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Challenges in Signal Analysis of Resonant-Mass Gravitational Wave Detectors
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An overview of the main points related to data analysis in resonant-mass gravitational wave detectors will be
presented. Recent developments on the data analysis system for the Brazilian detector SCHENBERG will be
emphasized.

I. INTRODUCTION

As predicted by the theory of relativity and other theories of
gravitation, time-dependent gravitational forces are expected
to propagate in spacetime in the form of waves [1] . Such
gravitational radiation is extremely difficult to detect because
gravitation is the weakest of all the fundamental forces of na-
ture.

For instance, a wave of very strong amplitude could gen-
erate a displacement of10−18m in a system (“antenna”) with
typical length of1m. In order to detect such a tiny displace-
ment special sensors must be used and the signal should be
sent to computers to be properly analyzed. The path between
the antenna and the computer is tricky, though, because many
spurious signals - noise - come as well.

When an experiment is performed, normally the signal that
is the object of the observation (the “useful” signal,u(t)) is
accompanied by other, unwanted signals labelled with the
generic name of “noise” (n(t)). The goal of signal analysis
is to retrieve the useful signal out of noise, as illustrated in
Figure 1. In the case of gravitational wave experiments, the
useful signal is a gravitational wave.

Because signal analysis identifies the signal in the midst of
the noise it becomes a fundamental part of the experiment. To
do so it is necessary to know as much as possible about the
signal and the sources of noise. In this work general features
of data analysis in gravitational wave resonant-mass detectors
will be presented, so that the reader can become familiar with
the latest challenges faced by the Brazilian group that works
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FIG. 1: The main objective of signal analysis is to retrieve the useful
signal out of noise.

in the SCHENBERG gravitational wave detector within this
important field.

This paper is organized as follows: in Section II the motiva-
tion for the research is presented, namely gravitational waves
and their sources. Section III is devoted to presenting gen-
eral features of resonant-mass detectors, while Section IV dis-
cusses some noises present in such detectors. Several basic
concepts usual in the context of data analysis are presented in
Section V while some important challenges that must be faced
in the analysis of SCHENBERG’s data are discussed in Sec-
tion VI. The closing comments are made in the final section.

II. GRAVITATIONAL WAVE SOURCES

Strong gravitational waves (g.w.) are expected to be gen-
erated by astrophysical objects [2]. For instance, two very
massive stars orbiting each other would emit such waves. In
particular, when they are coalescing they emit waves in a large
frequency range. Another example is given by a black hole
that rings down, also emitting in different wavelengths [3].

Astrophysical sources emit basically three kinds of waves,
depending on the waveform: bursts (impulsive signals of short
duration, like those produced by supernova explosions), con-
tinuous waves (periodic, with long duration, like those emitted
by stable binary systems) and stochastic waves (a spectrum
composed with the superposition of many sources, as the one
expected from cosmological origin).

From the analysis of the detected waves emitted by such
sources important information is expected. The very first di-
rect detection will provide a test for one of the predictions of
the theory of general relativity. Then, continuous observation
will allow testing other theories of gravitation [4, 5], besides
initiating gravitational astronomy [6, 7].

In order to make astrophysical observations the following
parameters that characterize the g.w. are needed: the ampli-
tudes of the two states of polarization of the wave as func-
tions of time (h+(t) and h×(t)), the source direction in the
sky (given by the anglesθ andφ) and the phase of the wave
(obtainable from the detailed time dependency ofh+(t) and
h×(t), usually associated to the polarization angleα). There-
fore, gravitational wave observatories must be able to detect at
least five independent observables in order to allow for grav-
itational wave astronomy to start. On the other hand, detec-
tion of at least one observable would be a strong evidence of
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FIG. 2: When a gravitational wave passes through a ring of particle
it changes their relative positions, depending on the wave’s polar-
ization. The top line shows the motion produced by a wave with
polarization “+”, while the bottom line shows the motion due to a
wave with polarization “×”.

the existence of such waves. All the existing detectors are
presently aimed at this first detection, while being prepared to
become part of g.w. observatories in the future as well. In the
next section a brief overview on resonant-mass detectors will
be presented.

