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Electric Charge Rotating Around a Black Hole
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We consider an electric charge rotating around a Schwarzschild black hole. We compute, using quantum field
theory in curved spacetime at the tree level, the power emitted by the rotating charge minimally coupled to the
Maxwell field. We also compute how much of the radiation emitted by the swirling charge is absorbed by the
black hole.

We are commemorating the first centennial of Special RelaHerea andb denote angular variables on the ubisphereS?
tivity. Despite how exotic Special and General Relativity maywith metricfiap and inverse metrig® [with signature(——)],
have appeared at first glance, they have become fundame—a is the associated covariant derivative & [2 = ﬁabﬁb
tal tools for now-a-days precision astrophysics. It is impos-and2 = fj,,020°.
sible to understand the center of active galaxies, pulsars and\We write the complete set of positive-frequency solutions
probably gamma ray bursts without evoking objects as blaclyf Eq. (3) with respect to the Killing field, as
holes and neutron stars. As astrophysics measurements be-
come more and more accurate, the influence of the spacetime Ai(f”‘*"m) - Zﬁ”‘*"m(r,e, (p)e*iwt’ w> 0. 7
curvature in particle wave modes will also need to be consid-
ered to explain the experimental data properly. This can b&he indexe stands for the four different polarizations. The
naturally accomplished in the context of quantum field theorypure gauge modes= G, are the ones which satisfy the gauge
in curved spacetimes. To illustrate this, we analyze the radiasqnditi _ ; (Gnwim) _
tion emitted by an electric charge rotating around a Schwar%\ogdglggsar ](C)I;gd g—?]r; t;i;vsr;g;nn?:’ae&: Nl 'Dg;\t,i;/}??rr]ee
schild black hole (see Ref. [1] for the emission of scalar ragauge condition and are not pure gauge.7 The nonphysical
diation from a rotating source around a Schwarzschild black,,desg — NP, do not satisfy the gauge condition. The modes
hole). We assume natural units= ¢ =G =1 and metric  jncoming from the past null infinity— are denoted by =«

signature(+— ——). ) . and the modes incoming from the past event horidonare

Let us consider the line element of the Schwarzschildyenoted byn =—. Thel andm are the angular momentum
spacetime in the form quantum numbers.

d& = f(r)dt? — f (r)"tdr? —r2de? — r?sirfBd¢?, (1) The physical modes can be written as
where f (r) = 1—2M/r and the electromagnetic field de- " o' (r f d
scribed by the Lagrangian density in the modified Feynman Aﬂn = (0, ai (1) Yim, 1+1) ar [f¢|w|n (f)]
gauge

f d In —iat
L= TG —%FWF“V B %GZ @ X 0gYim, ma [I’d)(d (r)] a<pYIm) e 8
and

with g =r2sin6, G = O*A, + KA, andK* = (0,d f/dr,0,0).

The corresponding Euler-Lagrange equations are, thus, Aﬂlnwlm) _ (07 O,r¢ﬂ)|”(r)Y'm,r¢2)|”(r)Y(}Jm> it )

OvFY + "G - KMG =0, 3)
which can be written in terms of components as with | > 1 (since the gauge conditioB = 0 is not satisfied
1 f 1 for | = 0). The radial part of the physical modes satisfies the
2 2 =2 i i i
?at A — anf (r’o,A) + r7D A =0, (4)  differential equation
1 2 1 f2 2 1 ~2 2 _ An E g An _
TOA— 20 [rzar (A |+ 50%A (w* = Vs) [r% (r)} +i U g [r% (r)} =0, (10)
+}6r <f2) [2A, =0, (5) whereA = 1,1l andVs = fl(I +1)/r? is the Schwarzschild
f r scattering potentialYjm, andY;m are scalar and vector spheri-
1o, Lrebima  F cal harmonics [2], respectively.
f 9iAa—0r (T Orha) + r2 [D (DbAa DaAb) The conjugate momenta associated with the field modes are

