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Some Effects on Relativistic Quantum Systems Due to a Weak Gravitational Field

Geusa de A. Marques1, Sandro G. Fernandes2, and V. B. Bezerra3
1. Departamento de F́ısica, Universidade Federal de

Campina Grande, 58109-790, Campina Grande, Pb, Brazil
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We study the behaviour of relativistic quantum particles in the space-time generated by a moving mass current,
in the weak field approximation. We solve the Dirac equation in this gravitational field and calculate the current
associated with the particles.

The study of the behaviour of quantum systems under the
influence of curved space-times goes back to the end of the
1920s and to the beginning of the 1930s[1], when the gen-
eralization of the Schrödinger and Dirac equations to curved
spaces has been discussed, motivated by the idea of construct-
ing a theory combining quantum physics and general relativ-
ity. Along this line of research the hydrogen atom has been
studied in particular curved space-times[2, 3]. These investi-
gations showed that the energy levels of an atom placed in a
gravitational field is shifted as a result of the interaction of the
atom with the space-time curvature[3]-[5]. This shift in the
energy of each atomic level would depend on the features of
the space-time.

The general theory of relativity, as a metric theory, predicts
that gravitation is manifested as the curvature of space-time.
Therefore, it is of interest to know how the curvature of space-
time at the position of the atom affects its spectrum. On the
other hand, we know that there are situations in which parti-
cles are constrained to move in a region where the Riemann
curvature tensor vanishes and even in this case they exhibit
gravitational effects arising from a region of non-zero curva-
ture from which they are excluded[6]. In a more general sense,
we have the case in which particles are constrained to move in
a region where the Riemann curvature tensor does not vanish
but does depend on certain parameter of the metric such as
the velocity or the angular momentum of the source. In this
case we have effects on the system associated with parameters
which do not influence the curvature of the space-time as we
will see.

In what follows we present the study concerning the behav-
iour of a relativistic particle placed in the gravitational field
generated by a cylindrical distribution of matter with uniform
density along thez-axis moving slowly, whose metric reads[7]

ds2 = −(1−Φ(ρ))dt2 +(1+Φ(ρ))

×(dρ2 +ρ2dϕ2 +dz2)−4vΦ(ρ)dzdt, (1)

whereΦ(ρ) represents the Newtonian potential produced by
this source and satisfies the conditionΦ(ρ)2 ≈ 0, in the weak
field approximation andv is the velocity of the distribution of
matter. This quantity also satisfies the conditionv2 ≈ 0. This
metric is characterized by two parameters, namely, the mass
of the source and its velocity. It is interesting to call attention

to the fact that in the weak field approximation, the Riemann
curvature tensor outside the cylindrical source is completely
determined by the Newtonian potential.

For this space-time, the curvature outside the distribution of
matter does not depend on its velocity, in the weak field ap-
proximation. This means that for the weak gravitational field
associated with slowly moving mass currents, the local effects
of the curvature associated with the velocity of the source are
absent outside it.

The covariant Dirac equation in a curved space-time, for a
massive spinor fieldΨ is given by

[iγµ(x)∂µ− iγµ(x)Γµ(x)−m]Ψ(x) = 0, (2)

whereγµ(x) are the generalized Dirac matrices and are given
in terms of the standard flat space Dirac matricesγ(a) as

γµ(x) = eµ
(a)(x)γ

(a), (3)

where eµ
(a)(x) are the tetrads components defined by

eµ
(a)(x)e

ν
(b)(x)η

(a)(b) = gµν, where the Greek indices are con-
nected with the tensor world indices(coordinate basis system)
and the Latin indices denote Lorentz indices which are con-
nected with the local Minkowski coordinate system(tetrads).

The probability current can be written using the Gordon de-
composition

jµ =
1

2m
∂µ

(
ΨσµλΨ

)
+

i
4m

gµλ [
Ψ∂λΨ− (∂λΨ)Ψ

]

+
i

4m
Ψ

([
∂λγλ,γµ

]
+

[
γλ,∂λγµ

])
Ψ

+
i

2m
Ψ

[
γλΓλ,γµ

]
Ψ (4)

Now, we will consider a massive spinor particle in the weak
gravitational field due to the distribution of matter we are con-
sidering. Thus, in order to solve the Dirac equation for a mas-
sive particle, given by Eq. (2), in this space-time, let us choose
the following set of tetrads
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eµ
(a) =




1+ Φ(ρ)
2 0 0 −2vΦ(ρ)

0 1− Φ(ρ)
2 0 0

0 0
1−Φ(ρ)

2
ρ 0

0 0 0 1− Φ(ρ)
2




. (5)

In order to do the calculations, let us consider that the par-
ticle is restricted to move in a narrow region such thatΦ(ρ) is
approximately constant and equal toΦ1. Thus, we will get the
following Dirac equation in the space-time of a moving mass
current

{
i
[(

1+ Φ1
2

)
γ(0)−2vΦ1γ(3)

]
∂
∂t

+i
(

1− Φ1
2

)
γ(1) ∂

∂ρ + i
2ρ

(
1− Φ1

2

)
γ(2) ∂

∂ϕ

+i
(

1− Φ1
2

)
γ(3) ∂

∂z + i
2ρ

(
1+ Φ1

2

)
γ(1)−m

}
Ψ = 0.

