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The effects of the propagation of particles which have a finite life-time and an
according width in their mass spectrum are discussed in the context of transport
descriptions. In the first part the coupling of soft photon modes to a source of
charged particles is studied in a classical model which can be solved completely
in analytical terms. The solution corresponds to a re-summation of certain field
theory diagrams. The general properties of broad resonances in dense finite tem-
perature systems are discussed at the example of the ρ-meson in hadronic matter.
The second part addresses the problem of transport descriptions which also ac-
count for the damping width of the particles. The Kadanoff–Baym equation after
gradient approximation together with the Φ-derivable method of Baym provides a
self-consistent and conserving scheme. Memory effects appearing in collision term
diagrams of higher order are discussed. We derive a generalized expression for
the nonequilibrium kinetic entropy flow, which includes corrections from fluctua-
tions and mass-width effects. In special cases an H-theorem is proved. Memory
effects in collision terms provide contributions to the kinetic entropy flow that in
the Fermi-liquid case recover the famous bosonic type T 3 ln T correction to the
specific heat of liquid Helium-3.

With the aim to describe the collision of two nuclei at intermediate or
even high energies one is confronted with the fact that the dynamics has to
include particles like the delta or rho-meson resonances with life-times of less
than 2 fm/c or equivalently with damping widths above 100 MeV. Also the
collisional damping rates deduced from presently used transport codes are of
the same order, whereas typical mean temperatures range between 50 to 150
MeV depending on beam energy. Thus, the damping width of most of the
constituents in the system can by no means be treated as a perturbation. As
a consequence the mass spectrum of the particles in the dense matter is no
longer a sharp delta function but rather acquires a width due to collisions
and decays. One thus comes to a picture which unifies resonances which have
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already a width in vacuum due to decay modes with the ”states” of particles in
dense matter, which obtain a width due to collisions (collisional broadening).

The theoretical concepts for a proper many body description in terms of a
real time nonequilibrium field theory have already been devised by Schwinger1,
Kadanoff and Baym2, and Keldysh3 in the early sixties, extensions to relativis-
tic plasmas followed by Bezzerides and DuBois 4. First investigations of the
quantum effects on the Boltzmann collision term were given by Danielewicz 5,
the principal conceptual problems on the level of quantum field theory were
investigated by Landsmann 6, while applications which seriously include the
finite width of the particles in transport descriptions were carried out only in
recent times, e.g. refs. 5,7,8,9,10,11,12,13. For resonances, e.g. the delta reso-
nance, it was natural to consider broad mass distributions and ad hoc recipes
have been invented to include this in transport simulation models. However,
many of these recipes are not correct as they violate some basic principles like
detailed balance (see discussion in ref. 7), and the description of resonances in
dense matter has to be improved 12.

In this contribution the consequences of the propagation of particles with
short life-times are discussed. First we address a genuine problem related
to the occurrence of broad damping width, i.e. the soft mode problem. At
the classical level we investigate the coupling of a coherent classical field, the
Maxwell field, to a stochastic source described by the Brownian motion of a
charged particle. In this case the classical current-current correlation func-
tion, can be obtained in closed analytical terms and discussed as a function
of the macroscopic transport properties, the friction and diffusion coefficient
of the Brownian particle. The result corresponds to a partial re-summation of
photon self-energy diagrams in the real-time formulation of field theory. Sub-
sequently the properties of particles with broad damping width is illustrated at
the example of the ρ-meson in dense matter at finite temperature. In the final
part we discuss how particles with such broad mass-width can be described
consistently within a transport theoretical picture.

We are going to argue that the Kadanoff–Baym equations in the first gradi-
ent approximation together with the Φ-functional method of Baym 14 provide
a proper frame for kinetic description of systems of particles with a broad
mass-width. To this end, we discuss relevant problems concerning charge and
energy–momentum conservation, thermodynamic consistency, memory effects
in the collision term and the growth of entropy in specific cases. For simplicity
we concentrate on systems of non-relativistic particles. Generalization to sys-
tems of relativistic particles and bosonic mean fields can be straight forwardly
done along the lines given in ref. 15.
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Figure 1: Left: Current-current correlation function in units of e2 < v2 > as a function of
time (in units of 1/Γx) for different values of the photon momentum q2 = 3k2Γ2

x/< v2 >

with k = 0, 1, 2, 3. Right: Rate of real photons d2N/(dωdt) in units of 4πe2
〈
v

2
〉

/3 for

a non-relativistic source for Γx =50,100,150 MeV; for comparison the IQF results (dashed
lines) are also shown.

1 Bremsstrahlung from Classical Sources

For a clarification of the soft mode problem we discus an example in classical
electrodynamics. We consider a stochastic source, the hard matter, where the
motion of a single charge is described by a diffusion process in terms of a
Fokker-Planck equation for the probability distribution f of position x and
velocity v

∂

∂t
f(x, v, t) =

(
DΓ2

x

∂2

∂v2
+ Γx

∂

∂v
v − v

∂

∂x

)
f(x, v, t). (1)

Fluctuations also evolve in time according to this equation, or equivalently by
a random walk process 13, and this way determine correlations. This charge is
coupled to the Maxwell field. On the assumption of a non-relativistic source,
this case does not suffer from standard pathologies encountered in hard thermal
loop (HTL) problems of QCD, namely the collinear singularities, where vq ≈ 1,
and from diverging Bose-factors. The advantage of this Abelian example is
that damping can be fully included without violating current conservation and
gauge invariance. This problem is related to the Landau–Pommeranchuk–
Migdal effect of bremsstrahlung in high-energy scattering 16.