~ f .
+aanAb} +120, (I’2> 0aAr = 0. (6) now = _ [FW +g“VG]\A“:AS) ) (12)
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where (i) representse, n,w,l,m). The modes are then nor- Since the Schwarzschild potential vanishesrfer 2M and
malized through the generalized Klein-Gordon inner prod-decreases ak/r? for r > 2M, the solutions of Eq. (18) can
uct [3] such that be approximated in the asymptotic regions by

(AEnm) AEHT) Mo G By S (0 F), (12) o () = { BY (€ +Ry e ™) (x< —1),
Ao (1) ~

19
BATA= i laxh ™ (wx) (x> 1), (19)

where the matrisMe’ is given by

and
100 0 AT A— A—iX
Mse’_ 01 0 O (13) B(,ol ITQ?II. € n (x<-1),
000 -1 (0 (1)~ 4 B (0 Y (e

Ry Y (@) (x> 1),
with e = (I,11,G,NP). (20)
In order to quantize the electromagnetic field, we demanavherer?;” (r) andr¢2; (r) are solutions incoming fror —

the equal time commutation relations andj—, respectively. Herel(l) (x) is a spherical Bessel func-

[Aux,t), A, (X, 1)] = [ (x,t), Ay (X,t)] =0, (14)  tion of the third kind [7],B}) are normalization constants, and
|I%0'|‘|2 and |T£|"|2 are the reflexion and transmission coeffi-

A Sy /e ie');j 3 , cients, respectively, satisfying the usual probability conserva-

A1) (X 1)} = 4/596 (x=x). 15 tion equation|R|* + |TA|* = 1. The normalization con-

The electromagnetic field operator can be expanded in termStantSE%’r|1 are obtained using the generalized Klein-Gordon
9 P P lRner product defined above (see Ref. [8]).
of the normal modes as

7 Let us now find the analytic expressions of the physical

A * A A | At A() modes in the low-frequency approximation. For this purpose
Au= Lo da {a(')A“ +aiA } : (18)  we rewrite Eq. (10) as
An
whered; andézri) are the annihilation and creation operators, d [(1_ 22) dog (2)1 (21)
respectively, satisfying dz dz
. . _ 2 z+1)°
&(encim) a&/n’m'mﬂ =(M™)ee By 8118t & (0 — W) . i R o2m2! —— 1) oM (2) =0,
17)

The Fock space of the physical stae$) is obtained by im-  \yherez=r/M — 1. In the low-frequency regime, we write the
posing the Gupta-Bleuler condition [4]. In our case, this coryg independent solutions of Eq. (21) o 1 as
responds to imposénpwnim) [PS = 0. The physical states

are obtained by applying any number of creation operators o (2) ~ O {Q 2)- (z—1) dQ (Z)} 22)

ézrlnum)* é‘zunum) and ‘INinlm) to the Boulware vacuun®) [(1+1) dz

defined bydgnwm) |0) = 0. The creation operators associated gpq
with pure gauge modes take physical states into nonphysi- 1 d
cal ones. Moreover physical states of the f@mmwm) IPS oM (2 ~Cy (z—1) dR (2
have zero norm. Therefore we can take as the representative 1(1+1) dz
elements of the Fock space those states obtained by applyiRghereR (z) andQ, (z) are Legendre functions of the first and
the creation operators associated with the two physical modegcond kind [7], respectively, a@}" are normalization con-

to the Boulware vacuum. For this reason we will be concernedyants, which are obtained by fitting asymptotically Egs. (22)
only with the two physical modesd, = 1,11, in this paper. (A g4 (23) with Egs. (19) and (20), respectively [8].

more detailed discussion of the Gupta-Bleuler quantization of Now let us consider an electric charge wth= /2, r =

the electromagnetic field in spherically symmetric and statiqxg and angular velocit® = dg/dt = const> 0 (as defined
spacetimes can be found in Ref. [5].) by asymptotic static observers), in uniform circular motion