III. RESONANT-MASS DETECTORS

When a gravitational wave passes through a ring of parti-
cles it changes their relative positions [8], as shown in Figure
2. Similarly, solid bodies are distorted in the presence of such
waves due to the changes in spacetime. This effect is the basis
for resonant-mass gravitational wave detectors. For instance,
a massive cylinder would oscillate longitudinally in the pres-
ence of a g.w., in a frequency resonant with the wave.

The first of such detectors was built in the 1960’s by Joseph
Weber. It was a massive, cylindrical aluminum bar at room
temperature,1.5m long, monitored by piezoelectric transduc-
ers. Nowadays there are improved bar detectors, sometimes
cooled down to millikelvin temperatures, longer and using
more sensitive transducers [9]. Those that are operational at
the moment are: ALLEGRO (EUA), EXPLORER (Switzer-
land), NAUTILUS and AURIGA (both in Italy)

Bar detectors are able to determine only one observable,
and due to their geometry there are directions in which they
are more sensitive than others. For these reasons several bar
detectors, appropriately positioned, would have to be used if
one wished to build a gravitational observatory with only this
kind of detector. In fact, investigations have already been done
in this direction [10].

Besides cylindrical geometry, it has been known for some
time that spherical, solid objects could be used as g.w.
resonant-mass detectors. In principle this geometry has
no preferred direction of observation (i.e., it is omnidirec-
tional) and the five observables needed for gravitational as-

FIG. 3: Schematics of the SCHENBERG gravitational wave detector.

tronomy could be obtained from only one detector appropri-
ately equipped [6, 11]. These are major advantages, but for
many years bars were preferred because they were easier to
machine and equip.

Under the rationale that spherical geometry is the best, in
the last decade a lot of effort has been invested in investigat-
ing and building resonant-mass g.w. detectors with this design
[9, 12]. The BrazilianMario SCHENBERGdetector is one of
these last generation detectors [13] (see Figure 3). When fully
operational it will be able not only to acknowledge the pres-
ence of a g.w. within its bandwidth: it will be able to inform
the direction of its source in sky, the wave’s amplitude and
its polarization - one only antenna working as a gravitational
wave observatory in a bandwidth between3000and3400Hz,
sensitive to displacements around10−20m . To this end at
least 6 transducers will continuously monitor displacements
of the antenna’s surface. The data collected will be sent to be
analyzed and, as mentioned above, it will certainly be accom-
panied by some noise. In the next section some of the main
noise sources in SCHENBERG will be presented.

IV. NOISE SOURCES IN SCHENBERG

People walking around the detector may generate undesired
vibrations on the resonant-mass antenna which becomeseis-
mic noisein the signal detected by the transducers. This kind
of noise can be minimized with the use of an appropriate sus-
pension system, as the one used in SCHENBERG [13, 14]:
the spherical antenna is carefully suspended from its center
of mass by a rod attached to a system of “springs” specially
designed to attenuate seismic noise.
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Other kinds of noise are harder to minimize. The Brownian
motion of the atoms of the antenna generatethermal noise,
which can be reduced by cooling the massive sphere to tem-
peratures as low as possible. SCHENBERG is expected to be
cooled down to4.2K (liquid Helium temperature) in its first
test run. After the antenna is cooled down, the standard proce-
dure to reduce its thermal noise has been to apply a threshold
in the detected signal above which a signal may be considered
a candidate for a g.w. event. It has been typical to set the
threshold to amplitude signal-to-noise ratio between 3 and 5
[15]. In the future it is planned to cool SCHENBERG down
to temperatures of the order of millikelvin, decreasing the an-
tenna’s thermal noise in about one order of magnitude [16].

Other relevant noises in SCHENBERG are related to the
transducers used to translate the mechanical motion of the an-
tenna into an electrical signal. They are microwave parametric
transducers [17] that generate noises that can be divided into
two groups: narrow band and broadband noises. The narrow
band noise includes the back action and the Brownian noises.
The broadband noise can be divided into two components: one
due to the amplifier and another due to the phase noise in the
pump microwave source. All these noises have been modelled
mathematically [16] so that the corresponding expressions can
be used in the development of digital filters that help to mini-
mize these noises in the detected signal. The importance of the
determination of such mathematical expressions will become
more clear within the context of data analysis, as follows.

