
ar
X

iv
:h

ep
-t

h/
00

01
22

0v
1 

 3
1 

Ja
n 

20
00

Preprint SB/F/99-266

SPIN OBSERVABLES AND PATH INTEGRALS
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Abstract

We discuss the formulation of spin observables associated to a non-relativistic
spinning particles in terms of grassmanian differential operators. We use as
configuration space variables for the pseudo-classical description of this sys-
tem the positions x and a Grassmanian vector ~ǫ. We consider an explicit
discretization procedure to obtain the quantum amplitudes as path integrals
in this superspace. We compute the quantum action necessary for this de-
scription including an explicit expression for the boundary terms. Finally we
shown how for simple examples, the path integral may be performed in the
semi-classical approximation, leading to the correct quantum propagator.
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1 Introduction

The path integral [1] formulation of the quantum mechanics of fermionic
systems is usually associated with the introduction of Grassmann variables
[2] as pseudoclassical configuration variables (Nevertheless see Ref. [3] for
an alternative approach in the relativistic case). The path integral treat-
ment of a single fermionic degree of freedom is very well understood but,
surprisingly, the extension of the formalism to a space time description of
relativistic and non relativistic spinning particles or to the solution of po-
tential problems has not been developed yet. Several approaches [2] using
different sets of Grassmannian non-commuting variables have been proposed
in the literature allowing to construct a pseudo-classical description of the
dynamics of the spinning particle, (or pseudomechanics [4]) for the non-
relativistic case, and for the Dirac electron [5] but this is not enough for a
quantum description. With the pseudo-classical action identified, in order
to write down a path integral expression for the fermionic propagator, it is
necessary to construct an explicit representation of the spin observables and
the polarized states of the particle in the Hilbert space associated to the
Grassmann variables. This will we done in what follows. On the other hand,
in the usual approach, [4] [5] this obstacle is bypassed by showing, instead
that the constraint which emerge from imposing a variational principle to
the action functional is equivalent in the operatorial formalism to the wave
equation.Then the form of the propagator is borrowed from this formalism.
This strategy, although enlightening from the conceptual point of view is not
useful for computational purposes. Another path integral formalism, which
is based on the use of Grassmannian coherent states [6], has been devised
for the description of fermionic systems. It allows the computation of the
propagator and bound state energies but the relation of this formalism with
the pseudo-classical description is not completely clear and in particular does
not provide a direct interpretation of the path integral as a sum over histories
in configuration space. In what follows we also discuss how we can get this
interpretation for spinning particles. First, we show that with an explicit
realization of the spin observables one can represent the spin polarized states
in the Grassmannian sector of the superspace. Then we derive the path
integral formulation of the non-relativistic electron as a sum over histories
directly from the pseudo-classical description. Finally, we show that being
careful with the boundary conditions of the Grassmann functions one is able

1



to compute the probability amplitudes using a semiclassical expansion.

2 Wave functions and spin observables

Consider a real Grassmannian vector ~ǫ satisfying the anti-conmutation rela-
tions,

ǫiǫj = −ǫjǫi

and the super-configuration space of coordinates (~x,~ǫ). Let us consider wave
functions of both ~x and ~ǫ with the general expansion ,

φ(x,~ǫ) = φ(x) + φi(x)ǫi + φij(x)ǫiǫj + φijk(x)ǫiǫjǫk. (1)

The functions φij(x) and φijk are anti-symmetric. The wave functions be-
long to a 8-dimensional complex vectorial space, (C/ 8). The internal product
in this space may be defined by,

〈φ1|φ2〉 =
∫

dǫ3dǫ2dǫ1(φ
†)Iǫφ2. (2)

where dǫ3dǫ2dǫ1 is the Berezin integration measure. The operator Iǫ is,

Iǫ =
ǫijk

3!
(ǫi + ∂i) (ǫj + ∂j) (ǫk + ∂k) . (3)

and ∂m = ∂
∂ǫm

are the Grassmannian right derivatives which satisfy, ∂mǫk =
δmk and ∂mǫkǫj = δmkǫj − δmjǫk. If one considers the eight independent
functions in φ as the components of a vector in (C/ 8), the internal product
defined in (2) corresponds to the usual product in (C/ 8). The δ function in
the odd sector is given by

δ(~ǫ′ −~ǫ) = (ǫ′1 − ǫ1) (ǫ′2 − ǫ2) (ǫ′3 − ǫ3) . (4)

Introduce the non-Hermitian position operator E in the odd sector of the
configuration space and the continuous set of eigenvectors |~ǫ〉 of E. Similarly
as in the coherent state representation we have the relations

