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In this paper we review Castagnino’s contributions to the foundations of quantum

mechanics. First, we recall his work on quantum decoherence in closed systems, and

the proposal of a general framework for decoherence from which the phenomenon

acquires a conceptually clear meaning. Then, we introduce his contribution to the

hard field of the interpretation of quantum mechanics: the modal-Hamiltonian in-

terpretation solves many of the interpretive problems of the theory, and manifests

its physical relevance in its application to many traditional models of the practice

of physics. In the third part of this work we describe the ontological picture of the

quantum world that emerges from the modal-Hamiltonian interpretation, stressing

the philosophical step toward a deep understanding of the reference of the theory.

I. INTRODUCTION

Anybody who has been close to Prof. Mario Castagnino, even for a short time, knows

that he is an ever-eager spirit: the many different subjects treated in this issue are a clear

manifestation of the wide panoply of interests that have moved him during his long academic

life. Nevertheless, the present article has a peculiarity with respect to the rest of the papers

of the issue: Castagnino should be one of the authors of this work. In fact, since ten years ago

he has been actively engaged with the foundations and the philosophy of physics, leading an

always increasing research group to which we belong. In this field we have obtained relevant

results with a remarkable repercussion.

As Castagnino uses to say, he is a senior physicist but a baby philosopher. However, this

fact was not an obstacle to his eager spirit, which has been involved in the foundations of

so many different subjects that cannot be addressed in a single article. In the present paper

we will confine our attention to Castagnino’s contributions to the foundations of quantum
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mechanics (QM), in order to review his main results in this area. First, we will recall his

work on quantum decoherence in closed systems, and the proposal of a general framework

for decoherence from which the phenomenon acquires a conceptually clear meaning. Then,

we will introduce his contribution to the hard field of the interpretation of QM: our modal-

Hamiltonian interpretation solves many of the interpretive problems of the theory, and

manifests its physical relevance in its application to many traditional models used in the

practice of physics. In the third part of this work we will describe the ontological picture of

the quantum world that emerges from our interpretation; here we will stress our philosophical

step toward a deep understanding of the reference of the theory, a move not usual in the

contemporary discussions about the interpretation of QM. Finally, we will briefly recall

Castagnino’s contributions in other areas of the foundations and the philosophy of physics.

II. FOUNDATIONS OF QUANTUM DECOHERENCE

More than a decade ago Castagnino developed, with Roberto Laura, a formalism that

explains the limit reached by expectation values in closed quantum systems with continuous

spectrum,[1]−[6] and begun to conceive that formalism in terms of decoherence. When,

some years later, those works were reanalyzed in the context of our research group, we

acknowledged the conceptual relevance and the fruitful perspectives of that work. So, the

original proposal was further elaborated from a conceptual viewpoint, and presented in

several meetings and papers.[7]−[16] In particular, we were invited by Prof. Fred Kronz,

from the University of Texas at Austin, to discuss that new view, and he suggested the

name ‘self-induced decoherence’ (SID) in contrast with the orthodox ‘environment-induced

decoherence’ (EID) approach.[17],[18]

In those first works, we presented SID as different from EID, that is, as the way in which

decoherence manifests itself in closed systems. However, shortly after we realized that

both approaches can be subsumed under a General Theoretical Framework for Decoherence

(GTFD), which encompasses decoherence in open and closed systems.[19]−[21] According

to this framework, decoherence is just a particular case of the general phenomenon of irre-

versibility in QM.[22],[23] Since the quantum state ρ(t) follows a unitary evolution, it cannot

reach a final equilibrium state for t → ∞. Therefore, if we want to explain the emergence

of non-unitary irreversible evolutions, we must split the whole space O of all possible ob-
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servables into a relevant subspace OR ⊂ O and an irrelevant subspace. With this strategy

we restrict the maximal information about the system: the expectation values 〈OR〉ρ(t) of

the observables OR ∈ OR express that relevant information. Of course, the decision about

which observables are to be considered as relevant depends on the particular purposes in

each situation; but without this restriction, irreversible evolutions cannot be described. In

fact, the different approaches to decoherence always select a set OR of relevant observables

in terms of which the time behavior of the system is described: gross observables in van

Kampen,[24] macroscopic observables of the apparatus in Daneri et al.,[25] observables of

the open system in EID,[26]−[18] relevant observables in Omnés.[29],[30]

Once the essential role played by the selection of the relevant observables is clearly un-

derstood, decoherence can be explained in three general steps:

1. First step: The set OR of relevant observables is defined.

2. Second step: The expectation value 〈OR〉ρ(t), for any OR ∈ OR, is obtained. This

step can be formulated in two different but equivalent ways:

• 〈OR〉ρ(t) is computed as the expectation value of OR in the unitarily evolving state

ρ(t).