The two macroscopic parameters, the spatial diffusion D and friction Γx

coefficients determine the relaxation rates of velocities. In the equilibrium limit
(t → ∞) the distribution attains a Maxwell-Boltzmann velocity distribution
with the temperature T = m

〈
v

2
〉
/3 = mDΓx. The correlation function can
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be obtained in closed form and one can discuss the resulting time correlations
of the current at various values of the spatial photon momentum q, Fig. 1 (de-
tails are given in ref. 13). For the transverse part of the correlation tensor this
correlation decays exponentially as ∼ e−Γxτ at q = 0, and its width further de-
creases with increasing momentum q = |q|. The in-medium production rate is
given by the time Fourier transform τ → ω, Fig. 1 (right part). The hard part
of the spectrum behaves as intuitively expected, namely, it is proportional to
the microscopic collision rate expressed through Γx (cf. below) and thus can
be treated pertubatively by incoherent quasi-free (IQF) scattering prescrip-
tions. However, independently of Γx the rate saturates at a value of ∼ 1/2
in these units around ω ∼ Γx, and the soft part shows the inverse behavior.
That is, with increasing collision rate the production rate is more and more
suppressed! This is in line with the picture, where photons cannot resolve the
individual collisions any more. Since the soft part of the spectrum behaves
like ω/Γx, it shows a genuine non-perturbative feature which cannot be ob-
tained by any power series in Γx. For comparison: the dashed lines show the
corresponding IQF yields, which agree with the correct rates for the hard part
while completely fail and diverge towards the soft end of the spectrum. For
non-relativistic sources

〈
v

2
〉
≪ 1 one can ignore the additional q-dependence

(dipole approximation; cf. Fig. 1) and the entire spectrum is determined by
one macroscopic scale, the relaxation rate Γx. This scale provides a quenching
factor

C0(ω) =
ω2

ω2 + Γ2
x

(2)

by which the IQF results have to be corrected in order to account for the finite
collision time effects in dense matter.

The diffusion result represents a re-summation of the microscopic Langevin
multiple collision picture and altogether only macroscopic scales are relevant
for the form of the spectrum and not the details of the microscopic collisions.
Note also that the classical result fulfill the classical version (h̄ → 0) of the
sum rules discussed in refs. 17,13.

2 Radiation on the Quantum level

We have seen that at the classical level the problem of radiation from dense
matter can be solved quite naturally and completely at least for simple ex-
amples, and Figs. 1 display the main physics. They show, that the damping
of the particles due to scattering is an important feature, which in particular
has to be included right from the onset. This does not only assure results
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that no longer diverge, but also provides a systematic and convergent scheme.
On the quantum level such problems require techniques beyond the standard
repertoire of perturbation theory or the quasi-particle approximation.

In terms of nonequilibrium diagrammatic technique in Keldysh
notation, the production or absorption rates are given by pho-
ton self-energy diagrams of the type to the right with an in–
and out-going photon line (dashed). The hatched loop area
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denotes all strong interactions of the source. The latter give rise to a whole
series of diagrams. As mentioned, for the particles of the source, e.g. the nucle-
ons, one has to re-sum Dyson’s equation with the corresponding full complex
self-energy in order to determine the full Green’s functions in dense matter.
Once one has these Green’s functions together with the interaction vertices at
hand, one could in principle calculate the required diagrams. However, both
the computational effort to calculate a single diagram and the number of di-
agrams increase dramatically with the loop order of the diagrams, such that
in practice only lowest-order loop diagrams can be considered in the quantum
case. In certain limits some diagrams drop out. We could show that in the
classical limit, which in this case implies the hierarchy ω, |q|, Γ ≪ T ≪ m to-
gether with low phase-space occupations for the source, i.e. f(x, p) ≪ 1, only
the following set of diagrams survives

�
�

�
�s s +

�
�

�
�s s

�� �� +

�
�

�
�s s

�� ���� ��. . . �� ��. . . . . . (3)

In these diagrams the bold lines denote the full nucleon Green’s functions
which also include the damping width, the black blocks represent the effective
nucleon-nucleon interaction in matter, and the full dots the coupling vertex
to the photon. Each of these diagrams with n interaction loop insertions just
corresponds to the nth term in the corresponding classical Langevin process,
where hard scatterings occur at random with a constant mean collision rate
Γ. These scatterings consecutively change the velocity of a point charge from
v0 to v1 to v2, . . .. In between scatterings the charge moves freely. For such
a multiple collision process the space integrated current-current correlation
function takes a simple Poisson form

iΠµν−+ ∝

∫
d3x1d

3x2

〈
jν(x1, t −

τ
2 )jµ(x2, t + τ

2 )
〉

= e2 〈vµ(0)vν(τ)〉 = e2e−|Γτ |
∞∑

n=0

|Γτ |n

n!
〈vµ

0 vν
n〉 (4)
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with v = (1, v). Here 〈. . .〉 denotes the average over the discrete collision se-
quence. This form, which one writes down intuitively, agrees with the analytic
result of the quantum correlation diagrams (3) in the limit n ≪ 1 and Γ ≪ T .
Fourier transformed it determines the spectrum in completely regular terms
(void of any infra-red singularities), where each term describes the interference
of the photon being emitted at a certain time or n collisions later. In special
cases where velocity fluctuations are degraded by a constant fraction α in each
collision, such that 〈v0 · vn〉 = αn 〈v0 · v0〉, one can re-sum the whole series in
Eq. (4) and thus recover the relaxation result with 2Γx

〈
v

2
〉

= Γ
〈
(v0 − v1)

2
〉

at least for q = 0 and the corresponding quenching factor (2). Thus the clas-
sical multiple collision example provides a quite intuitive picture about such
diagrams. Further details are given in ref. 13.

