange
rate at that time waﬁ/ € — 145783, the GBP/USD exchange rate V\ﬁg = 1.6683% and the
EUR/GBP exchange rate was8@3&. As a proxy for the instantaneous riskless interest rate we
took the 3-month LIBOR for each currency, viz = 0.732%,rg = 0.299% andrg = 0.627%. All
call options here are plain vanilla call options of Europsayie. We used 153 call options on the
EUR/USD exchange rate, 37 call options on the GBP/USD exgthaate, and 88 call options on the
EUR/GBP exchange rate, all of them for different strikes &+tddifferent maturities. We always used
the mid-value between bid and ask price.

The calibration was performed by choosing the model parmrseto as to minimise the mean
squared error between market and model prices. The resuitbes found in Tabld.1 The overall
root mean squared error (RMSE) is 0.0586. If one considdystba marginal models for EUR/USD
and GBP/USD one has a RMSE of 0.0683 and 0.0425 respectiaycomparison, we calibrated
two independenf-OU BNS models to the margins separately and obtained alglighver RMSE of
0.0610 and 0.0320 respectively. This stems from the fatthlesadditional dependence parameters do
not enter the pricing formulas for single asset options,ra&® the intensity of the compound Poisson
process is the same for all assets in our multivariate frasnewnlike when using two univariate
models. This means that we aret overfittingthe marginal distributions with an excessive amount of
additional parameters, but much rather using a simplifiedior of a standard model. Nevertheless,
the calibration does not appear to be worsened too much by tisis simplification.

To depict the good fit visually we provide Figutewhere market and model prices are compared for
a sample of different strikes and maturities. In FigRrege compare the corresponding Black-Scholes
implied volatilities.

If one sets the mean reversion parameter of both assets equah; = a, < 0, one has a closed
form solution for the moment generating function &, Y?). This decreases the runtime consid-
erably. The corresponding calibrated parameters can belfouthe second row of Tabk.1 The
overall RMSE is 0.0591 and therefore only differs from the déor different mean reversion speeds
by about 0.85 %. At the margins, we have 0.0686 or 0.0439 c#isply. Therefore this specification
appears to be an appealing alternative if computation tamiissue.

Finally, we also examined the impact of the leverage term.dro= 0 = p,, the overall RMSE
increases to the considerably higher value of 0.1191, tkegtns by about 101.5 %. At the margins
we have 0.1164 and 0.0639, respectively. The calibrateahpeters can be found in the third row of
Table4.1 These empirical results suggest that it is highly advisablinclude a leverage operator
in the model. This is in line with statistical studies unéker

Table 4.1: Calibrated parameters. First row: different mesversion & # ap). Second row: same
mean reversionag = ay). Third row: no leverage case{ = 0= p»)
A a1 P1 @11 Z(l)l Vi ap P2 @22 2(2)2 Vo @12 2(1)2
0.415 -0.313 1538 0.012 0.017 0 -0.606 -0.211 0.036 0.01030. 0.017 0.012

0.369 -0.405 1388 0.014 0.018 0.003 -0.405 -0.274 0.033150.0 O 0.017 0.012
0.891 -0.680 / 0.014 0.019 0 -0.680 / 0.020 0.015 0 0.010 0.0p2

We tested the sensitivity of the calibration with respecthe initial values of the optimisation
routine. In particular, we found that a calibration to mopgtes could recover the true parameters
very well from a broad range of initial values.
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5. Covariance swaps
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Figure 2: Comparison of the Black-Scholes implied volgtitif market prices (dot) and model prices
(solid line).

