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Braneworld with Induced Axial Symmetry
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We take arbitrary gravitational perturbations of a 5d spacetime and reduce it to the form an axially symmetric
warped braneworld. Then, we write the filed equations for the linearized gravity perturbations. We obtain the
equations that describes the graviton, gravivector and the graviscalar fluctuations and analyse the effects of the
Schr̈odinger potentials that appear in these equations.

I. INTRODUCTION

In the almost all works on the Randall-Sundrum (RS)
braneworlds [1], the axial gauge is used to derive the lin-
earized gravity dynamics. In this gauge there are no fluctu-
ations transverse to the brane, and the scenario is axially sym-
metric. An other important gauge is the harmonic (de Don-
der) gauge for which, in 5D, theh55-graviscalar and theh5µ-
gravivector 4D fluctuations can be non zero, breaking the axial
symmetry. However, as pointed out in [2], a new coordinate
frame in 5D can be found, where the metric becomes axially
symmetric even withh55, h5µ 6= 0. By following [2], we call
such coordinate frame thelocal frame. Here, we analyse the
field equations for the vacuum fluctuations that arise in the
local frame, using the 5D de Donder gauge.

II. AXIALLY SYMMETRIC BRANEWORLD

The 5D metric is expanded asgAB = ηAB + hAB where
A,B = 0,1,2,3,5, ηAB = diag(−1,1,1,1,1) and hAB small
gravity fluctuations. The 5D line element is

dS2 = (ηµν +hµν)dxµdxν +2h5µdxµdx5 +(1+h55)(dx5)2.
(1)

The above spacetime take the axially symmetric form

ds2 = g(µ)(ν)dx(µ)dx(ν) + ε2dy2 (2)

wherex(A) = e(A)
B xB, with thee(A)

B given by

e(µ)
A = δµ

A, eµ
(ν) = δµ

ν, eµ
(5) = 0, e(5)

µ = ε−1Pµ, (3)

e5
(µ) =−Pµ, e(5)

5 =
1+ϕ/2

ε
, e5

(5) =
1−ϕ/2

ε
, (4)

wherePµ = h5µ, ϕ = h55, y= x(5) andε2 =−1,1. The physical
4D metric can be given byg(µ)(ν), or ĝ(µ)(ν) = e−2 f g(µ)(ν). If
f = f (y), we have

ds2 = e−2 f (y)g(µ)(ν)dx(µ)dx(ν) + ε2dy2. (5)

Then, we assume that (5) satisfies the action

S=
Z

d5x[
√−g(κ−2R+Λ5+Lm)+

√−gbσ], (6)

whereg = det(g(A)(B)), gb = det(g(µ)(ν)) andκ = M−3∗ . The
vacuum solution givesf ′(y)2 = −κ2Λ5(y)/12 and f ′′(y) =
κ2σ(y)/12.

III. LOCAL FRAME GRAVITATIONAL FLUCTUATIONS

We work in the conformal frame where

ds2 = e− f (z)[g(µ)(ν)dx(µ)dx(ν) + ε2dz2]. (7)

The equations for the gravitational fluctuations are derived
with g(µ)(ν) = eA

(µ)e
B
(ν)gAB and, ∂̄(A)(...) = eB

(A)∂B(...), with

[∂̄(A), ∂̄(B)] 6= 0. ThehAB satisfies∂BhAB = 0, hC
C = 0, which

means that

hα
α =−ϕ, ∂αPα =−ϕ′, ∂αhµα =−P′µ. (8)

The the “prime” represents∂z. The field equations are

¤ϕ+12f ′2ϕ+3 f ′ϕ′ =−κT(m)
55 , (9)

¤Pµ+6( f ′2 + f ′′)Pµ+3 f ′∂µϕ−2[∂̄(µ), ∂̄(5)] f =−κT(m)
µ5 ,

(10)

¤ hµν +3 f ′(∂µPν +∂νPµ)−3 f ′h′µν +12( f ′2− f ′′)ϕηµν

− 2[∂̄(µ), ∂̄(ν)] f =−κT(m)
µν , (11)

where¤ = ηAB∂A∂B. The local frame equations depends on
the comutator of partial derivatives of the warp function. The
equation for the scalar do not changes [3].