〈~ǫ|~ǫ′〉 = e~ǫ′.~ǫ. (5)
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An arbitrary wave function φ(x, ǫi) is represented in Dirac notation in the
form, φ(x, ǫi) = 〈~x,~ǫ|φ〉. The identity operator in the odd sector is

1l =
∫

dǫ3dǫ2dǫ1|~ǫ
′〉Iǫ〈~ǫ|, (6)

and we note also that, Iǫe
ǫ′ǫ = δ(ǫ − ǫ′). The physical sector of this space

should be expanded by the spin polarized states. To represent the spin
observables ~S we introduce the differential operators,

Si = −
i

4
ǫijk (ǫj + ∂j) (ǫk + ∂k) (7)

which satisfy the angular momentum algebra, [Si, Sj ] = iǫijkSk. This rep-
resentation of the spin observables is the natural generalization of the usual
representation of the fermionic position-momentum algebra which led to the
coherent state formulation of the path integral[7]. It has been discussed
also in Ref. [8]. Looking at things from another point of view, the Hilbert
space of states |~ǫ〉 and the operators (7) provide a fermionic coherent state
representation of the SU(2) algebra alternative to the bosonic approach [9].
This construction may be generalized to other groups. The complete set of
eigenfunctions of S3 is given in the following table.

fn
λ λ φ(~ǫ)

f 1
+

1
2

1 − iǫ1ǫ2

f 2
+

1
2

ǫ3 − iǫ1ǫ2ǫ3

f 3
+

1
2

ǫ1 + iǫ2

f 4
+

1
2

−ǫ1ǫ3 − iǫ2ǫ3

f 4
− −1

2
1 + iǫ1ǫ2

f 3
− −1

2
ǫ3 + iǫ1ǫ2ǫ3

f 2
− −1

2
ǫ1 − iǫ2

f 1
− −1

2
−ǫ1ǫ3 + iǫ2ǫ3

The eigenvalues of S3, denoted by λ are which, as can be seen, degenerate.
To construct a particular base of states, we take a linear combination of them
in such a way that the action of the up and down operators S+ = S1 + iS2

and S− = S1 − iS2 is well defined. A possible choice of the eigenfunctions
which represent the polarized states is

〈~ǫ|+〉 = (1 + ǫ3)(1 − iǫ1ǫ2), (8)

〈~ǫ|−〉 = (1 − ǫ3)(ǫ1 − iǫ2).
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3 The action functional and the path integral

Let us consider now a spinning particle whose dynamics is determined by
the Hamiltonian operator H . We want to discuss a discretization procedure
in the trajectories of the particle in the configuration space which allows to
represent the Green functions in terms of a path integral. The evolution
operator is given by,

U(tf − ti) = e−iH(tf−ti). (9)

with matrix elements, U(x,~ǫ, t; x′,~ǫ′, t′) = 〈x′,~ǫ′|U(t, t′)|x,~ǫ〉. For the spin
polarized states (k = +,−), we define the physical propagator, K(k, tf ; j, ti =
〈xf , k|U |xi, j〉 which may be projected in the form,

K(k, tf ; j, ti) =
∫

dǫi

∫

dǫf〈k|ǫf〉Iǫf
〈ǫf |U(xf , ǫf , tf ; xi, ǫi, ti)|ǫi〉Iǫi

〈ǫi|j〉.

(10)
(we drop the arrow on the Grassmann coordinates).Now consider a discretiza-
tion {t1, t2, . . . ., t2N} with δ = tk − tk−1 of the time interval, and using the
resolution of unity let us compute the matrix element of the evolution oper-
ator. We get,

〈xf , ǫf |e
−iH(tf−ti)|xi, ǫi〉 =

lim
2N→∞

∫

Π∞
k=1

dpk

2π

∫

Π∞
j=1dxj

∫

dǫ′1

∫

dǫ1

∫

dǫ′2

∫

dǫ2...
∫

dǫ′2N

∫

dǫ2N

〈xf , ǫf ||p2N , ǫ2N 〉Iǫ2N
〈p2N , ǫ2N |e

−iHδ|x2N , ǫ′2N〉Iǫ′2N
〈x2N , ǫ′2N |...

...〈ǫk, pk|e
−iHδ|xk, ǫ

′
k〉Iǫ′

k
〈xk, ǫ

′
k||pk−1, ǫk−1〉Iǫk−1

〈pk−1, ǫk−1|...

...〈ǫ1, p1|e
−iHδ|x1, ǫ

′
1〉Iǫ′1

〈x1, ǫ
′
1|xi, ǫi〉.

