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Abstract

An approximate method is proposed to solve position dependent mass Schrödinger equation. The

procedure suggested here leads to the solution of the PDM Schrödinger equation without trans-

forming the potential function to the mass space or vice verse. The method based on asymptotic

Taylor expansion of the function, produces an approximate analytical expression for eigenfunction

and numerical results for eigenvalues of the PDM Schrödinger equation. The results show that

PDM and constant mass Schrödinger equations are not isospectral. The calculations are carried

out with the aid of a computer system of symbolic or numerical calculation by constructing a

simple algorithm.
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INTRODUCTION

Quantum mechanical systems with a position dependent mass (PDM) generate interest

for its relevance and importance in describing the physics of many microstructures of current

interest, understanding transport phenomena in compositionally graded crystals, designing

modern fabrication of nano devices such as quantum dots, wires and wells, developing the-

oretical models for effective interactions in nuclear physics, neutron stars, liquid crystals,

metal clusters[1–15]. These applications have stimulated a naturally renewed interest in

the solution of PDM quantum mechanical Hamiltonians. Recently, solution of the PDM

Schrödinger equation, Dirac equation [16–19] and Klein-Gordon equation [20–22] have re-

ceived much attention. A number of authors have studied PDM Schrödinger equation within

the framework of point canonical transformations [23–26], Lie algebraic techniques[27–34],

super symmetric quantum-mechanical [35–43], or other related techniques [44–63].

In most applications of such methods, PDM Schrödinger equation has been transformed

in the form of the constant mass Schrödinger equation by changing coordinate and wave func-

tion. Obviously, this transformation generates isospectral potentials and exact solvability

requirements result in constraints on the potential functions for the given mass distributions.

In other words, a suitable transformation of coordinate and wave function becomes a bridge

between constant mass and position dependent mass Schrödinger equation. As an example

in a constant mass Schrödinger equation the choice of coordinate u =
∫ x

0

√

m(x)dx and

wave function ψ(u) = [2m(x)]1/4 ϕ(x) provides its transformation in the form of the PDM

Schrödinger equation. In this case the potential is mass dependent; i. e. harmonic oscillator

potential can be expressed as V = 1
2
mω2u2 = 1

2
mω2

(

∫ x

0

√

m(x)dx
)2

and both constant and

PDM Schrödinger equations have the same eigenvalues. The origin of such an isospectrality

in the constant mass scenario has not yet been studied. It will be worthwhile to discuss

physical acceptability of such an isospectrality in the position dependent mass background.

In some articles [9–12, 21, 47, 53, 57, 61], solution of the PDM Schrödinger equation has

been obtained without transforming the potential in to mass space . In this case the energy

spectrum of the PDM Hamiltonians are not isospectral with the constant mass Hamiltoni-

ans. Therefore it is reasonable to develop a method for solving PDM Hamiltonian without

transforming the potential into the mass space.

However, the fundamental question remains open: how the potential is affected when it
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is expressed in the mass space? To answer this question, one has to obtain a solution for the

Schrödinger equation without transforming the potential to the mass space. In this article,

we will obtain a semi-analytical solution of the Schrödinger equation without transforming

the potential to the mass space. This is another reason, to build a realistic model for solving

PDM Hamiltonian.

It is well known that the study of the same mathematical problems from different point

of view lead to the progress of the science and includes a lot of mathematical tastes. A

technique based on asymptotic expansion of Taylor series [64] has recently been suggested

to obtain eigenvalues of Schrödinger equation which improves both analytical and numerical

determination of the eigenvalues. Asymptotic Taylor Expansion Method (ATEM) is very

efficient to obtain eigenvalues of the Schrödinger equation because of their simplicity and

low round off error. This method has been easily applied to establish eigenvalues and wave

function of the Schrödinger type equations. We would like to mention here that the ATEM

is a field of tremendous scope and has an almost unlimited opportunity, for its applications

in the solution of the constant and PDM Schrödinger equations. In this paper, we address

ourselves to the solution of the PDM Schrödinger equation by using the ATEM.

The paper is organized as follows. In the next section we review construction of ATEM by

reformulating the well known Taylor series expansion of a function that satisfies second order

homogeneous differential equation of the form: f ′′(x) = p0(x)f
′(x) + q0(x)f(x). Section 3 is

devoted to the application of the main result for solving the PDM Schrödinger equation for

various forms of the Kinetic energy operator. As a practical example, we illustrate solution

of the PDM Schrödinger equation including harmonic oscillator potential and variable mass

m(x) = m0 (1 + γx2) [11]. In this section, we present an approximate analytical expression

for eigenfunction and numerical results for eigenvalues of the PDM Schrödinger equation.