The above example shows that we have to deal with particle transport
that explicitly takes account of the particle mass-width in order to properly
describe soft radiation from the system.

3 The ρ-meson in dense matter

Another example we like to discuss concerns properties of the ρ-meson and
their consequences for the ρ-decay into di-leptons are discussed. In terms of
the nonequilibrium diagrammatic technique, the exact production rate of di-
leptons is given by the following formula

dne+e−

dtdm
= @@I

��	

e+

e−

������������������������
γ∗

�� ��r r�
ρ

− +������������������������
γ∗

��
��	

@@
@@I

e+

e−

r r

= fρ(m, p, x, t) Aρ(m, p, x, t) 2m Γρ e+e−

(m). (5)

Here Γρ e+e−

(m) ∝ 1/m3 is the mass-dependent electromagnetic decay rate of
the ρ into the di-lepton pair of invariant mass m. The phase-space distribution
fρ(m, p, x, t) and the spectral function Aρ(m, p, x, t) define the properties of
the ρ-meson at space-time point x, t. Both quantities are in principle to be de-
termined dynamically by an appropriate transport model. However till to-date
the spectral functions are not treated dynamically in most of the present trans-
port models. Rather one employs on-shell δ-functions for all stable particles
and spectral functions fixed to the vacuum shape for resonances.

As an illustration, the model case is discussed, where the ρ-meson just
strongly couples to two channels, i.e. the π+π− and πN ↔ ρN channels,
the latter being relevant at finite nuclear densities. The latter component is
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representative for all channels contributing to the so-called direct ρ in trans-
port codes. For a first orientation the equilibrium propertiesa are discussed in
simple analytical terms with the aim to discuss the consequences for the im-
plementation of such resonance processes into dynamical transport simulation
codes.

Both considered processes add to the total width of the ρ-meson

Γtot(m, p) = Γρ→π+π−(m, p) + Γρ→πNN−1(m, p), (6)

and the equilibrium spectral function then results from the cuts of the two
diagrams

Aρ(m, p) =
�� ��r r� �� ��r r�

�
�

�
�

�

�

π+

π−��

��

��
+

�� ��r r� �� ��r r�� �
� �-

�

N−1

π

N

�

��

��

��

︸ ︷︷ ︸
2mΓρ π+π− + 2mΓρ πNN−1

(
m2 − m2

ρ − ReΣR
)2

+ m2Γ2
tot

. (7)

In principle, both diagrams have to be calculated in terms of fully self-consistent
propagators, i.e. with corresponding widths for all particles involved. This
formidable task has not been done yet. Using micro-reversibility and the prop-
erties of thermal distributions, the two terms in Eq. (7) contributing to the di-
lepton yield (5), can indeed approximately be reformulated as the thermal aver-
age of a π+π− → ρ → e+e−-annihilation process and a πN → ρN → e+e−N -
scattering process, i.e.

dne+e−

dmdt
∝
〈
fπ+fπ− vππ σ(π+π− → ρ → e+e−)

+ fπfN vπN σ(πN → ρN → e+e−N)
〉

T
, (8)

where fπ and fN are corresponding particle occupations and vππ and vπN are
relative velocities. However, the important fact to be noticed is that in order to
preserve unitarity the corresponding cross sections are no longer the free ones,
as given by the vacuum decay width in the denominator, but rather involve
the medium dependent total width (6). This illustrates in simple terms that
rates of broad resonances can no longer simply be added in a perturbative way.

aFar more sophisticated and in parts unitary consistent equilibrium calculations have already
been presented in the literature 18,19,20,21,22. It is not the point to compete with them at
this place.
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1 GeV 1 GeV

Di-lepton rates from thermal ρ-mesons (T = 110 MeV)

mπ 2mπ mρ mπ 2mπ mρ

Γtot = Γfree full Γtot

Aρ

Figure 2: e+e− rates (arb. units) as a function of the invariant pair mass m at T = 110
MeV from π+π− annihilation (dotted line) and direct ρ-meson contribution (dashed line),
the full line gives the sum of both contributions. Left part: using the free cross section recipe,
i.e. with Γtot = Γρ π+π− ; right part: the correct partial rates (7). Aρ is given by the thick
line. The calculations are done with Γρ↔ππ(mρ) = 150 MeV and Γρ↔πNN−1 (mρ) = 70
MeV.