• A coarse-grained state ρG(t) is defined by 〈OR〉ρ(t) = 〈OR〉ρG(t) for any OR ∈ OR,

and its non-unitary evolution (governed by a master equation) is computed.

3. Third step: It is proved that 〈OR〉ρ(t) = 〈OR〉ρG(t) reaches a final equilibrium value

〈OR〉ρ
∗

:

lim
t→∞

〈OR〉ρ(t) = lim
t→∞

〈OR〉ρG(t) = 〈OR〉ρ
∗

(1)

where the final equilibrium state ρ∗ is obviously diagonal in its own eigenbasis, which

turns out to be the final pointer basis. But the unitarily evolving quantum state ρ(t)

of the whole system has only a weak limit :

W − lim
t→∞

ρ(t) = ρ∗ (2)

This weak limit means that, although the off-diagonal terms of ρ(t) never vanish

through the unitary evolution, the system decoheres from an observational point of

view, that is, from the viewpoint given by any relevant observable OR ∈ OR.
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This GTFD allows us to face the conceptual challenges that the EID approach still has

to face. One of them comes from the fact that, since the environment may be “external”

or “internal”, the EID approach offers no general criterion to decide where to place the

“cut” between system and environment. Zurek considers this fact as a shortcoming of his

proposal: “In particular, one issue which has been often taken for granted is looming big, as

a foundation of the whole decoherence program. It is the question of what are the ‘systems’

which play such a crucial role in all the discussions of the emergent classicality.”[31] In order

to address this problem, the first step is to realize that the EID relevant observables of the

closed system U are those corresponding to the open system S:

OR = OS ⊗ IE ∈ OR ⊂ O (3)

where OS ∈ OS of S and IE is the identity operator in OE of E. The reduced density

operator ρS(t) of S is defined by tracing over the environmental degrees of freedom,

ρS(t) = TrE ρ(t) (4)

The EID approach studies the time-evolution of ρS(t) governed by an effective master equa-

tion; it proves that, under certain definite conditions, ρS(t) converges to a stable state ρS∗:

ρS(t) −→ ρS∗. But we also know that the expectation value of any OR ∈ OR in the state

ρ(t) of U can be computed as

〈OR〉ρ(t) = Tr (ρ(t)(OS ⊗ IE)) = Tr (ρS(t)OS) = 〈OS〉ρS(t) (5)

Therefore, the convergence of ρS(t) to ρS∗ implies the convergence of the expectation values:

〈OR〉ρ(t) = 〈OS〉ρS(t) −→ 〈OS〉ρS∗

= 〈OR〉ρ
∗

(6)

where ρ∗ is a final diagonal state of U , such that ρS∗ = TrE ρ∗.

¿From this new conceptual perspective, we have studied the well-known spin-bath model:

a closed system U = P ∪ P1 ∪ . . . ∪ PN = P ∪ (∪N
i=1Pi), where (i) P is a spin-1/2 particle

represented in the Hilbert space HP , and (ii) each Pi is a spin-1/2 particle represented in

its Hilbert space Hi. The Hilbert space of the composite system U is, then,

H = HP ⊗

(

N
⊗

i=1

Hi

)

(7)
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If the self-Hamiltonians HP of P and Hi of Pi are taken to be zero, and there is no inter-

action among the Pi, then the total Hamiltonian H of the composite system U is given by

the interaction between the particle P and each particle Pi.[32] By contrast to the usual

presentations, we have studied different decompositions of the whole closed system U into

a relevant part and its environment.[33]

a. Decomposition 1: A large environment that produces decoherence. In the typical sit-

uation studied by the EID approach, the open system S is the particle P , and the remaining

particles Pi play the role of the environment E: S = P and E = ∪N
i=1Pi. This decomposition

results in the system decoherence when the number of particles in the bath is very large.

b. Decomposition 2: A large environment with no decoherence We can conceive differ-

ent ways of splitting the whole closed system U . For instance, we can decide to observe

a particular particle Pj of what was previously considered the environment, and to con-

sider the remaining particles as the new environment, in such a way that S = Pj and

E = P ∪ (∪N
i=1,i 6=jPi). This decomposition results in that the system does not decohere.

c. Decomposition 3: A small environment that produces decoherence It may be the case

that the measuring arrangement “observes” a subset of the particles of the environment, e.g.,

the p first particles Pj. In this case, the system of interest is composed by p particles, S =

∪p
i=1Pi, and the environment is composed by all the remaining particles, E = P ∪(∪N

i=p+1Pi).