We also analyze the asymptotic behavior of the Hamiltonian. Some concluding remarks are

given in section 4.

FORMALISM OF ATEM

In this section, we show the solution of the Schrödinger type equation for a quite ample

class of potentials, by modifying Taylor series expansion by means of a finite sequence instead

of an infinite sequence and its termination possessing the property of quantum mechanical
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wave function. Let us consider Taylor series expansion [66] of a function f(x) about the

point a:

f(x) = f(a) + (x− a)f ′(a) +
1

2
(x− a)2f ′′(a) +

1

6
(x− a)3f (3)(a) + ........

∞

=
∑

n=0

(x− a)n

n!
f (n)(a) (1)

where f (n)(a) is the nth derivative of the function at a. Taylor series specifies the value of

a function at one point, x, in terms of the value of the function and its derivatives at a

reference point a. Expansion of the function f(x) about the origin (a = 0), is known as

Maclaurin’s series and it is given by,

f(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) +

1

6
x3f (3)(0) + ........

∞
=
∑

n=0

xn

n!
f (n)(0). (2)

Here we develop a method to solve a second order linear differential equation of the form:

f ′′(x) = p0(x)f
′(x) + q0(x)f(x). (3)

It is obvious that the higher order derivatives of the f(x) can be obtained in terms of the

f(x) and f ′(x) by differentiating (3). Then, higher order derivatives of f(x) are given by

f (n+2)(x) = pn(x)f
′(x) + qn(x)f(x) (4)

where

pn(x) = p0(x)pn−1(x) + p′n−1(x) + qn−1(x), and

qn(x) = q0(x)pn−1(x) + q′n−1(x). (5)

Of course, the last result shows there exist a formal relation between asymptotic iteration

method (AIM) [70] and ATEM. We have observed that eigenfunction of the Schrödinger

type equations can efficiently be determined by using ATEM. It is clear that the recurrence

relations (5) allow us algebraic exact or approximate analytical expression for the solution

of (3) under some certain conditions. Let us substitute (5) into the (1) to obtain

f(x) = f(0)

(

1 +

m
∑

n=2

qn−2(0)
xn

n!

)

+ f ′(0)

(

1 +

m
∑

n=2

pn−2(0)
xn

n!

)

. (6)
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After all, we have obtained useful formalism of the Taylor expansion method. In the solution

of the eigenvalue problems, truncation of the the asymptotic expansion to a finite number of

terms is useful. If the series optimally truncated at the smallest term then the asymptotic

expansion of series is known as superasymptotic [71], and it leads to the determination

of eigenvalues with minimum error. Then boundary conditions can be applied as follows.

When only odd or even power of x collected as coefficients of f(0) or f ′(0) and vice verse,

the series is truncated at n = m then an immediate practical consequence of these condition

for qm−2(0) = 0 or pm−2(0) = 0. In this way, one of the parameter in the qm−2(0) and/or

pm−2(0) belongs to the spectrum of the Schrödinger equation. Therefore eigenfunction of

the equation becomes a polynomial of degree m. Otherwise the spectrum of the system

can be obtained as follows: In a quantum mechanical system eigenfunction of the system is

discrete. Therefore in order to terminate the eigenfunction f(x) we can concisely write that

qm(0)f(0) + pm(0)f
′(0) = 0

qm−1(0)f(0) + pm−1(0)f
′(0) = 0 (7)

eliminating f(0) and f ′(0) we obtain

qm(0)pm−1(0)− pm(0)qm−1(0) = 0 (8)

again one of the parameter in the equation related to the eigenvalues of the problem.

In quantum mechanics bound state energy of the atom is quantized and eigenvalues

are discrete and for each eigenvalues there exist one or more eigenfunctions. When we

are dealing with the solution of the Schrödinger equation, we are mainly interested in the

discrete eigenvalues of the problem. The first main result of this conclusion gives necessary

and sufficient conditions for the termination of the Taylor series expansion of the wave

function.

The process presented here is iterative and number of iteration is given by m. The

results are obtained as follows: in our Mathematica program, we use an iteration number,

say m = 30, then we obtain another result for m = 40, so on, then we compare values of

the parameter (eigenvalue) in each case till 10 digits. If values of the parameter reach its

asymptotic value then we use these values and omit the others. For instance, if one can

obtain values of the parameters for m = 40, first few of them will be reached its asymptotic

values, say first 8 values. The following comment for the function is considerable: for such

a solution it is suitable to take sum of first 8 term in the (6).
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It will be shown that ATEM gives accurate results for PDM Schrödinger equations. In

the following sections, it is shown that this approach opens the way to the treatment of

PDM Schrödinger equation including large class of potentials of practical interest.