The general term can be expanded in the form,

Iǫk
〈ǫk, pk|e

−iHδ|xk, ǫ
′
k〉Iǫ′

k
〈xk, ǫ

′
k|pk−1, ǫk−1〉 =

Iǫ′
k
e−iH(pk ,xk,ǫk)δe−ipkxkeǫ′

k
ǫkIǫ′

k
eipk−1xk−1eǫk−1ǫ′

k =

e−iH0(pk,xk)δe−ipkxkeipk−1xk−1Iǫ′
k
e−iH1(xk,ǫk)δeǫ′

k
ǫkIǫ′

k
eǫk−1ǫ′

k

were we use that the hamiltonian function satisfies,

H(pk, xk, ǫk) = H0(pk, xk) + H1(xk, ǫk). (11)
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This is obvious if H does not depend on the ǫ derivatives, but it is also true in
the general case due to the external integrals. Let us focus in the Grassmann
sector alone and note that under the integral sign we have,

〈ǫf |ǫ2N 〉Iǫ2N
e−iH1(x2N ,ǫ2N)δeǫ′2N

ǫ2N Iǫ′
2N

eǫ2N−1ǫ′2N ...Iǫ1e
−iH1(x1,ǫ1)δeǫiǫ1 =

e
1
2
ǫ2N ǫf e−iH(p2N ,x2N ,ǫ2N )δ+ 1

2
ǫ2N(ǫf−ǫ2N−1)e−iH(p2N−1,x2N−1,ǫ2N−1)δ+

1
2
ǫ2N−1(ǫ2N−ǫ2N−2)...

e−iH(p1,x1,ǫ1)δ+
1
2
ǫ1(ǫ2−ǫi)e

1
2
ǫiǫ1 .

The terms at the end of the interval are of the form,

~ǫ2N~ǫf ≈ (~ǫf − δ~̇ǫf )~ǫf = δ~ǫf~̇ǫf , (12)

~ǫi~ǫ1 ≈ ~ǫi(~ǫi + δ~̇ǫi) = δ~ǫi~̇ǫi. (13)

In the limit 2N → ∞ (δ → 0), they reduce to boundary terms which depend
only of initial and final values

g(~ǫi,~ǫf ) = lim
δ→0

1

2

{

∫ ti+δ

ti

~ǫ~̇ǫdt +
∫ tf

tf−δ
~ǫ~̇ǫdt

}

. (14)

Incorporating the bosonic sector we are left with,

U(~ǫf , tf ;~ǫi, ti) =
∫

D[ǫ]D[x]D[p]e
g(~ǫi,~ǫf )+i

∫

{

~̇x~p− i~ǫ~̇ǫ
2
−H(x,p,ǫ)

}

dt
. (15)

The action functional recovered in the measure of the path integral is the one
that appears in the pseudoclassical description of the spinning particle [4].
To compute the quantum ampitude between physical states, one introduces
(15) in (10).

4 The semiclassical approximation and the

variational principle

Bosonic path integrals with quadratic potentials may be computed using
a semiclassical approximation [1]. In this section we show that a similar
result holds also in the case under consideration if proper care is given to the
boundary terms. The point here is that, since the equations for ~ǫ are first
order, it is not possible in general to find trajectories x(t) and ~ǫ(t), extremals
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of S in the time interval tf − ti, with x(ti) = xi, x(tf ) = xf , ǫ(ti) = ǫi and
ǫ(tf ) = ǫf . So we introduce two Lagrange multipliers πi, πf and consider
instead an extended action

S∗[ǫ(t), πi, πf ] = S[ǫ(t)] + πi(ǫ(ti) − ǫi) − πf (ǫ(tf ) − ǫf ). (16)

The equations of motion are

2

((

∂L

∂ǫ̇

)

(tf ) − πf

)

δ(t − tf ) − 2

((

∂L

∂ǫ̇

)

(ti) − πi

)

δ(t − ti) = 0, (17)

x(ti) = xi, x(tf) = xf .

Now we can fix the values of the Lagrange multipliers to guarantee that
the boundary conditions, which here appear as independent equations, are
satisfied. In fact, we still have the freedom to fix πi to zero. Then the solution
to the equations may be written in the form

~ǫclass = ~ǫ0 + ~δǫΘ(t − tf ) (18)

where ~ǫ0 satisfies

~̇ǫ0 = i
∂H

∂~ǫ0

. (19)

and δǫ is a jump at the end of the trajectory. To perform the semiclassical
expansion let us consider first the free case with the action given by,

iS = g(~ǫi,~ǫf) + i
∫

[

−
i~ǫ~̇ǫ

2

]

dt. (20)

The solution to the equations of motion which satisfies the boundary condi-
tion is simply

~ǫ(t) = ~ǫi + 2(~ǫf −~ǫi)Θ(t − tf). (21)

Consider the path integral (15) computed in the previous section with the
boundary term (14), and let us perform an expansion around ~ǫclass,