V. BASIC CONCEPTS IN DATA ANALYSIS

The electric signal that leaves the transducers carries infor-
mation of both the gravitational wave and the different noises.
Data analysis then tries to extract the g.w. signal as clean as
possible out of noise. In other words, one is concerned with
improving the signal-to-noise ratio of measurements: an ac-
curate measurement can be made when the g.w. signal causes
an output of the detector that is large compared to the random
variations of the output when no g.w. signal is present. In
what follows some basic concepts important do data analysis
will be presented, including signal-to-noise ratio. The theory
of signal detection, much of it invented in the context of the
development of the radar during World War II, can be found
in a number of books [18, 19].

The output of a g.w. detector is expected to be continuously
recorded, and this allows one to know this output as a func-
tion of time: s(t). Such mathematical object is called atime
series. In principle one hopes to know as much of the g.w.
signal as possible, making it a deterministic time series of a
predetermined form,u(t), or a template. For instance, burst
signal are commonly associated to Dirac’s delta function. On
the other hand, noise is usually associated to time series,n(t),
that randomly varies from one realization to the next. Before
data analysis one then hass(t) = u(t) + n(t). Notice that in
the absence of any g.w. signal the detector output is just plain
noise:s(t) = n(t).

These distinctions between the time series of the g.w. signal
and noise imply different mathematical operations to charac-

terize the regularities of these series. A useful way to express
the time series is in terms of its Fourier transform,S( f ), a
function of frequency which contains the same information of
the time seriess(t), defined by

S( f )≡ 1√
2π

Z ∞

−∞
s(t)e−2π f tdt.

This puts the data in thefrequency domain. Notice that since
data is sampled in discrete sets in the practical world, the dis-
crete analog of the above equation is a more appropriate way
to define the Fourier transform for real data sets. In fact, there
exists a powerful algorithm for calculating discrete Fourier
transforms, the FFT or Fast Fourier Transform, which is very
useful in modern laboratory instrumentation. But for this brief
presentation of the subject the continuous approach will be
preferred.

The value of the Fourier transform ofs(t) at the frequency
f is a measure of the degree to whichs(t) varies like a sinu-
soid of frequencyf . Putting it in a better way, the Fourier
transform gives the contribution of a sinusoid of frequencyf
to a sum of sinusoids that equals the function of interest,s(t)
in this example.

For a deterministic signal as the one expected for g.w.
its Fourier transform can be calculate quite straightforwardly
from the above definition. The characterization of a random
time series (noise) in the frequency domain demands an extra
step, which is the definition of theautocorrelation functionof
the noise:

n∗n(τ)≡
Z ∞

−∞
n(t)n(t + τ)dt.

This function of a time offsetτ is a way of measuring hown(t)
is related to itself, at different time offsets between two copies
of n(t). Whenτ = 0 the time series is aligned to itself so the
autocorrelation function will always have a maximum at this
time offset. The width ofn?n indicates how rapidly the noise
changes with time.

The translation of the random time seriesn(t) into the fre-
quency domain is then given by the thepower spectrumof this
series (also known as power spectral density), defined as the
Fourier transform of the autocorrelation function:

Ps( f )≡ 1√
2π

Z ∞

−∞
n∗n(τ)e−2π f τdτ.

Ps( f ) is a measure of the amount of time variation in the time
series that occurs in the specific frequencyf .

Instead of thinking in terms of complex integrals of both
positive and negative frequencies, experimentalists often pre-
fer to think in terms of sines and cosines of positive frequen-
cies. So it is common to use thesingle sided power spectrum,
s2( f ), defined by

s2 ( f )≡
{

2Ps( f ) , i f f ≥ 0
0, otherwise.

Often the expression “power spectrum” refers to this defini-
tion within the experimental context. Also, an object derived
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from this quantity is commonly used, theamplitude spectral
density, defined simply bys( f )≡

√
s2( f ). Details on the ad-

vantages and disadvantages of the use of these quantities can
be found in [20].

After presenting how signal and noise can be characterized
in the theory of signal detection, now the concept of signal-to-
noise ratio (or SNR) will be introduced. This is a dimension-
less figure of merit for a measurement. In order to create such
a dimensionless quantity one must keep in mind that signal
detection is the process of searching for a pattern resembling
the template in the middle of a noisy record. Such a pattern
should occur with a strength unlikely to be due to noise alone.

The match between the time record and the template can be
estimated by thecross-correlation integralbetween the tem-
plateu(t) and the time records(t), evaluate for all possible
times at which the signal could have arrived:

s∗u(t)≡
Z ∞

−∞
s(τ)u(t + τ)dτ.