5. Covariance swaps

In this final section, we show that it is possible to price ssvap the covariance between different
assets in closed form. This serves two purposes. On the onk bjptions written on the realised cov-
ariance represent a family of payoffs that only make senseaddels where covariances are modeled
as stochastic processes rather than constants. On thehatingrthe ensuing calculations exemplify
once more the analytical tractability of the present frammbw

We consider again our multivariate stochastic volatilitgdal of OU type under an EMND. In ad-
dition, we suppose that the matrix subordindtds square integrable, i.¢ x| -1 [|X] |2k (dX) < oo.
The pricing of options written on the realised variance réisg quadratic variation as its continuous-
time limit have been studied extensively in the literatwfe,e.g. Carr and Leg2008 and the ref-
erences therein. Since we have a nontrivial correlatiarctre in our model, one can also consider
covariance swapen two assets, j € {1,...,d}, i.e. contracts with payoffY', Y]t — K with covari-
ance swap rate k= E([Y',Yi]1) (see e.gCarr and Madarf19993, Da Fonseca, Grasselli and lelpo
(2008 or Swischuk(2005 for more background on these products). Now we show how itapcibe
the covariance swap rate. We have

YTl = VYIS 5 A = (35 + 010001 (X) < i (0X)
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5. Covariance swaps

and sincex| (dX)dt is the compensator qf', this yields
E(Y.YI ) = )T +T [ p'(X)p 00K (dX). (5.2)
d

Note that byPigorsch and Stelzg2009 Proposition 2.4) resp. sindg' (X)pl(X)| < ||p]/?[|X|[%,
our integrability assumption oh implies that the expectation is finite. The first summand can b
calculated as follows. By setting= 0 in Theorem2.5 we obtain the characteristic function Bf.
Differentiation yields

E(Z7) = fT5oe® T+ efTAHE(Ly))eN T — A YE(Ly)),
whereE(L1) =y + fgg Xk (dX). Using EquationZ.4) we obtain
E(2) =AM (E(Z7) ~ TE(L1) - 20),

so we only need to knod(L;). The second summand i5.() can analogously be computed by
differentiating the characteristic function of the masixbordinatolL.

In our OU-Wishart model, where is a compound Poisson matrix subordinator plus drift with
#4(n,©)-distributed jumps, we have upta and Naga200Q Theorem 3.3.15) that

E(Ll) = w_+)\n®.
If p is diagonal, the second term i6.0) simplifies to
Tpipj /S* Xiinj V(dX) = Tpipj)\n(zeﬁ + NG @jj) ,
d

again byGupta and Nagaf200Q Theorem 3.3.15). Thus we have a closed form expressiorhéor t
covariance swap rate:

K= (A [ (Zo+ A +An@))e T — AH(y +An®) — T(y +An) - zo})”
+Tpipj)\n(26i2j +n@ii@jj).

For example, in the 2-dimensional OU-Wishart model fromti®act.1 we have foii = 1 andj = 2

1 Ano®
= (a1ta)T _ 1) [ 512 2\ TARO T An (202 (O Onr)
a +ap |:(e ) ( o+ a;+a 12| + 1 P1P2 ( 12+ 11 22)

As in Carr and Leg2008), pricing of options on the covariance can be dealt withgisie Fourier
methods from SectioB, since the joint characteristic function (*, p' (X)p!(X) * u-(dX)) can be
calculated similarly as in the proof of Theoredrb.
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A. Appendix

A. Appendix

The following simple result on multidimensional analytimttions is heeded in the proof of Lemma
2.7.

Lemma A.l. Let D, = {z€ C": ||R&(z)|| < €} for somee > 0. Suppose f D, — C is an analytic
function of the form #= €7, where F: D, — C is continuous. Then F is analytic in,D

Proof. Letz= (z,2,...,7,) € D¢ and definez_1 = (z,...,2,). Thenf, , 1w f(w,z_1) defines
an analytic function without zeros on the open convexBgt , ;== {we C: (w,z 1) € D¢}. By

e.g.Fischer and Lielf1994 Satz V.1.4), there exists an analytic functigh, : D¢, , — C such that
exp(g; ,) = f, ,. HenceF(w,z_1) — gz , (W) € 2riZ on D¢, ,. Since bothF andg are continuous,
their difference is constant and it follows thai— F(w,z_1) is analytic onD¢ , ,. Analogously, one
shows analyticity of in all other components. The assertion then follows fromtétgs Theorem
(cf. e.g.Hormander(1967 Theorem 2.2.8)). O
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