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High Overtones of Dirac Perturbations of a Schwarzschild Black Hole
and the Area Spectrum of Quantum Black Holes
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We find high overtones of the Dirac quasi-normal (QN) spectrum of a Schwarzschild black hole (Sbh), by
Leaver’s method. At high overtones, the spacing of the imaginary part of the QN spectrum is equidistant
(Imωn+1− Imωn = i/8M , whereM is the black hole mass). This can also be analytically obtained by means
of a Born approximation. At high overtones, the real part ofωn goes to zero. Finally, we comment this result in
the context of Hod’s conjecture on highly damped QNMs and the area spectrum of (quantum) black holes.

Introduction.

Quasinormal Modes(QNMs) are an important characteris-
tic of a black hole. They dominate the late-time response of
a black hole to external perturbations, being independent on
the way of its excitation. They provide the “fingerprints” of a
black hole, feasible to be seen in the detection of gravitational
waves (for a review, see [1]). Furthermore, the importance of
black holes QN spectra is not limited by the observational as-
pects of gravitational waves. In fact, QNMs of black holes in
Anti-de-Sitter (AdS) spaces have an interpretation in the dual
Conformal Field Theory (CFT) which “lives” on the (confor-
mal) boundary of the space [2]. So, QNMs of black holes
in AdS spaces provide a test of theAdS/CFT correspondence
[3]. For de-Sitter (dS) space-times, there is also a similar re-
sult, since QNMs due to scalar perturbations in the bulk of an
empty dS space correspond to decaiyng modes in a dual CFT
on the boundary [4], what gives support in favor of the exis-
tence of a dS/CFT correspondence. Since (A)dS/CFT corre-
spondences are considered as realizations of theHolographic
Principle [5], QNMs play some hole in the description of
quantum aspects of gravity. Furthermore, there was also a
suggestion that theasymptotic, highly damped QNMsof black
holes are connected with a free-parameter that appears in the
ensuing area spectrum of Loop Quantum Gravity (LQG). This
parameter must be fixed in order that LQG can reproduce the
Bekenstein-Hawking entropy [6]. This stimulated consider-
able interest in the study of QNMs of black holes in flat, dS
and AdS backgrounds (for reviews, see [7]). The idea that
the QNMs of a black hole might fix the spacing of its quan-
tum area spectrum was suggested by Hod [8], who, based on
Bohr’s correspondence principle, proposed that thereal part
of the highly damped QNMsof a Sbh could fix the spacing of
its area spectrum. Hod’s work relies on Bekenstein’s heuris-
tic result that the area spectrum of a stationary quantum black
hole would be given byAn = γ~ ·n, with n = 1,2, ... , where
~ = l2

P (in units G = c = 1) and γ , a dimensioless constant,
is the spacing of the spectrum (for a review, see [9]). Hod
then proposed that if we consider that the mass (energy) of
a (quantum) Sbh undergoes a variationδM = ~Reω , where
Reω is the real part of the asymptotic, highly damped QNMs,
the area spacing can be fixed asγ = 4ln3. At the time of
Hod’s work, only an expression obtained numerically for the

(gravitational) asymptotic, highly damped modes was known
[10], namely,Reω = 0.0437123M−1 . Hod expressed this as
Reω = (ln3)/8πM (in units G = c = 1). Such a result was
later analytically obtained by Motl and Neitzke, who showed
that it is valid also for asymptotic QNMs due to a scalar per-
turbation [11]. After the works of Dreyer [6] and, specially,
that of Motl and Neitzke [11], Hod’s proposal atracted atten-
tion and a plenthora of works appeared in the literature, ad-
dressing the issue of the area spectrum of quantum black holes
and QNMs (for reviews, see [7]). Nevertheless, most works
have been mainly concerned on QNMs due to perturbations
of integer-spin fields only (gravitational, electromagnetic, and
scalar). Although perturbations of half-spin fields were con-
sidered by some authors, they were limited tolow overtones,
by the time we published our results in [12] (see references
therein). Motivated by this, we investigated thehighovertone
behavior of the QN spectrum of the Dirac perturbations of a
Sbh [12].