SOLUTION OF THE PDM SCHRÖDINGER EQUATION BY USING ATEM

In the PDM Schrödinger equation the mass and momentum operator no longer commute,

so there are several ways to define kinetic energy operator. The general expression for the

Hamiltonian with the kinetic energy operator introduced by von Roos[67] and potential

energy V (x), can be written as:

H =
1

4
(mηpmεpmρ +mρpmεpmη) + V (x) (9)

where η + ε+ ρ = −1 is a constraint and m = m(x) is position dependent mass. There are

many debates for the choice of the parameters η, ε,and ρ, in our approach, we will obtain

the solution of the PDM Schrödinger equation for the following Hamiltonians [67–69]:

H1 =
1

2

(

p
1

m
p

)

+ V (x); for ε = −1, ρ = 0, η = 0, (10a)

H2 =
1

4

(

1

m
p2 + p2 1

m

)

+ V (x); for ε = 0, ρ = 0, η = −1, (10b)

H3 =
1

2

(

1√
m
p2 1√

m

)

+ V (x); for ε = −1

2
, ρ = 0, η = −1

2
, (10c)

H4 =
1

2

(

p
1√
m
p

1√
m

+
1√
m
p

1√
m
p

)

+ V (x); for ε = 0, ρ = −1

2
, η = −1

2
. (10d)

Here we take a new look at the solution of the the PDM Schrödinger equation by using the

method of ATEM developed in the previous section.

Before going further we share one of our significant observation during our calculations.

If the mass distribution is not appropriate for a given potential, the eigenvalues do not reach

their asymptotic values and resultant eigenfunction cannot be terminated when x → ±∞.

In order to illustrate semi analytical solution of the eigenvalue equations

Hiψ(x) = Eψ(x), (i = 1, 2, 3, 4) (11)

including harmonic oscillator potential, V (x) = 1
2
m0ω

2x2, we use the mass distributions

m(x) = m0 (1 + γx2), where γ is arbitrary positive constant. By the way, we emphasize
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that the wave function of harmonic oscillator potential is well defined in the region of ±∞
and satisfy that lim

x→±∞
|ψ(x)|2√

m
→ 0. In this limit the mass distributions to be continuous.

It is well known that asymptotic behavior of constant mass Schrödinger equation including

harmonic oscillator potential is given by ψ = e−
x
2

2 f(x), for simplicity we set h̄ = m0 = ω =

1.Thus, this change of wave function guaranties lim
x→±∞

|ψ(x)|2√
m

→ 0. After this transformation,

we present an iteration algorithm to calculate both eigenvalues and eigenfunctions of the

eigenvalue equation (11). Using this algorithm, we develop a Mathematica program, which

demonstrates that it is easier to be implemented into a computer program, and produces a

highly accurate solution with analytical expression efficiently.

Asymptotic Analysis

The term asymptotic means the function approaching to a given value as the iteration

number tends to infinity. By the aid of a Mathematica program we calculate eigenvalues

and eigenfunction of H1 for γ = 0.1 using number of iterations k = {20, 30, 40, 50,60}. The
function f(x) for n = 2 state is given in (12) and eigenvalues are presented in Table I.

k = 20; f(x) = 1− 1.857x2 − 1.619× 10−1x4 + 2.060× 10−2x6

+1.515× 10−3x8 − 1.261× 10−4x10 − 6.495× 10−6x12

k = 40; f(x) = 1− 1.856x2 − 1.622× 10−1x4 + 2.051× 10−2x6

+1.505× 10−3x8 − 1.271× 10−4x10 − 6.662× 10−6x12 (12)

k = 60; f(x) = 1− 1.856x2 − 1.622× 10−1x4 + 2.051× 10−2x6

+1.504× 10−3x8 − 1.271× 10−4x10 − 6.663× 10−6x12

Our calculation gives an accurate result for first 8 eigenvalues and eigenfunctions after 40

iterations. Here we have used 60 iterations. Figure 1 shows the plot of normalized wave

functions for first 6 state.