Since it concerns a coupled channel problem, there is a cross talk between the
different channels to the extent that the common resonance propagator attains
the total width arising from all partial widths feeding and depopulating the
resonance. While a perturbative treatment with free cross sections in Eq. (8)
would enhance the yield at resonance mass, m = mρ, if a channel is added, cf.
Fig. 2 left part, the correct treatment (7) even inverts the trend and indeed
depletes the yield at resonance mass, right part in Fig. 2. Furthermore, one
sees that only the total yield involves the spectral function, while any partial
cross section refers to that partial term with the corresponding partial width in
the numerator! Unfortunately so far all these facts have been ignored or even
overlooked in the present transport treatment of broad resonances. Compared
to the spectral function both thermal components in Fig. 2 show a significant
enhancement on the low mass side and a strong depletion at high masses due
to the thermal weight f ∝ exp(−p0/T ) in the rate (5).

As an example we show an exploratory study of the interacting system of
π, ρ and a1-mesons described by the Φ-functional
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rho-meson spectral function, T=150 MeV
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vacuum loop
finite T one loop
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Figure 3: left part: contour plot of the self-consistent spectral function of the ρ-meson as a
function of energy and spatial momentum; right part: thermal di-lepton rate as a function
of invariant mass at p = 300 MeV/c

Φ =
ρ

π

π
+

π

ρ
a1

+
π
π

π
π (9)

(cf. section 5 below). The couplings and masses are chosen as to reproduce
the known vacuum properties of the ρ and a1 meson with nominal masses
and widths mρ = 770 MeV, ma1

= 1200 MeV, Γρ = 150 MeV, Γa1
= 400

MeV. The results of a finite temperature calculation at T = 150 MeV with
all self-energy loops resulting from the Φ-functional of Eq. (9) computed 23

with self-consistent broad width Green’s functions are displayed in Fig. 3 (cor-
rections to the real part of the self-energies were not yet included). The last
diagram of Φ with the four pion self-coupling has been added in order to supply
pion with broad mass-width as they would result from the coupling of pions to
nucleons and the ∆ resonance in nuclear matter environment. As compared to
first-order one-loop results which drop to zero below the 2-pion threshold at
280 MeV, the self-consistent results essentially add in strength at the low-mass
side of the di-lepton spectrum.

4 Quantum Kinetic Equation

The two above-presented examples unambiguously show that for consistent
dynamical treatment of nonequilibrium evolution of soft radiation and broad
resonances we need a transport theory that takes due account of mass-widths
of constituent particles. A proper frame for such a transport is provided by
Kadanoff–Baym equations. We consider the Kadanoff–Baym equations in the
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first-order gradient approximation, assuming that time–space evolution of a
system is smooth enough to justify this approximation.

First of all, it is helpful to avoid all the imaginary factors inherent in
the standard Green function formulation (Gij with i, j ∈ {−+}) and intro-
duce quantities which are real and, in the quasi-homogeneous limit, positive
and therefore have a straightforward physical interpretation, much like for the
Boltzmann equation. In the Wigner representation we define

F (X, p) = A(X, p)f(X, p) = (∓)iG−+(X, p),

F̃ (X, p) = A(X, p)[1 ∓ f(X, p)] = iG+−(X, p), (10)

A(X, p) ≡ −2ImGR(X, p) = F̃ ± F = i
(
G+− − G−+

)
(11)

for the generalized Wigner functions F and F̃ with the corresponding four-
phase-space distribution functions f(X, p) and Fermi/Bose factors [1∓f(X, p)],
with the spectral function A(X, p) and the retarded propagator GR. Here and
below the upper sign corresponds to fermions and the lower one, to bosons.
According to relations between Green functions Gij only two independent real
functions of all the Gij are required for a complete description. Likewise the
reduced gain and loss rates of the collision integral and the damping rate are
defined as

Γin(X, p) = (∓)iΣ−+(X, p), Γout(X, p) = iΣ+−(X, p), (12)

Γ(X, p) ≡ −2ImΣR(X, p) = Γout(X, p) ± Γin(X, p), (13)

where Σij are contour components of the self-energy, and ΣR is the retarded
self-energy.

In terms of this notation and within the first-order gradient approximation,
the Kadanoff–Baym equations for F and F̃ (which result from differences of
the corresponding Dyson’s equations with their adjoint ones) take the kinetic
form

DF −
{
Γin, ReGR

}
= C, (14)

DF̃ −
{
Γout, ReGR

}
= ∓C (15)

with the drift operator and collision term respectively

D =

(
vµ −

∂ReΣR

∂pµ

)
∂µ

X +
∂ReΣR

∂Xµ

∂

∂pµ

, vµ = (1, p/m), (16)

C(X, p) = Γin(X, p)F̃ (X, p) − Γout(X, p)F (X, p). (17)
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Within the same approximation level there are two alternative equations
for F and F̃

MF − ReGRΓin =
1

4
({Γ, F} − {Γin, A}) , (18)

MF̃ − ReGRΓout =
1

4

({
Γ, F̃

}
− {Γout, A}

)
(19)

with the “mass” function M(X, p) = p0 − p
2/2m − ReΣR(X, p). These two

equations result from sums of the corresponding Dyson’s equations with their
adjoint ones. Eqs. (18) and (19) can be called the mass-shell equations, since
in the quasiparticle limit they provide the on-mass-shell condition M = 0.
Appropriate combinations of the two sets (14)–(15) and (18)–(19) provide us
with retarded Green’s function equations, which are simultaneously solved 2,8

by

GR =
1

M(X, p) + iΓ(X, p)/2
⇒






A =
Γ

M2 + Γ2/4
,

ReGR =
M

M2 + Γ2/4
.