(6)

Due to the fact that the space-time is static and symmetric
under translations along thez-axis and rotations around this
axis, the solution of Eq. (1) can be written as

Ψ j = e−iEtei(lϕ+kz)Rj(ρ) , j = 1,2,3,4 (7)

where

R1(ρ) = R3(ρ) = C1ρ( 1
2− u

2B)Jσ

(√
τ
B

ρ
)

+C2ρ( 1
2− u

2B)Nσ

(√
τ
B

ρ
)

(8)

and

R2(ρ) = R4(ρ) = C′1ρ( 1
2− u

2B)Jσ

(√
τ
B

ρ

)

+C′2ρ( 1
2− u

2B)Nσ

(√
τ
B

ρ

)
(9)

with

σ =
1
2

√
B2−2uB+u2−4ω2B

B2 ;

σ =
1
2

√
B2−2uB+u2−4ω2B

B2 ;

ω = B2
[
l(l −1)+

1
4
− 1

2B

]
;

τ = pq; u =−B2
(

1
2
− l

)
;

u = B2
(

l +
1
2

)
; ω =−B2

(
l +

1
4

)
;

τ̄ = (v̄E+Bk)2− (AE+m)2 ,

whereA = 1+ Φ1
2 , B = 1− Φ1

2 andv = 2vΦ1
Note that these solutions depend on the velocity of the

source, as well as on the Newtonian potential. In this case the
Riemann tensor does not depend on the velocity of the source,
and therefore, the obtained result means that the dependence
of the solution with the velocity is of purely global origin.

The current can be computed using Eq.(4), which is this
case results in the following expressions for the components

jt =
−→
∇ .
−→
P − 2v

ρ2 Mϕ +ρconv., (10)

jρ =−∂tPρ +
(−→

∇ ×−→M
)

ρ
− 2v

ρ
∂tMρ + jρ,conv, (11)

jϕ =−∂tPϕ +
(−→

∇ ×−→M
)

ϕ
+ jϕ,conv, (12)

jz =−∂tPz+
(−→

∇ ×−→M
)

z
− 2v

ρ
∂tMρ + jz,conv. (13)

With regard to an external electromagnetic field,
−→
P and−→

M are the polarization and magnetization current densities,
respectively. The components of the polarization vector are
given byPρ = i

2mΨγ(0)γ(ρ)Ψ , Pϕ = i
2mΨγ(0)γ(ϕ)Ψ, Pz =

i
2mΨγ(0)γ(z)Ψ,

where

γρ = γ1cosϕ+ γ2sinϕ and γϕ = γ1sinϕ+ γ2cosϕ. (14)

The magnetization density vector has components given
by the expressionsMρ = i

4mΨ
[
γ(ϕ),γ(z)

]
Ψ , Mϕ =

i
4mΨ

[
γ(z),γ(ρ)

]
Ψ , Mz = i

4mΨ
[
γ(ρ),γ(ϕ)

]
Ψ .

From the obtained results, we conclude that the solution of
the Dirac equation, as well as the current associated with the
particle depend on the velocity of the source. This is an exam-
ple of a global phenomenon associated with this gravitational
field.

It is worth calling attention to the fact that in the region of
motion of the particle, the Riemann curvature, in the weak
field approximation, does not depend on the velocity of the
source. This result means that, even in the situation in which
the particle is constrained to move in a region where the Rie-
mann curvature does not depend on the velocity of the source,
it exhibits a gravitational effect associated with this quantity.
This dependence on a parameter which does not have any in-
fluence on the Riemann curvature tensor, in the weak field
approximation, is a manifestation of a global phenomenon
associated with these gravitational fields, called gravitational
Aharonov-Bohm effect[7, 8].
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Cient́ıfico e Tecnoĺogico (CNPq) and Coordenação de



1112 Brazilian Journal of Physics, vol. 35, no. 4B, December, 2005

Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) -
Programa PROCAD and FAPESQ-Pb/CNPq(PRONEX) for

partial financial support.

[1] V. Fock, Z. Phys.53, 592 (1928); E. Schrödinger, Physica6, 899
(1932); W. Pauli, Ann. Phys. (Leipzig)18, 337 (1933).
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