The solutions of Eq. (10) are functions whose properties,roynd a Schwarzschild black hole, described by the current
are not well known. (See Ref. [6] for some properties.) Wedensity

can, however, obtain their analytic form (i) in the asymptotic

regions for any frequency and (ii) everywhere if we keep re- jg(x") - LMV —Rg)3(6—T1/2)3(p — Qt)uH. (24)
stricted to the low-frequency regime. In order to study the as- V=g

ymptotic behavior of the physical modes we use the Wh38|ei'-iereq is the coupling constant and

coordinatex =r +2MIn(r /2M — 1) and rewrite Eq. (10) as

A (2)- | @

1
u(Q,Rs) =

2 o
(@ Vo) 1 0] + 1z [ 0] 0. (19) /1 (Re)—R02

(1,0,0,Q) (25)



1082 Brazilian Journal of Physics, vol. 35, no. 4B, December, 2005

According to General Relativity for a stable circular orbit

3 around a Schwarzschild black hole we h&ge= (M/Qz)l/?’.
We use this relation to compute numerically the emitted power
given by Egs. (28)-(30) as a function &. The numerical
method used here is analogous to the one described in Ref. [1].
The result is plotted as the solid line in Fig. 1. The main con-
tribution to thetotal emitted power comes from modes with
angular momentumh = m= 1. As a general rule, (i) the
) on foam2  0:0  0.00 0.0 oioe smaller is thd, the larger is the contribution to the total ra-
" diated power, and (i) for a fixed value bfthe larger is then,
FIG. 1: The total poweWs emitted by the electric charge rotating the larger is the contribution to the total radiated power.
around a Schwarzschild black hole is plotted as a function of the It is interesting to note that the magnitude of the total radi-
angular velocityQ as measured by asymptotic static observers. Theated power in the electromagnetic case is approximately twice
solid line represents our numerical result Whgreas the dashed lin®e numerical result found previously for a scalar source cou-
represents our analytic result for low frequencies. Thammation pled to a massless Klein-Gordon field [1]. In principle, this is
in Eq. (28) is performed up th=6. MQ ranges frond up 00.068 4 o, rhrising because of the fact that photons have two phys-
(associated with the innermost stable circular orbR&at= 6M). . o - - . -
ical polarizations. Notwithstanding, it should be emphasized
that the two polarizations contribute quite differently to the
is the charge’s 4-velocity. We note thé# is conserved, emitted power. For our rotating charge, the contribution from
modeA = Il is negligible when compared with the one from
modeA = I. In order to get a feeling about it, we first re-
call that although the physical modes | have a non-vanishing
radial component in contrast to the physical modes I, our cur-

rent is such thaj" = 0. Thus, the radial componeafs™™
of the physical modes do not contribute to the corresponding
interaction amplitude. In addition, since both physical modes

z
ZE9M iy /=g EA™) (26) aresuch tha&\®"™ — 0, all their contributions to the emit-
ted power come from the angular components«b‘f“"m>.

It can be shown tha@*m [ §(w—mQ). This implies that  Now, becausefim (11/2,0) and Y™ (11/2,0) are non vanish-
only photons with frequencyy = mQ are emitted once the ing only for evenandodd | + m, respectively, the dominant
charge has some fixed = const One can also verify that contribution to the emitted power should come from modes
the pure gauge and nonphysical modes have vanishing emig-since only they contribute wheh= 1 (i.e. We"™'* =0
sion amplitudes. This is so for the pure gauge modes becauggjje Wé' oll _ ) and for a fixed only they contribute

zDe“rjg n_o?mand for the nonphysical modes because they havsvhenm has the maximum allowed value (i.e/.vg“‘*’O” 20

The total emitted power is whileW2™®!" — 0) (see discussion in the previous paragraph),
which complies with our quantitative results. Moreover, it is
very interesting to note that because the physical modes | and
Il only contribute toAL™™ andWy ™™ whenl + mis even

and odd, respectively, this means that only physical modes,
whereT = 213 (0) is the total time as measured by the asymp-which lead asymptotically to electric fields oscillating at the
totic static observers. Using now Egs. (8)-(9) and (24)-(25) weorbit plane6 = 11/2 along (d/d@)" contribute to the emitted

Oujs=0, and thustdZEf)jg(x") = q for any Cauchy sur-
facez.