This decomposition results in the system decoherence when the number p is very large.

We have also studied a generalization of the spin-bath model, where a whole closed system

was split into an open many-spin system and its environment.[34] In this case we studied

different partitions of the whole system and identified those for which the selected system

does not decohere. As stressed in that work, this might help us to define clusters of particles

that can be used to store q-bits.

The results obtained in both cases allowed us to argue that Zurek’s “looming big” problem

is actually a pseudo-problem, which is simply dissolved by the fact that the split of a closed

quantum system into an open subsystem and its environment is just a way of selecting a

particular space of relevant observables of the whole closed system. But since there are many

different spaces of relevant observables depending on the observational viewpoint adopted,

the same closed system can be decomposed in many different ways: each decomposition rep-

resents a decision about which degrees of freedom are relevant and which can be disregarded
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in each case. And since there is no privileged or “essential” decomposition, there is no need

of an unequivocal criterion for deciding where to place the cut between “the” open system

and “the” environment. Summing up, decoherence is a phenomenon relative to the relevant

observables selected in each particular case. The only essential physical fact is that, among

all the observational viewpoints that may be adopted to study a quantum system, some of

them determine subspaces of relevant observables for which the system decoheres.

Another conceptual difficulty of the EID approach relies on its definition of the pointer

basis. This basis is clearly characterized in measurements situations, where the self-

Hamiltonian of the system can be neglected and the evolution is completely dominated

by the interaction Hamiltonian. In those cases, the pointer basis is given by the eigenstates

of the interaction Hamiltonian.[35] However, there are two further regimes, differing in the

relative strength of the system’s self-Hamiltonian and the interaction Hamiltonian, where

the pointer basis lacks a general definition.[36] Our present research is directed to the search

of a general and precise definition of the pointer basis of decoherence.

III. MODAL-HAMILTONIAN INTERPRETATION OF QUANTUM

MECHANICS

Our work on decoherence from a closed-system perspective taught us that the decompo-

sition of the total Hamiltonian has to be studied in detail in each case, in order to know

whether the system of interest resulting from the partition decoheres or not under the action

of its self-Hamiltonian and the interaction Hamiltonian. Once we acknowledged the central

role played by the Hamiltonian in decoherence, the natural further step was to ask ourselves

whether it plays the same central role in interpretation. This question led us to formulate

our modal-Hamitonian interpretation (MHI) of QM,[37]−[39] which belongs to the modal

family:[40] it is a realist, non-collapse interpretation, according to which the quantum state

describes the possible properties of a system but not its actual properties. Here we will only

recall its main interpretative postulates.

The first step is to identify the systems that populate the quantum world. By adopting

an algebraic perspective, a quantum system is defined as:

Systems postulate (SP): A quantum system S is represented by a pair (O, H) such

that (i) O is a space of self-adjoint operators on a Hilbert space H, representing the ob-
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servables of the system, (ii) H ∈ O is the time-independent Hamiltonian of the system S,

and (iii) if ρ0 ∈ O′ (where O′ is the dual space of O) is the initial state of S, it evolves

according to the Schrödinger equation in its von Neumann version.

Of course, any quantum system can be partitioned in many ways; however, not any

partition will lead to parts which are, in turn, quantum systems.[41],[42] On this basis, a

composite system is defined as:

Composite systems postulate (CSP): A quantum system represented by S : (O , H),

with initial state ρ0 ∈ O′, is composite when it can be partitioned into two quantum systems

S1 : (O1, H1) and S2 : (O2 , H2) such that (i) O = O1⊗O2, and (ii) H = H1⊗I2+I1⊗H2,

(where I1 and I2 are the identity operators in the corresponding tensor product spaces). In

this case, the initial states of S1 and S2 are obtained as the partial traces ρ10 = Tr(2)ρ0 and

ρ20 = Tr(1)ρ0; we say that S1 and S2 are subsystems of the composite system, S = S1 ∪ S2.

If the system is not composite, it is elemental.