Extended KK-gravity: Λ5 = σ = 0. The system (9)-
(11) decouples to

¤φ =−κT(m)
55 , ¤Pµ =−κT(m)

5µ , (12)

¤hµν =−κT(m)
µν . (13)

The scenario is an extended Kaluza-Klein gravity with a no
compact extra dimension. The gauge conditions enable us to
write the 4D tensorhµν in terms of spin-2, spin-1 and spin-0
fluctuations. The vacuum is flat.

IV. WARPED GEOMETRY FLUCTUATIONS

Graviscalar. ConsiderT(m)
55 = 0. The ϕ is re-scaled to

ϕ(x,z) = e−3 f (z)/2ϕ̃(x,z) and we look for solutions̃ϕ(x,z) =
ϕ̃(x)ψs(z), with ∂α∂αϕ̃(x) = m2

sϕ̃(x). Then, (9) implies

[−∂2
z +Vs(z)]ψs(z) = m2

sψs(z), (14)
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with Vs(z) =−(3
2 f ′′− 39

4 f ′2). The vacuum solutions forϕ are
of no interest, because the compatibility condition between (9)
and (10) force us to setϕ = 0 [3].
Gravivector. With ϕ = 0, eq. (10) in vacuum gives

[−∂2
z +Vv(z)]ψv(z) = m2

vψv(z), (15)

whereVv(z) = −5( f ′2 + f ′′), for ψv defined byP̃µ(x,z) =
P̃(x)ψv(z), ∂α∂αP̃µ(x) = m2

vP̃µ(x),andP̃µ(x,z) = ef (z)Pµ(x,z).
For RS warp, the potential isVv(z) = −10kδ(z). Then, we
have masive solutions withm2

v =−25k2, whereasm2
v =−36k2

in the coordinate frame [3].
The compatibility condition between (10) and (11) is

[−26( f ′3 + f ′ f ′′)+6 f ′′′]P̃µ+(8 f ′′−4 f ′2)P̃′µ = 0. (16)

If f = Log(k|z|+1), we have

(
− 10kδ(z)sgn(z)+3kδ′(z)+3

k3sgn(z)
(k|z|+1)3

)
ψv(z)

+
(

4kδ(z)−3
k2

(k|z|+1)2

)
ψ′v(z) = 0. (17)

For |z| ≥ 0, (17) is satisfied byψv = 25av(k|z|+1), whereav
is a constant. Atz= 0, (17) implies,av = 0. With the smooth
warp, f (z) = Log(k2z2 +1), eq. (16) becomes
[

6k5z3

(1+k2z2)2−
11k3z

1+k2z2

]
ψv−

[
3k3z2

1+k2z2 −1

]
ψ′v = 0. (18)

At z = 0, we haveψ′v(0) = 0. A solution of (15) that sat-
isfy (18), is the massive mode described by

ψv = cv
e

13
4 tanh−1(1/3+4k2z2/3)

(−1+k2z2 +2k4z4)5/8
, (19)

with massm2
v =−3k2

(
7+25k2z2

)
/
(
1−2k2z2

)2
.

The Fig. 1 shows the variation ofm2
v with the extra co-

ordinate. It is almost constant for smallz and diverges for
z→ ±z∗ = ±1/(

√
2k). On the |z| = 0 3-brane, P̃µ(x) =

cµe
13
4 tanh−1(1/3)eipαxα

e−i 5π
8 , wherep2 = m2

v(0) = −21k2 and,
pµcµ = 0.
Graviton . To obtain the graviton potential we takecµ = 0 and

T(m)
µν = 0. Then, the eq. (11) implies

[−∂2
z +Vg(z)]ψg(z) = m2

gψg(z), (20)

whereVg = −(3
2 f ′2− 9

4 f ′′). This potential reproduces the
RSII result for f (z) = Log(k|z|+1).

V. CONCLUSIONS

In the no warped scenario, the vacuum fluctuations are de-
scribed by three independent wave equations which describes
the 4D scalar, vector and tensor fluctuations on the|z|=0 3-
brane. In warped scenarios, there are no scalar propagation on
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FIG. 1: The squared tachyonic mass,m2
v(z), in the vertical axis. The

horizontal axis isz∗ ≤ z≤ z∗ andk = 1.

the 3-brane vacuum. For the RS warp, there are no gravivec-
tor on the 3-brane. For the smoothed warped braneworld, we
obtain a tachyonic mass solution for the gravivector, that also
satisfies the compatibility condition. This solution becomes a
massless spin-1 fluctuation ifΛ5 → 0.
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