This definition is similar to the definition of the autocorrela-
tion function, given previously. The cross-correlation func-
tion indicates how related the functionss(t) andu(t) are to
each other. Then one way to characterize the strengthS2 of
the signal present in any timet is using the cross-correlation
between the expected form of the output (the templateu(t))
and the outputs(t):

S2 ≡ |s∗u(t)|.

As for the noise, it can be characterized byN2, the mean
square value of the cross-correlation between the outputs(t)
in the absence of g.w. (i.e., noise) and a given template:

N2 ≡
〈
(s∗u(t))2

〉
.

The brackets〈〉 indicate averaging over time.
With these characterizations one defines the signal-to-noise

ratio as the square root of the ratio of the measure of the
amount of signal present (S2) to the expected value due to
noise alone (N2):

SNR≡
√

S2
/

N2.

A large SNR indicates that something is present in the time
seriess(t) other than noise. In practiceSNR≈ 1 is not of
much use, butSNR& 10 indicate detection of some confi-
dence. Therefore the goal is to maximize SNR in order to
detect a g.w. This can be accomplished in a number of ways.
For instance,n(t) for antenna’s thermal noise can be reduced
by cooling the antenna down. As for transducer’s noise, a dig-
ital filter is useful. Filtering is such an important part of signal
analysis that it will be briefly reviewed next.

Suppose there is a device possessing one single input (i(t))
and a single output(s(t)). Such device will be considered a
linear systemif there is some linear relationship between the
input and the output:s(t) = ai(t). When the relationship be-
tween the input and the output does not change with time,

then the device is alinear time-invariant system(or just linear
system for short).

Thefiltersconsidered here are linear time-invariant devices
in which the input and output are quantities with the same
dimensions. On the other hand, the termtransduceris used
as a general name for a linear system whose input and output
have different physical units.

One way to specify the input-output relationship in a linear
system is to give the “impulse response”,g(t). This function
is the output obtained when a single unit impulse is applied to
the input att = 0. In the frequency domain the Fourier trans-
form of the impulse response,G( f ), is called thefrequency
response(or sometimestransfer function). This is a complex-
valued function of the frequencyf whose real part represents
the response “in phase” with a sinusoidal input of frequency
f , while the imaginary part corresponds to the “quadrature”
component. One can show that ifI( f ) is the Fourier trans-
form of the input andS( f ) is the Fourier transform of the out-
put, thenG( f ) = S( f )/I( f ). This equation implies also that
in Fourier space the output of a linear system is simply the
product of the input and the frequency response, with no need
to calculate convolution integrals.

VI. ASPECTS OF SCHENBERG’S DATA ANALYSIS

The theory presented in the last section shows that the
knowledge of SNR for SCHENBERG demands the determi-
nation of the time series of: the detector’s output, the g.w.
signal (template) and the noise.

In the particular case of SCHENBERG it is necessary to
combine the outputs of several transducers to create the time
series of the output,s(t). This combination is part of the math-
ematical modelling of the detector. There are 6 transducers
planned to monitor the antenna surface’s motion and there are
mathematical models for the detector for the case that all these
transducers operational. Such models have investigated two
situations: one in which the transducers are perfectly uncou-
pled [11, 21, 22] and another in which the transducers are
somehow coupled to each other [23], an instance that still of-
fers possibilities of investigation.

One of the challenges presently faced by the data analysis
group within the GRAVITON project [24] (the one SCHEN-
BERG is part of) is to develop a model of the detector with
less than 6 transducers. In this case there is a break in the
convenient buckyball symmetry [21] and the consequences of
this fact must be investigated. Two approaches are now un-
der investigation: one considers the model already developed
for 6 transducers [25] and simply reduces their number; the
other considers the fewer transducers as independent devices
and redesign the mathematical model. For the study of the last
approach several references in the literature may be used as a
starting point [26–30].

An actual time series of the detector’s output is expected be
known as soon as it is collecting data, in the next months. At
least three transducers are expected to be installed then, so the
investigation mentioned above should be conclude soon.

The work on the knowledge of the time series of the tem-
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plate has started long ago and is one of the more active fields
in data analysis [31], so that several templates already exist
that can be used [3, 32, 33]. But still many challenges re-
main to be faced in the field of g.w. sources. At the moment
one of the investigations been carried out by SCHENBERG’s
data analysis group in this way refers to the detection of astro-
physically unmodelled bursts of gravitational radiation using
wavelets [34].