(20)

With the solution (20) for GR equations (14) and (15) become identical
to each other, as well as Eqs. (18) and (19). However, Eqs. (14)–(15) still
are not identical to Eqs. (18)–(19), while they were identical before the gra-
dient expansion. Indeed, one can show 24 that Eqs. (14)–(15) differ from Eqs.
(18)–(19) in second order gradient terms. This is acceptable within the gradi-
ent approximation, however, the still remaining difference in the second-order
terms is inconvenient from the practical point of view. Following Botermans
and Malfliet 8, we express Γin = Γf + O(∂X) and Γin = Γ(1 ∓ f) + O(∂X)
from the l.h.s. of mass-shell Eqs. (18) and (19), substitute them into the
Poisson bracketed terms of Eqs. (14) and (15), and neglect all the result-
ing second-order gradient terms. The so obtained quantum four-phase-space
kinetic equations for F = fA and F̃ = (1 ∓ f)A then read

D (fA) −
{
Γf, ReGR

}
= C, (21)

D ((1 ∓ f)A) −
{
Γ(1 ∓ f), ReGR

}
= ∓C. (22)

These quantum four-phase-space kinetic equations, which are identical to each
other in view of retarded relation (20), are at the same time completely iden-
tical to the correspondingly substituted mass-shell Eqs. (18) and (19).

The validity of the gradient approximation24 relies on the overall smallness
of the collision term C = {gain − loss} rather than on the smallness of the
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damping width Γ. Indeed, while fluctuations and correlations are governed by
time scales given by Γ, the Kadanoff–Baym equations describe the behavior of
the ensemble mean of the occupation in phase-space F (X, p). It implies that
F (X, p) varies on space-time scales determined by C. In cases where Γ is not
small enough by itself, the system has to be sufficiently close to equilibrium in
order to provide a valid gradient approximation through the smallness of the
collision term C. Both the Kadanoff–Baym (14) and the Botermans–Malfliet
choice (21) are, of course, equivalent within the validity range of the first-order
gradient approximation. Frequently, however, such equations are used beyond
the limits of their validity as ad-hoc equations, and then the different versions
may lead to different results. So far we have no physical condition to prefere
one of the choices. The procedure, where in all Poisson brackets the Γin and
Γout terms have consistently been replaced by fΓ and (1∓ f)Γ, respectively, is
therefore optional. However, in doing so we gained some advantages. Beside
the fact that quantum four-phase-space kinetic equation (21) and the mass-
shell equation are then exactly equivalent to each other, this set of equations has
a particular features with respect to the definition of a nonequilibrium entropy
flow in connection with the formulation of an exact H-theorem in certain cases.
If we omit these substitutions, both these features would become approximate
with deviations at the second-order gradient level.

The equations so far presented, mostly with the Kadanoff–Baym choice
(14), were the starting point for many derivations of extended Boltzmann and
generalized kinetic equations, ever since these equations have been formulated
in 1962. Most of those derivations use the equal-time reduction by integrating
the four-phase-space equations over energy p0, thus reducing the description to
three-phase-space information, cf. refs. 4,25,26,27,28,29,30,31,32 and refs. therein.
This can only consistently be done in the limit of small width Γ employing
some kind of quasi-particle ansatz for the spectral function A(X, p). Partic-
ular attention has been payed to the treatment of the time-derivative parts
in the Poisson brackets, which in the four-phase-space formulation still ap-
pear time-local, i.e. Markovian, while they lead to retardation effects in the
equal-time reduction. Generalized quasiparticle ansätze were proposed, which
essentially improve the quality and consistency of the approximation, provid-
ing those extra terms to the naive Boltzmann equation (some times called
additional collision term) which are responsible for the correct second-order
virial corrections and the appropriate conservation of total energy, cf. 26,29 and
refs. therein. However, all these derivations imply some information loss about
the differential mass spectrum due to the inherent reduction to a 3-momentum
representation of the distribution functions by some specific ansatz. With the
aim to treat cases as those displayed in Figs. 2 and 3, where the differential
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mass spectrum can be observed by di-lepton spectra, within a self-consistent
non-equiblibrium approach, one has to treat the differential mass information
dynamically, i.e. by means of Eq. (20) avoiding any kind of quasi-particle re-
ductions and work with the full quantum four phase-space kinetic Eq. (21). In
the following we discuss the properties of this set of quantum kinetic equations.

5 Φ-derivable approximations

The preceding considerations have shown that one needs a transport scheme
adapted to broad resonances. Besides the conservation laws it should comply
with requirements of unitarity and detailed balance. A practical suggestion has
been given in ref.7 in terms of cross-sections. However, this picture is tied to the
concept of asymptotic states and therefore not well suited for the general case,
in particular, if more than one channel feeds into a broad resonance. Therefore,
we suggest to revive the so-called Φ-derivable scheme, originally proposed by
Baym 14 on the basis of the generating functional, or partition sum, given by
Luttinger and Ward33, and later reformulated in terms of path-integrals34. The
auxiliary functional Φ is given by two-particle irreducible vacuum diagrams. It
solely depends on fully re-summed, i.e. self-consistently generated propagators
iG(x, y) =< TCϕ̂(x)ϕ̂†(y) >, where TC indicates real-time contour ordering.
The consistency is provided by the fact that Φ is the generating functional for
the re-summed self-energy Σ(x, y) via functional variation of Φ with respect
to any contour ordered propagator G(y, x), i.e.