Since the contextuality of QM, as implied by the Kochen-Specker theorem,[43] prevents

us from consistently assigning actual values to all the observables of a quantum system in a

given state, the second step is to identify the preferred context, that is, the set of the actual-

valued observables of the system. Whereas the different rules of actual-value ascription

proposed by previous modal interpretations rely on mathematical properties of the theory,

our MHI places an element with a clear physical meaning, the Hamiltonian, at the heart of

its rule:

Actualization rule (AR): Given an elemental quantum system represented by S :

(O , H), the actual-valued observables of S are H and all the observables commuting with

H and having, at least, the same symmetries as H.

This preferred context where actualization occurs is independent of time: the actual-

valued observables always commute with the Hamiltonian and, therefore, they are constants

of motion of the system. In other words, the observables that receive actual values are the

same during all the “life” of the quantum system as such −precisely, as a closed system−:

there is no need of accounting for the dynamics of the actual properties of the quantum

system as in other modal interpretations.[44]

The fact that the Hamiltonian always belongs to the preferred context agrees with

the many physical cases where the energy has definite value. The MHI has been ap-

plied to several well-known physical situations (hydrogen atom, Zeeman effect, fine struc-



8

ture, etc.), leading to results consistent with experimental evidence.[37] Moreover, it has

proved to be effective for solving the measurement problem, both in its ideal and its non-

ideal versions,[37] solving the deep challenges that non-ideal measurements pose to other

modal interpretations.[45],[46] In particular, the MHI distinguishes between reliable and

non-reliable non-ideal measurements.[37] Furthermore, in spite of the fact that MHI applies

to closed systems, we have proved its compatibility with EID.[47],[48]

Once the MHI was clearly formulated, our further question was whether it satisfies the

Galilean invariance of the theory. In fact, any continuous transformation admits two in-

terpretations. Under the active interpretation, the transformation corresponds to a change

from one system to another −transformed− system; under the passive interpretation, the

transformation consists in a change of the viewpoint −reference frame− from which the

system is described.[49] Nevertheless, in both cases the validity of a group of symmetry

transformations expresses the fact that the identity and the behavior of the system are not

altered by the application of the transformations: in the active interpretation language, the

original and the transformed systems are equivalent; in the passive interpretation language,

the original and the transformed reference frames are equivalent. Then, any realist inter-

pretation should agree with that physical fact: the rule of actual-value ascription should

select a set of actual-valued observables that remains unaltered under the transformations.

Since the Casimir operators of the central-extended Galilei group are invariant under all

the transformations of the group, one can reasonably expect that those Casimir operators

belong to the preferred context.

As we have seen, the preferred context selected by AR only depends on the Hamiltonian

of the system. Then, the requirement of invariance of the preferred context under the Galilei

transformations is directly fulfilled when the Hamiltonian is invariant, that is, in the case of

time-displacement, space-displacement and space-rotation:

H ′ = eiHτH e−iHτ = H (since [H,H ] = 0) (8)

H ′ = eiPiriH e−iPiri = H (since [Pi, H ] = 0) (9)

H ′ = eiJiθiH e−iJiθi = H (since [Ji, H ] = 0) (10)

However, it is not clear that the requirement completely holds, since the Hamiltonian is not

invariant under Galilei-boosts. In fact, under a Galilei-boost corresponding to a velocity ux,
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H changes as

H ′ = eiK
(G)
x uxH e−iK

(G)
x ux 6= H (since

[

K(G)
x , H

]

= iPx 6= 0) (11)

Nevertheless, when space is homogeneous and isotropic, a Galilei-boost only introduces a

change in the subsystem that carries the kinetic energy of translation: the internal energy W

remains unaltered under the transformation. This should not sound surprising to the extent

that W −multiplied by the scalar mass m− is a Casimir operator of the central-extended

Galilei group. On this basis, we can reformulate AR in an explicit Galilei-invariant form in

terms of the Casimir operators of the central-extended group:

Actualization rule’ (AR’): Given a quantum system free from external fields and rep-

resented by S : (O , H), its actual-valued observables are the observables CG
i represented by

the Casimir operators of the central-extended Galilei group in the corresponding irreducible

representation, and all the observables commuting with the CG
i and having, at least, the same

symmetries as the CG
i .

Since the observables CG
i −in the reference frame of the center of mass− are M , mW

and m2S2, this new version AR’ is in agreement with the original AR when applied to a

system free from external fields:[50]−[52]

• The actual-valuedness of M and S2, postulated by AR’, follows from AR: these observ-

ables commute with H and do not break its symmetries because, in non-relativistic

QM, both are multiples of the identity in any irreducible representation.