Dirac perturbations of a Schwarzschild black hole.
The Dirac equation in a curved space is given by [13](
γaeµ

a(∂µ+Γµ)+ mc
~

)
Ψ = 0, wherem is the mass of the Dirac

field, e µ
a are tetrads, defined through the metric,gµν , by gµν =

ηabea
µeb

ν , whereηab = diag(−1,1,1,1) is the Minkowski met-
ric; Γµ is thespin conection, given byΓµ = 1

8[γa,γb]eν
aebν;µ,

whereγa are the Dirac matrices andebν;µ denotes the covari-
ant derivative ofebν [13]. In the background of a Sbh, whose
metric in spherical-like coordinates isds2 = − f (r)dt2 +
dr2

f (r) + r2(dθ2 + sin2 θdφ2) , where f (r) = 1− (2M/r) andM
is the black hole mass, the equation for the time-independent
perturbation of a massless Dirac field can be reduced to the

wave-like equation [13]
(

d2

dx2 +ω2−V(x)
)

ψ(x) = 0, where

x is defined bydx= dr/ f (r) andV(x) is [14]

V(r(x)) = V±(r) = |µ| f (r)
(
|µ|
r2 ±

d
dr

√
f (r)
r2

)
, (1)

whereµ = ±( j + 1
2) , with j = `± 1

2 , ` being the multipole
index. SinceV± are supersymetric potentials, they have
the same associated spectrum of QNMs [14]. So we can
choose, for instance,V+ to make our analysis. In terms
of x, V(x) ≡ V(r(x)) goes to zero at both boundaries, i.e.,
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V(x → ±∞) → 0. Choosing the phasee−iωt , the QNMs
satisfy the boundary conditionsψ(x) ∼ e±iωx , for x→ ±∞ ,
corresponding topurely in-going waves at the black hole
event horizon and purely out-going waves at infinity.

Determination of the QNMs. In [12] we have determined
the QNMs by means of Leaver’s method [15], which resorts
to the Fr̈obenius method to express the solution of the per-
turbation equation in terms of the radial variabler . Leaver’s
method consists in expressing the solutions of the pertur-
bation equation, in terms ofr , by a power series, with the
boundary conditions for QNMs translated into a convergence
condition to the series, which can be expressed as an equation
involving infinite continued fractions. The coefficients of the
expansion are determined via a recurrence relation whose
coefficients will be functions ofω . Then the QN frequencies
will correspond to those values ofω such that the power
series converges atr = ∞ [15]. Then, following [15], we can
chooseψ(x) = e±iωxu(x) , whereu(r) has a regular singularity
at the event horizon and is finite atx→∞ , such that the series
u(r) = f (r)2s∑∞

n=0an f (r)n/2 converges atr = ∞ . From these
and the wave-like equation, a three-term recurrence relation
can be obtained and whenω is a QN frequency, the ratio
of the coefficients of the series isfinite and can be found
through continued fractions [15], such that we are left with
an implicit equation forω , in terms of inverted continued
fractions. The QNMs are the roots of an inverted continued
fraction (for details, see [12]).High overtones. The main
difference from what we know on the high damping regime
for perturbations of fields of integer spin (scalar, gravitational,
and electromagnetic) is that now the spacing in imaginary
part is not i/4M , as it takes place for integer-spin pertur-
bations, buti/8M . It can be seen numerically that highly
damped QNMs display the following asymptotic behaviour:

Reωn ≈ 0; Imωn+1− Imωn ≈ −i/8M , asn→ ∞ . This for-
mula for the spacing of the imaginary part can be reproduced
following Ref.[16], where the spacing was derived by deter-
mining the poles of the scattering amplitude in the fist Born
approximation, in the case of integer-spin perturbations of a
Sbh. For highly damped modes we can use the Born approxi-
mation, where the scattering amplitude is given by the formula
[16] S(k) =

R +∞
−∞ V(x)e2ikxdx. Using Eq.(1) forV(x), we

foundS(k)∼ combinations ofΓ(4ikM) andΓ((1/2)+4ikM) .
The poles of the amplitude occur when(1/2)+ 4iMk = −n,
or 4iMk = −n (n≥ 0 and is integer), i.e.,kn = in/8M is the
spacing for the imaginary part of the highly damped QNMs.

Concluding Remarks. In [12], we have studied thehighly
damped regimeof the Dirac QN spectrum of a Sbh. The spac-
ing of the imaginary part were found to be twice less than that
for integer-spin fields. As was shown both numerically and
analytically in [17], the real part of the highly damped QNMs
for scalar and gravitational perturbations of a Sbh asymptoti-
cally approaches a constant, equal to(ln3)/8πM (G= c= 1),
whereas for electromagnetic perturbations, it goes to zero
[18]. For the highly damped QNMs of Dirac perturbations,
we have found thatReω also goes to zero. According to Hod’s
conjecture [8], this would simply imply anull value for the
spacing of the area spectrum of a Sbh. Thus the black hole
would have a continuous area spectrum. Since the real part
of the highly damped QNMs does not have a universal value
for all kinds of perturbing fields in the case of a Sbh, the sim-
plest spherical four-dimensional black hole solution, it seems
the role of QNMs on the area quantization of black holes is
puzzling.
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