− iΣ(x, y) = ∓δiΦ/δiG(y, x). (23)

An extension to include classical fields or condensates into the scheme is pre-
sented in ref. 15 In graphical terms, the variation (23) with respect to G is
realized by opening a propagator line in all diagrams of Φ. The resulting set
of thus opened diagrams must then be that of proper skeleton diagrams of Σ
in terms of full propagators, i.e. void of any self-energy insertions. As a con-
sequence, the Φ-diagrams have to be two-particle irreducible, i.e. they cannot
be decomposed into two pieces by cutting two propagator lines.

The key property is that truncating the auxiliary functional Φ to a limited
subset of diagrams leads to a self-consistent, i.e closed, approximation scheme.
Thereby the approximate forms of Φ define effective theories, where Φ(appr.)

serves as a generating functional for the approximate self-energies Σ(appr.)(x, y)
through relation (23), which then enter as driving terms for the Dyson’s equa-
tions of the different species in the system. As Baym 14 has shown, such a
Φ-derivable approximation is conserving as related to global symmetries of the
original theory. We explicitly cite the forms of the conserved Noether current
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and of the energy–momentum tensor, cf. ref. 15,

jµ(X) =
e

2

∫
d4p

(2π)4
vµ
(
F (X, p) ∓ F̃ (X, p)

)
, (24)

Θµν(X) =
1

2

∫
d4p

(2π)4
vµpν

(
F (X, p) ∓ F̃ (X, p)

)
+ gµν

(
E int − Epot

)
, (25)

where

E int(X) =
〈
−L̂ int(X)

〉
= −

δΦ

δλ(X)

∣∣∣∣
λ=1

is the density of interaction energy (λ(X) locally scales the coupling strength of
vertices, cf. ref. 15) and the density of potential energy Epot takes the following
simple form within the first-order gradient approximation

Epot(X) =
1

2

∫
d4p

(2π)4

[
ReΣR

(
F ∓ F̃

)
+ ReGR (Γin ∓ Γout)

]
.

The first term of Epot complies with quasi-particle expectations, namely mean
potential times density, the second term displays the role of fluctuations I =
Γin ∓ Γout in the potential energy density. This fluctuation term precisely
arises form the Poisson bracket term in the kinetic Eq. (21) which induces a
back-flow. It restores the Noether expressions (24) and (25) as being indeed
the exactly conserved quantities. In this compensation we see the essential
role of the fluctuation term in the quantum four-phase-space kinetic equation.
Dropping or approximating this term would spoil the conservation laws. Before
the gradient expansion, quantities (24) and (25) are exact integrals of equations
of motion. While after the gradient expansion, they comply with the quantum
four-phase-space kinetic equation (21) up to the first-order gradient terms.

At the same time the Φ-derivable scheme provides thermodynamical con-
sistency. The latter automatically implies correct detailed balance relations
between the various transport processes. For multicomponent systems it leads
to a actio = reactio principle. This implies that the properties of one species
are not changed by the interaction with other species without affecting the
properties of the latter ones, too. Some thermodynamic examples have been
considered recently, e.g., for the interacting πN∆ system 12 and for a relativis-
tic QED plasma 35.

6 Collision Term

To further discuss the transport treatment we need an explicit form of the
collision term (16), which is provided from the Φ functional in the −+ matrix
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notation via the variation rules (23) as

C(X, p) =
δiΦ

δF̃ (X, p)
F̃ (X, p) −

δiΦ

δF (X, p)
F (X, p). (26)

Here we assumed Φ be transformed into the Wigner representation and all
∓iG−+ and iG+− to be replaced by the Wigner-densities F and F̃ . Thus,
the structure of the collision term can be inferred from the structure of the
diagrams contributing to the functional Φ. To this end, in close analogy to the
consideration of ref. 13, we discuss various decompositions of the Φ-functional,
from which the in- and out-rates are derived. For the sake of physical trans-
parency, we confine our treatment to the local case, where in the Wigner repre-
sentation all the Green functions are taken at the same space-time coordinate
X and all non-localities, i.e. derivative corrections, are disregarded. Deriva-
tive corrections give rise to memory effects in the collision term, which will be
analyzed separately for the specific case of the triangle diagram.

Consider a given closed diagram of Φ, at this level specified by a certain
number nλ of vertices and a certain contraction pattern. This fixes the topol-
ogy of such a contour diagram. It leads to 2nλ different diagrams in the −+
notation from the summation over all −+ signs attached to each vertex. Any
−+ notation diagram of Φ, which contains vertices of either sign, can be de-
composed into two pieces in such a way that each of the two sub-pieces contains
vertices of only one type of signb

iΦαβ =

�
�α

�
�β

--
-

���
=
(
α
∣∣∣F1...F̃

′
1...
∣∣∣ β
)

(27)

⇒

∫
d4p1

(2π)4
· · ·

d4p′1
(2π)4

· · · (2π)4δ4

(
∑

i

pi −
∑

i

p′i

)
V ∗

α F1...F̃
′
1...Vβ

with F1 · · ·FmF̃ ′
1 · · · F̃

′
m̃ linking the two amplitudes. The V ∗

α (X ; p1, ...p
′
1, ...)