A significant work has already been done to determine the
time series of the noise in SCHENBERG, as mentioned in
Section IV. Since all time series needed are available one is
able to translate them into the frequency domain and deter-
mine SCHENBERG’s SNR, as is done in [3]. Also, based on
the model with 6 transducers operational simulations of the
detector in the presence of noise have already been made (see
Costa and Aguiar in [9]).

The improvement of SNR can be accomplished by using
appropriate digital filters, for instance. When noise is white
(broadband, spread over spectrum and stationary, implying a
spectral density that does not depend on the frequency, which
is commonly the case) it can be shown that the best filter for a
given template is thematched filter. This linear system has an
impulse response which is the time reverse of the signal one
is interested in:g(t) = s(−t). This filter is presently under
investigation for the case of SCHENBERG within GRAVI-
TON’s data analysis group.

When noise is not white (either by not being broadband nor
stationary, or both) other strategies are used. For instance,
the monitoring of the environment with seismographers help
vetoing seismic noises. Monitors for cosmic rays work simi-
larly. The possible influence of lightings on the data has been
investigated as well (see Magalhaes, Marinho, Jr. and Aguiar
in [9]).

In the particular case of SCHENBERG, which will be mon-
itored by several transducers simultaneously, one may wonder
if filtering should be performed at the transducers outputs to
veto non-white, non-stationary noise before combining them
to extract the wave’s parameters. This is the case when sev-
eral bar detectors work in coincidence [15], spaced around the
world with some different characteristics among themselves.
Maybe such a procedure would eliminate some noise due to
local disturbances in individual transducers so that the com-
bined data could be less noisy.

However it can be argued [35] that since SCHENBERG’s
identical transducers are collecting data simultaneously at the
same site there is no need to risk loss of information by fil-
tering their data before combining them, a combination that
will be possibly done in real time and with all characteristics
under control. The data analysis system is then expected to
be able to optimize SNR using the combined outputs without
intermediate filtering.

Besides the matched filter another kind of filter is under
investigation for SCHENBERG, namely anadaptative filter,
one that changes with the variations of the power spectrum

of the noise. This is a device useful in the presence of non-
stationary noise, like electric and seismic noises. This kind of
filter has already been investigated within the g.w. detection
context [36].

Finally, an aspect that still deserves investigation is the use
of the Bayesian statistics in SCHENBERG’s data analysis.
Such kind of study is already been carried out related to other
detectors (see L.S. Finn in [9]).

VII. CONCLUDING REMARKS

In this work a brief overview of data analysis in resonant-
mass gravitational wave detectors was presented, with empha-
sis on issues involving the SCHENBERG detector. This de-
tector, installed at the Physics Institute of the University of
Sao Paulo (Sao Paulo city), is expected to be collecting data
soon. It will be able to run in coincidence with other detectors
around the world, particularly the broadband interferometric
ones (see links for the several groups at [24]). Such kind of
coincidence is important in the first place to increase the cred-
ibility on the detection of a g.w. For this reason it is interesting
to consider the development of a common protocol for infor-
mation exchange between SCHENBERG and these detectors.

It is worth pointing out the particular feature of SCHEN-
BERG of working as an observatory of g.w. by itself due to
its capability of several simultaneous measurements. Moni-
tored by three transducers, as it is planned for the near fu-
ture, this detector will be able to determine the squared ampli-
tude and the direction of propagation of a g.w. sufficiently
strong within its frequency band. Only spherical detectors
like SCHENBERG are able to have such versatility. This is
the case of the MiniGrail, another spherical detector built in
The Netherlands (see de Waard in [9]) sensitive to frequencies
smaller than SCHENBERG’s. Also, an Italian group is inter-
ested in building a large spherical detector (see V. Fafone in
[9]).

There is the belief within the international community that
works with g.w. detection that the first direct detection of
gravitation radiation from an astrophysical source will be-
come a reality in the near future. This will open a new window
to the universe, bringing new information about known ob-
jects and about fairly unknown things, like dark matter. In or-
der to extract such information from the huge amount of data
that is expected to be generated from the detectors’ outputs
(which has already started) a lot of work will be demanded in
the field of data analysis. This is a promising field.
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