~ǫ(t) = ~ǫclass(t) + ~ξ(t). (22)

Substituting (22) and (21) in (15) we get the expected result,

U(~ǫf , tf ;~ǫi, ti) = Neǫiǫf . (23)
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Let us turn out our attention to a more general case. The most general even
Hamiltonian function has the form,

H(x, p, ǫ) = H0(x, p) + Hij(x)ǫiǫj . (24)

Then, the equation of motion is linear in ǫ. Using the equation of motion
for ǫ0, and the linearity of the equation of motion it is readily seen that the
boundary term takes the form,

g(~ǫi,~ǫf ) =
~ǫ0(tf)~ǫf

2
. (25)

This result generalizes for the interacting case the expression obtained by
Galvao and Teitelboim [4]. Consider again expressions of the form (22) and
(22). Substitution in (15) leads us to the expression,

g(~ǫi, ~ǫf) + iS = ~ǫ0(tf )~ǫf + (26)

i
∫ tf

ti

dt

{[

− i
~ǫ0 ~̇ǫ0

2
+ H0(x, p) + Hijǫ0iǫ0j

]

+
[

−
i

2
~ξ~̇ξ + Hijξiξj

]

. . .

}

for the exponent. (The dots appear to denote possible bosonic contributions).
Then, in the case when the spin degrees of freedom factorize, we get the
following simple expression for the matrix elements

U(~ǫf , tf ;~ǫi, ti) = Ne2g(~ǫf ,~ǫi). (27)

where N is a normalizacion constant.

5 Spin precession

Let us recover the known results for particle in a uniform magnetic field for
example. The action is given by

S = g(~ǫi,~ǫf) +
∫

(

~̇x~p −
i

2
~ǫ~̇ǫ +

p2

2m
+

q

2m

(

ǫijk

2
iǫjǫk

)

Bi

)

dt. (28)

Defining,

Mjk =
q

2m

ǫijk

2
Bi, (29)
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we are left with the Lagrangian,

L = −
i~ǫ~̇ǫ

2
+ i

~ǫT M~ǫ

2
. (30)

The equation of motion is simply, ~̇ǫ0(t) = M~ǫ0(t), and the classical trajectory
with arbitrary boundary conditions is given by,

~ǫclass(t) = eM(t−ti)~ǫi + ~δǫΘ(t − tf), (31)

~̇ǫclass(t) = MeM(t−ti)~ǫi + ~δǫδ(t − tf),

Defining ω = qB

m
we have,

eM(t−ti) =







cos(ω(t− ti)) sen(ω(t − ti)) 0
−sen(ω(t − ti)) cos(ω(t− ti)) 0

0 0 1





 . (32)

In this case the boundary term g(~ǫf ,~ǫi) is nontrivial and takes the form

g(~ǫf ,~ǫi) =
~ǫt

ie
−M(tf−ti)~ǫf

2
. (33)

According with the discussion of the previous section the we have now,

U(~ǫf , tf ;~ǫi, ti) = e~ǫt
ie

−M(tf−ti)~ǫf . (34)

To recover the standard result we compute the time evolution of an arbitrary
wave function

φ(~ǫf , tf) =
∫

dǫiI~ǫf
e~ǫt

ie
−M(tf−ti)~ǫf φ(~ǫi, ti) = φ(e−M(tf−ti)~ǫf , ti). (35)

With the initial state, |φi〉 = cos( θ
2
)e

−iϕ
2 |+〉 + sen( θ

2
)e

iϕ
2 |−〉 and ~B directed

in the x3 direction, we get

〈φ(t)|S3|φ(t)〉 = cos(θ), (36)

〈φ(t)|S1|φ(t)〉 = sen(θ)cos(ϕ + ωt),

〈φ(t)|S2|φ(t)〉 = sen(θ)sen(ϕ + ωt).
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6 Conclusion

In this paper we have assembled many sparse elements of the the theory of
spinning particle already found in the literature, and developed a little some
of them, to construct a path integral representation of the quantum ampli-
tudes of a non-relativistic electron in an external electromagnetic field. This
fermionic path integral shares the interpretation of a sum over (pseudo) clas-
sical histories with its bosonic counterpart. The clue in this approach is to
build up the path integral from the explicit realization of the spin operators.
The main technical point in the computations concerns the correct handling
of the boundary contributions. There are various natural ways to develop
further the work presented in this paper. First, one can extend the com-
putational techniques to cases where the spin and the translational degrees
of freedom are mixed by the interaction (For example in Ref.[10]). One can
also generalize this approach to the relativistic Dirac particle as we discuss
elsewhere [11]. Finally the relation between the Grassmannian representa-
tion of the spin observables and the fermionic SU(2) coherent states may be
generalized for other groups.
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