and Vβ(X ; p1, ...p
′
1, ...) amplitudes represent multi-point vertex functions of

only one sign for the vertices, i.e. they are either entirely time ordered (−
vertices) or entirely anti-time ordered (+ vertices). Here we used the fact that
adjoint expressions are complex conjugate to each other. Each such vertex
function is determined by normal Feynman diagram rules. Applying the matrix

bTo construct the decomposition, just deform a given mixed-vertex diagram of Φ in such a
way that all + and − vertices are placed left and respectively right from a vertical division
line and then cut along this line.
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variation rules (26), we find that the considered Φ diagram gives the following
contribution to the local part of the collision term (16)

C loc(X, p) ⇒
1

2

∫
d4p1

(2π)4
· · ·

d4p′1
(2π)4

· · ·R

[
∑

i

δ4(pi − p) −
∑

i

δ4(p′i − p)

]

×
{
F̃1...F

′
1... − F1...F̃

′
1...
}

(2π)4δ4

(
∑

i

pi −
∑

i

p′i

)
. (28)

with the partial process rates

R(X ; p1, ...p
′
1, ...) =

∑

(αβ)∈Φ

Re {V ∗
α (X ; p1, ...p

′
1, ...)Vβ(X ; p1, ...p

′
1, ...)} . (29)

The restriction to the real part arises, since with (α|β) also the adjoint (β|α) di-
agram contributes to this collision term. However these rates are not necessar-
ily positive. In this point, the generalized scheme differs from the conventional
Boltzmann kinetics.

An important example of approximate Φ which we extensively use below
is

iΦ =
1

2
r

-

�

+
1

4
r r-

-
�

�
+

1

6 r r
r

�

� ^
- ]
� (30)

where logarithmic factors due to the special features of the Φ-diagrammatic
technique are written out explicitly, cf. ref. 24. In this example we assume a
system of fermions interacting via a two-body potential V = V0δ(x − y), and,
for the sake of simplicity, disregard its spin structure. The Φ functional of Eq.
(30) results in the following local collision term

C loc = d2

∫
d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4




∣∣∣∣∣

q−
�

�w
R + q

q
−

−

6
?

--

--

∣∣∣∣∣

2

−

∣∣∣∣∣ q
q
−

−

6
?

--

--

∣∣∣∣∣

2




×δ4 (p + p1 − p2 − p3)
(
F2F3F̃ F̃1 − F̃2F̃3FF1

)
, (31)

where d is the spin (and maybe isospin) degeneracy factor. From this example
one can see that the positive definiteness of transition rate is not evident.

The first-order gradient corrections to the local collision term (28) are
called memory corrections. Only diagrams of third and higher order in the
number of vertices give rise to memory effects. In particular, only the last
diagram of Eq. (30) gives rise to the memory correction, which is calculated
in ref. 24.
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7 Entropy

Compared to exact descriptions, which are time reversible, reduced description
schemes in terms of relevant degrees of freedom have access only to some limited
information and thus normally lead to irreversibility. In the Green’s function
formalism presented here the information loss arises from the truncation of the
exact Martin–Schwinger hierarchy, where the exact one-particle Green function
couples to the two-particle Green functions, cf. refs. 2,8, which in turn are
coupled to the three-particle level, etc. This truncation is achieved by the
standard Wick decomposition, where all observables are expressed through one-
particle propagators and therefore higher-order correlations are dropped. This
step provides the Dyson’s equation and the corresponding loss of information
is expected to lead to a growth of entropy with time.

We start with general manipulations which lead us to definition of the
kinetic entropy flow. We multiply Eq. (21) by − ln(F/A), Eq. (22) by

(∓) ln(F̃ /A), take their sum, integrate it over d4p/(2π)4, and finally sum the
result over internal degrees of freedom like spin (Tr). Then we arrive at the
following relation

∂µsµ
loc(X) = Tr

∫
d4p

(2π)4
ln

F̃a

F
C(X, p), (32)

where the quantity

sµ
loc = Tr

∫
d4p

(2π)4
A2Γ

2

[(
vµ −

∂ReΣR

∂pµ

)
− MΓ−1 ∂Γ

∂pµ

]
σ(X, p) (33)

(where σ(X, p) = ∓[1 ∓ f ] ln[1 ∓ f ] − f ln f) obtained from the l.h.s. of the
kinetic equation is interpreted as the local (Markovian) part of the entropy
flow. Indeed, the s0

loc has proper thermodynamic and quasiparticle limits 24.
However, to be sure that this is indeed the entropy flow we must prove the
H-theorem for this quantity.

First, let us consider the case, when memory corrections to the collision
term are negligible. Then we can make use of the form (28) of the local collision
term. Thus, we arrive at the relation

Tr

∫
d4p

(2π)4
ln

F̃

F
Cloc(X, p) ⇒ Tr

1

2

∫
d4p1

(2π)4
· · ·

d4p′1
(2π)4

· · ·R

×
{
F1...F̃

′
1... − F̃1...F

′
1...
}

ln
F1...F̃

′
1...

F̃1...F ′
1...