Next let us minimally couple the charge to the field through
the Lagrangiar; = /—g ngu- Then the emission amplitude
at the tree level of one photon with polarizatiand quantum
numbergn, w,|, m) into the Boulware vacuum is given by

o 1 Z e 2
W=y 3 35 dww’ﬂlm“"m‘ /T, (27)

AST I n==—1=1m=1

rewrite Eq. (27) as power, which is a familiar fact from synchrotron radiation
| physics (see, e.g., Ref. [9]).
We — ad Z {Wslnwolm_’_wsll nwolm} (28) Next, we use our low-frequency expressions for the physi-
L ] cal modes to obtain an analytic approximation for the emitted
) power. The result is plotted as the dashed line in Fig. 1. We
with see from it that the numerical and analytical results differ sen-
gl 2R3 oM \ 2 sibly as the ch_arge approaches the black hole but coincide as-
W5 =— <1— > ymptotically, since far away from the hole only low frequency
[H(I+1)] Rs modes contribute to the emitted power.
d 2 2 Now let us compare the power emitted by the swirling
x |:d|:@ [RS ¢!So| (RS)]] [Yim (1/2,0)| (29) charge in Schwarzschild spacetinvis), with the correspon-

dent power emitted in Minkowski spacetimé(), the latter
and being obtained assuming that the charge is moving in a cir-
Il noylm > 3 i 21 im 2 cular orbit due to a Newtonian gravitational force around a
Ws = 2mg°mQ> [Rs ¢y (Rs)] ‘Y(p (2, 0)‘ . (30)  central object with the same madsas the black hole.
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the ratio betweelis andWy in Fig. 2 obtained from our nu-
merical computations (solid line) and from our low-frequency
analytic approximation (dashed line). In both cases the ratio
tends to the unity as the charge rotates far away from the at-
tractive center, as a consequence of the fact that the Schwarz-
schild spacetime is asymptotically flat. As the rotating charge
approaches the central object, curved and flat spacetime re-
0.4 sults differ more significantly. In the innermost relativistic
o e o o e o stable circular orbit, the numerical computation gives it

" is 30% smaller thaky.
FIG. 2: The ratioNs/Wy is plotted as a function of the angular ve- ~ Now, this is interesting to use our quantum field theory
locity Q. Again we consider contributions of the angular momentumin Schwarzschild spacetime approach to compute what is the
up tol = 6in the summations. The maximum valueMf2 is 0.068. amount of emitted radiation which can be asymptotically ob-
The solid line corresponds to our numerical result, while the dasheserved. This is given by
line corresponds to our analytical low-frequency approximation re-
sult.

o |
— A— ol
W= 3 5 3 [T A
ASTINI=1m=1
Rl PG~ (31)

Our results are shown in Fig. 3. We see that the black hole

absorbs only a small amount of the emitted radiation. Even

for the innermost stable circular orbit the black hole absorbs

only 3% of the total radiated power.

This is interesting and non trivial to make educated guesses

about what are the most promising situations where the influ-

0.07L. ence of the spacetime curvature on particle wave modes will

T : : be “essential” to understand the forthcoming observational

FIG. 3: The ratio between the asymptotically observed pangs data. We believe that black holes provide an excellent pack-
and the emitted poweds is plotted as a function of the angular ve- ground stage and are,. perhaps, the most natu.ral candidates.

locity Q of the swirling electric charge according to asymptotic static Quantum field theory in Schwarzschild spacetime may be-

observersMQ varies from 0 td0.068 The summations in Egs. (31) COmMe to tomorrow astrophysics as important as quantum field
and (28) are performed up te= 6. theory in Minkowski spacetime is to today particle physics.
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