Solution of the Hamiltonians H2, H3 and H4

In the previous section we have illustrated applicability of our method by solving Hamil-

tonian H1. In this section we apply the same procedure to solve the Hamiltonians H2, H3
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k n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

20 0.46889047 1.43341211 2.35765542 3.28397486 4.21360362 4.35399596

30 0.46889665 1.43348058 2.35642259 3.24660834 4.12086916 4.98321327

40 0.46889650 1.43348582 2.35655507 3.24585555 4.10543833 4.95755341

50 0.46889651 1.43348553 2.35654885 3.24599291 4.10703835 4.94114551

60 0.46889651 1.43348555 2.35654908 3.24598255 4.10694346 4.94337909

TABLE I: Eigenvalues of the PDM H1 for different iteration numbers k and γ = 0.1.

and H4.Again we have used 60 iterations for each Hamiltonians and checked stability of the

eigenvalues. Here we calculated eigenvalues for 30 iterations and they are listed in Table II.

We have also checked that for the given eigenvalues, the wave functions are normalizable

and it tends to zero when x→ ∞.

n EH2
EH3

EH4

0 0.50773226 0.48833347 0.50949336

1 1.45551369 1.44451856 1.45972923

2 2.36941282 2.36286881 2.37461896

3 3.25544187 3.25137213 3.26106459

4 4.13235379 4.12882619 4.13805287

5 4.95997506 4.96305356 4.96478901

TABLE II: The eigenvalues Hamiltonians H2, H3 and H4, for γ = 0.1. The result is obtained after

30 iterations.

The results given in Table II shows that eigenvalues and eigenfunctions are also depends

on the choices of the parameters, ε, ρ, and η of Hamiltonian (9).

REMARKS AND DISCUSSIONS

In this paper, we have studied the solution of the PDM Schrödinger equation without

mapping the potential in to the mass space. We have solved PDM Schrödinger equation

for four different kinetic energy operators including harmonic oscillator potential with the

variable mass function of the form m(x) = m0 (1 + γx2). It is shown that energy levels
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FIG. 1: Plot of the normalized wave function of the PDM Hamiltonian (10a) for n = 0, 1, 2, 3, 4, 5.

of the PDM Schrödinger equation depends on the mass distributions. It is important to

remark that the results presented here, shows that eigenvalues also depends on the ordering

parameters of the PDM Schrödinger equation [72].

We have presented an approximate method based on asymptotic Taylor Series Expansion

of a function. Fortunately, this method is useful for obtaining both eigenvalues and eigen-
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functions of the Schrödinger type equations. Therefore, the results have been obtained here,

allowing further comparisons between the models.

As a further work the method presented here can be used to built more realistic models

for the PDM physical systems. Before ending this work a remark is in order. When the

potential mapped to the mass space, the both constant and PDM Hamiltonian has the same

eigenvalues. It will be worthwhile to discuss physical acceptability of such an isospectrality

in the position dependent mass background. Therefore we have to develop methods for

solving PDM Schrödinger equation without connecting mass to potential or vice versa.
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[46] Koç R, Koca M and Körcük E, J. Phys. A: Math. Gen. 35 (2002) L527.

[47] Gang C 2004 Phys. Lett. A 329 22

[48] Chen G, Chen ZD 2004 Phys. Lett. A 331 312

[49] Bagchi B, Gorain P, Quesne C and Roychoudhury R 2004 Mod. Phys. Lett. A 19 2765

[50] Alhaidari A D 2003 Int. J. Theor. Phys. 42 2999

[51] Jiang L, Yi L Z and Jia C S 2005 Phys. Lett. A 345 279

[52] Ganguly A, Ioffe M V and Nieto L M 2006 J. Phys. A: Math. Gen. 39 14659

[53] Ganguly A, Kuru S, Negro J and Nieto, LM 2006 Phys. Lett. A 360 228

[54] Carinena J F, Perelomov A M, Ranada MF and Santander M 2008 J. Phys. A: Math. Theor.

41 085301

[55] Midya B and Roy B 2009 Phys. Lett. A 373 4117

[56] Ou Y C, Cao Z Q and Shen Q H 2004 J. Phys. A: Math. Gen. 37 4283

[57] Zi-Dong Chen and Gang Chen 2005 Phys. Scr. 72 11

[58] Bagchi B, Gorain P, Quesne C and Roychoudhury R 2005 Eur. Phys. Lett. 72 155

[59] Ju Guo-Xing et al 2007 Commun. Theor. Phys. 47 1001

[60] Aktas M and Sever R 2008 J. Math. Chem. 43 92

[61] Sever R, Tezcan C, Yesiltas O and Bucurgat M 2008 Int. J. Theor. Phys. 47 2243

[62] Kraenkel R A and Senthilvelan M 2009 J. Phys. A: Math. Theor. 42 415303

[63] D. Dutta and P. Roy 2010 EPL 89 20007
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