(2π)4δ4

(
∑

i

pi −
∑

i

p′i

)
. (34)
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In case all rates R are non-negative, i.e. R ≥ 0, this expression is non-negative,
since (x − y) ln(x/y) ≥ 0 for any positive x and y. In particular, R ≥ 0 takes
place for all Φ-functionals up to two vertices. Then the divergence of sµ

loc is
non-negative

∂µsµ
loc(X) ≥ 0, (35)

which proves the H-theorem in this case with (33) as the nonequilibrium en-
tropy flow. However, as has been mentioned above, we are unable to show that
R always takes non-negative values for all Φ-functionals.

If memory corrections are essential, the situation is even more involved.
Let us consider this situation again at the example of the Φ approximation
given by Eq. (30). We assume that the fermion–fermion potential interaction is
such that the corresponding transition rate of the corresponding local collision
term (31) is always non-negative, so that the H-theorem takes place in the
local approximation, i.e. when we keep only C loc. Here we will schematically
describe calculations of ref.24 which, to our opinion, illustrate a general strategy
for the derivation of memory correction to the entropy, provided the H-theorem
holds for the local part.

Now Eq. (32) takes the form

∂µsµ
loc(X) = Tr

∫
d4p

(2π)4
ln

F̃

F
C loc + Tr

∫
d4p

(2π)4
ln

F̃

F
Cmem, (36)

where sµ
loc is still the Markovian entropy flow defined by Eq. (33). Our aim

here is to present the last term on the r.h.s. of Eq. (36) in the form of full
x-derivative

Tr

∫
d4p

(2π)4
ln

F̃

F
Cmem = −∂µsµ

mem(X) + δcmem(X) (37)

of some function sµ
mem(X), which we then interpret as a non-Markovian cor-

rection to the entropy flow of Eq. (33) plus a correction (δcmem). For the
memory induced by the triangle diagram of Eq.(30) detailed calculations of
ref.24 show that the smallness of the δcmem, originating from small space–time
gradients and small deviation from equilibrium, allows us to neglect this term
as compared to the first term in r.h.s. of Eq. (37). Thus, we obtain

∂µ (sµ
loc + sµ

mem) ≃ Tr

∫
d4p

(2π)4
ln

F̃

F
C loc ≥ 0, (38)

which is the H-theorem for the non-Markovian kinetic equation under consid-
eration with sµ

loc + sµ
mem as the proper entropy flow. The r.h.s. of Eq. (38) is
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non-negative provided the corresponding transition rate in the local collision
term of Eq. (31) is non-negative.

The explicit form of sµ
mem is very complicated, see ref. 24. In equilibrium

at low temperatures we get s0
mem ∼ T 3 lnT which gives the leading correction

to the standard Fermi-liquid entropy. This is the famous correction 36,37 to
the specific heat of liquid 3He. Since this correction is quite comparable (nu-
merically) to the leading term in the specific heat (∼ T ), one may claim that
liquid 3He is a liquid with quite strong memory effects from the point of view
of kinetics.

8 Summary

A number of problems arising in different dynamical systems, e.g. in heavy-ion
collisions, require an explicit treatment of dynamical evolution of particles with
finite mass-width. This was demonstrated for the example of bremsstrahlung
from a nuclear source, where the soft part of the spectrum can be reproduced
only provided the mass-widths of nucleons in the source are taken explicitly
into account. In this case the mass-width arises due to collisional broadening
of nucleons. Another example considered concerns propagation of broad res-
onances (like ρ-meson) in the medium. Decays of ρ-mesons are an important
source of di-leptons radiated by excited nuclear matter. As shown, a consistent
description of the invariant-mass spectrum of radiated di-leptons can be only
achieved if one accounts for the in-medium modification of the ρ-meson width
(more precisely, its spectral function).

We have argued that the Kadanoff–Baym equation within the first-order
gradient approximation, slightly modified to make the set of Dyson’s equations
exactly consistent (rather than up to the second-order gradient terms), provide
a proper frame for a quantum four-phase-space kinetic description that applies
also to systems of unstable particles. This quantum four-phase-space kinetic
equation proves to be charge and energy–momentum conserving and thermo-
dynamically consistent, provided it is based on a Φ-derivable approximation.
The Φ functional also gives rise to a very natural representation of the collision
term. Various self-consistent approximations are known since long time which
do not explicitely use the Φ-derivable concept like self-consistent Born and
T-matrix approximations. The advantage the Φ functional method consists in
offering a regular way of constructing various self-consistent approximations.

We have also addressed the question whether a closed nonequilibrium sys-
tem approaches the thermodynamic equilibrium during its evolution. We ob-
tained a definite expression for a local (Markovian) entropy flow and were able
to explicitly demonstrate the H-theorem for some of the common choices of Φ
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approximations. This expression holds beyond the quasiparticle picture and
thus generalizes the well-known Boltzmann kinetic entropy. Memory effects in
the quantum four-phase-space kinetics were discussed and a general strategy
to deduce memory corrections to the entropy was outlined.
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(1993).
10. P.A. Henning, Phys. Rep. 253, 235 (1995); Nucl. Phys. A 582, 633

(1995).
11. P.A. Henning and E. Quack, Phys. Rev. Lett. 75, 2811 (1995); Phys.

Rev. D 54, 3125 (1996).
12. W. Weinhold, Diploma thesis GSI 1995; W. Weinhold, B.L. Friman, and
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