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We discuss G̈odel’s universe in the context of the induced-matter theory. We show that the problem of
generating G̈odel’s metric from an extra dimension is equivalent to finding an embedding of Gödel’s universe
in a Ricci-flat five-dimensional space. On the other hand, according to the Campbell-Magaard theorem, any
spacetime can be locally embedded into a five-dimensional pseudo-Riemannian Ricci-flat manifold. We obtain
explicitly a global embedding of G̈odel’s universe which is Ricci-flat and has a non-Lorentzian signature of type
(++−−−).

I. INTRODUCTION

Einstein’s first contact with the idea that our ordinary
four-dimensional spacetime might be embedded in a higher-
dimensional manifold was made through the work of T.
Kaluza, sent to him in 1919. From the old Kaluza-Klein[1]
model to modern theories of supergravity and superstrings [2]
the assumption that extra dimensions may exist, though not
observed yet, appears to be closely connected with the be-
lief that all forces of nature are ultimately different aspects
of a single entity. Besides the quest for unification there is
another motivation for constructing higher-dimensional theo-
ries which goes back to Einstein and consists in regarding the
physical world as a manifestation of pure geometry[3]. Of
these two schemes the latter includes the so-called induced-
matter theory (IMT) or non-compactified Kaluza-Klein the-
ory of gravity, an approach which regards macroscopic matter
as being geometrically “induced” by a mechanism that locally
embeds our four-dimensional (4D) spacetime in a Ricci-flat
five-dimensional manifold [4]. Moreover, it is asserted that
only one extra dimension should be sufficient to explain all
the phenomenological properties of matter. One interesting
point is that the matter “generated” by this process is of a very
general kind, i.e.any energy-momentum tensor can be pro-
duced by choosing the appropriate embedding, a result which
is mathematically supported by a powerful theorem of differ-
ential geometry due to Campbell and Magaard [5, 6].

In 1949, Kurt G̈odel [7] found a solution of Einstein’s field
equations which soon became very popular because it de-
scribed a spacetime possessing very strange properties. For
example, the model admitted the existence of timelike closed
curves, thereby violating global causality. Although not vi-
able as a physical model of our universe, Gödel’s solution has
some historical importance as it certainly stimulated a great
deal of research on questions of causality and global proper-
ties of relativistic spacetimes [8, 9].

Due to its peculiarity, different aspects of the so-called
Gödel’s universe have always been studied with interest. For
example, Rosen [10] in 1965, was able to characterize Gödel’s
model as a four-dimensional hypersurface embedded in a
pseudo-Euclidean space with ten dimensions. A recent moti-
vation to study the embedding of Gödel’s solution comes from
the induced-matter proposal. It is known that Wesson and co-

laborators have shown how to obtain from five-dimensional
vacuum (or Ricci-flat) spaces a number of known solutions
of the Einstein equations (regarded as hypersurfaces in five
dimensions) whose energy-momentum tensor is generated by
the extra-dimension [4]. In fact, the energy-momentum thus
generated corresponds to the extrinsic curvature of the four-
manifold embedded in five-dimensional vacuum space [11]. It
has been later realised [12] that any energy-momentum ten-
sor can be generated in this way, provided that any solution of
Einstein’s equations has an embedding into a five-dimensional
Ricci-flat solution, and this is almost precisely the content of
the Campbell-Magaard theorem [5, 6]. Therefore, according
to the this theorem, it is possible, to locally embed Gödel’s
solution in a five-dimensional Ricci-flat pseudo-Riemannian
space. From the standpoint of the induced-matter theory, that
means it must be possible to geometrically generate a source
of matter and energy which is the source of Gödel’s universe
with all its peculiarities.

To be more precise let us recall the content of the Campbell-
Magaard theorem [5, 6]. It states that anyn-dimensional
pseudo-Riemannian manifold(Mn,g) can be locally, ana-
lytically and isometrically embedded in a Ricci-flat (n+1)-
dimensional manifold(Nn+1, g̃). Since its ”rediscovery” in
the nineties [12] the theorem has found a number of applica-
tions and has been discussed in various contexts in the liter-
ature [13–24]. Therefore, in view of the Campbell-Magaard
theorem one would like to look at G̈odel’s solution as a hyper-
surface embedded in a five-dimensional Ricci-flat space.

II. THE EMBEDDING OF G ÖDEL’S UNIVERSE IN FIVE
DIMENSIONS

Gödel’s metric may be expressed in the form

ds2 = dt2−dx2+
1
2

exp(2
√

2wx)dy2−dz2+2exp(
√

2wx)dtdy

(1)
wherew is a constant.

In this section we shall show how to obtain the embedding
of Gödel’s spacetime in a five-dimensional Ricci-flat space,
the metric of which has signature(++−−−). When n≥ 3,
the Campbell-Magaard alows us to lower the number of di-
mensions of the embedding spaceNn+1 from n(n+ 1)/2 to
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n+1, as long asNn+1 be Ricci-flat. However, we shall not em-
ploy directly the Campbell-Magaard; instead we shall make
use of the following theorem due to Magaard [6]:

Theorem (Magaard). Let (Mn,g) be an-dimensional
pseudo-Riemannian manifold,{xµ} a local coordinate sys-
tem of a neighbourhoodU of p ∈ Mn, with coordinates
(x1

p, ...,x
n
p) defined by the parametrizationx :U →Mn. A suf-

ficient and necessary condition for(Mn,g), with line element
ds2 = gαβ(x)dxαdxβ, to be locally, isometrically and analyti-
cally embedded in a(n+ 1)-dimensional manifold(Mn+1, g̃)
is that there exist analytical functions

gαβ = gαβ(x
1, ...,xn,xn+1) (2)

φ = φ(x1, ...,xn,xn+1) (3)

definided in an open setD ⊂ x(U)×Rn containing the point
(x1

p, ...,x
n
p,0), satisfying the following conditions:

gαβ(x
1, ...,xn,0) = gαβ(x

1, ...,xn)

in an open set ofx(U); gαβ = gβα,
∣∣gαβ

∣∣ 6= 0 ; φ 6= 0, and that

ds2 = gαβdxαdxβ + εφ2
dxn+1dxn+1 (4)

with ε2 = 1, represents the line element ofMn+1 in a coordi-
nate neighbourhoodV of Mn+1[6, 26].

In the light of the above theorem let us taken = 4, ε = 1,
φ = −k2, where k is a constant, and the set of analytical
functions {gαβ(t,x,y,z,ψ} [36], (α,β = 0,1,2,3) the non-

null elements of which areg00 = 1;g02 = g20 = exp(
√

2w(x+
kψ));g11 =−1;g22 = 1

2 exp(2
√

2w(x+kψ));g13 = g31;g33 =
−1. Clearly the conditionsgαβ = gβα, φ 6= 0 are satisfied,

and also
∣∣ḡαβ

∣∣ = −1
2 exp(2

√
2w(x+ kψ)) 6= 0. Moreover,

gαβ(t,x,y,z,0) = gαβ(t,x,y,z), hence the functionsgαβ may
be identified with the components of Gödel’s metric written
in the form (1). We conclude, therefore, from the above the-
orem that the G̈odel’s universe can be embedded in a five-
dimensional spaceM5 with metric given by

dS2 = dt2−dx2 +
1
2

exp(2
√

2w(x+kψ))dy2−dz2

+ 2exp(
√

2w(x+kψ))dtdy+k2dψ2 (5)

the embedding taking place forψ = 0, i.e. by choosing the
embedding functions given byt → t,x→ x,y→ y,z→ z,ψ =
0.

If we calculate [37] the components(5)Rab of the Ricci ten-
sor directly from (5) we get(5)Rab = 0. We see then that the
five-dimensional manifoldM5, in which Gödel’s universe ap-
pears as the hypersurfaceψ = 0, is a Ricci-flat space, and that
proves our claim.

Let us conclude this section with the following comment.
The manifold on which G̈odel’s metric is defined isR4, i.e.
−∞ < t,x,y,z< ∞ [25], and it is clear that the present embed-
ding takes the whole ofR4 into M5, irrespective of the domain
chosen forψ. Moreover, we see that the embedding functions
and the metric of the embedded spacetime are analytic inR4

while the metric of embedding space is analytical inM5. It
turns out then that in spite of the local character of the theorem
mentioned previously in this particular case the embedding
found happens to beglobal( a global version of the Campbell-
Magaard theorem has been discussed recently in [27] ). It is
interesting to have a look at the components of the extrinsic
curvature tensorΩαβ of the hypersurfaceψ = constof M5.
In the coordinates of (5) it can easily be shown thatΩαβ is

given byΩαβ =− 1
2k

∂gαβ
∂ψ [18], so that the nonvanishing com-

ponents ofΩαβ areΩ02 = Ω20 =−1
2

√
2wexp(

√
2w(x+kψ)),

Ω22 = −√2wexp(2
√

2w(x+ kψ)).As we see, the extrinsic
curvature is also well-behaved (analytical) everywhere for any
hypersurface of the foliationψ = const, in particular for
ψ = 0. As a consequence of the global caracter of the embed-
ding, all global properties so characteristics of Gödel’s uni-
verse, such as the existence of closed timelike curves, are pre-
served inM5.

III. FINAL REMARKS

We would like to call attention for the fact that the space
(M5, g̃), which is a solution of the Einstein vacuum field equa-
tions in five dimensions, has the peculiarity of possessing a
non-Lorentzian (ultra-hyperbolic) metric, with two timelike
dimensions. Spaces of these kind have been studied recently,
mainly in connection with the idea that massless particles in
five dimensions may appear ”massive” when viewed from
four-dimensional spacetime [28–30]. There are also claims
that two times theories may find some motivation in M-theory
[31]. On the other hand, examples of embedding spaces with
extra timelike dimensions are many, and include, for in-
stance, the embedding of the Schwarzschild spacetime in a
six-dimensional flat manifold obtained for the first time by
Kasner [32, 33]. Isometric embeddings in flat spaces with two
times have also been investigated in the context of branes [34].
Finally, it is interesting to note that it is not possible to glob-
ally embed a spacetime which is not globally hyperbolic into
a pseudo-euclidean space with only one timelike dimension
[35]. We do not know whether a similar result holds in the
case of Ricci-flat embedding spaces [38].
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of Kiel (1966)
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