• The actual-valuedness of W might seem to be in conflict with AR because W is not the

Hamiltonian: whereas W is Galilei-invariant, H changes under the action of a Galilei-

boost. However, this is not a real obstacle because a Galilei-boost transformation only

introduces a change in the subsystem that carries the kinetic energy of translation,

which can be considered a mere shift in an energy defined up to a constant.[50],[52]

Summing up, the application of AR’ leads to reasonable results, since the actual-valued

observables turn out to be invariant and, therefore, objective magnitudes. The assumption

of a strong link between invariance and objectivity is rooted in a natural idea: what is

objective should not depend on the particular perspective used for the description; or, in

group-theoretical terms, what is objective according to a theory is what is invariant under
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the symmetry group of the theory. This idea is not new: it was widely discussed in the

context of special and general relativity with respect to the ontological status of space and

time,[53] and since then it reappeared in several works. [54]−[59] ¿From this perspective,

AR says that the observables that acquire actual values are those representing objective

magnitudes. On the other hand, from any realist viewpoint, the fact that certain observables

acquire an actual value is an objective fact in the behavior of the system; therefore, the set of

actual-valued observables selected by a realist interpretation must be also Galilean-invariant.

But the Galilean-invariant observables are always functions of the Casimir operators of the

Galilean group. As a consequence, one is led to the conclusion that any realist interpretation

that intends to preserve the objectivity of actualization may not stand very far from the

modal-Hamiltonian interpretation.

When AR is expressed in simple group terms, one can expect that it can be extrapolated

to any quantum theory endowed with a symmetry group. In particular, the actual-valued

observables of a system in quantum field theory would be those represented by the Casimir

operators of the Poincaré group and of the internal symmetry group. On this basis, in a

recent paper we presented an alternative version of the non-relativistic limit of the centrally

extended Poincaré group and its consequences for interpretive problems.[60]

As it is well known, the Galilei group can be recovered from the Poincaré group by means

of Inönü-Wigner contraction.[61] It is therefore natural to ask whether such a situation can

be generalized to the central-extended Galilei group, which is the relevant group in QM.

However, since the Poincaré group does not admit nontrivial central extensions,[62] we have

to define a generalized Inönü-Wigner contraction from a trivial extension of the Poincaré

group whose generators are H , Pi, Ji and KPi
(where the last ones are the Lorentz boosts).

With this purpose, we extend the group trivially, i.e., in such a way that all the generators

of Poincaré group commute with a trivial central charge M . The basis of the resulting

new algebra IMSO(1, 3) = ISO(1, 3)× 〈M〉 is {H , Pi, Ji, KPi
, M}. Then, we perform the

following change of the generators basis H = H−M . In the new basis
{

H , Pi, Ji, KPi
, M

}

all the commutators of the Poincaré group remain the same, with the only exception of

[

Pi, KPj

]

= −iδijH = −iδij(H +M) (12)

The contraction is determined by the rescaling transformations (in the basis
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{

H , Pi, Ji, KPi
, M

}

) defined by

J ′
i = Ji, P ′

i = εPi, K ′
Pi

= εKPi
, H

′
= H , M ′ = ε2M (13)

The space isotropy remains unchanged by this rescaling transformation and

[

P ′
i , K

′
Pj

]

= −iδij(ε
2H

′
+M ′) so lim

ε→0

[

P ′
i , K

′
Pj

]

= −iδijM
′ (14)

Therefore, it turns out to be clear that the contracted algebra is isomorphic to the extension

of the Galilei algebra. On the basis of this result, we have also proved that the Casimir op-

erators of the trivially extended Poincaré group contract naturally to the Casimir operators

of the extended Galilei group.[60]

Summing up, when AR is expressed in its explicit Galilei-invariant form AR’, it leads

to a physically reasonable result: the actual-valued observables are those represented by

the Casimir operators of the mass central-extended Galilei group. The natural strategy

is to extrapolate the interpretation to the relativistic realm by replacing the Galilei group

with the Poincaré group. But when one takes into account that the relevant group of non-

relativistic QM is not the Galilei group but its central extension, the mere replacement of

the relevant group is not sufficient: one has to show also that the actual-valued observables

in the relativistic and the non-relativistic cases are related through the adequate limit. As

a consequence, the Poincaré group has to be trivially extended, in order to show that the

limit between the corresponding Casimir operators holds, and this result counts in favor of

the proposed extrapolation of our MHI to non-relativistic QM. Furthermore, this result is

physically reasonable because mass and spin are properties supposed to be always possessed

by any elemental particle,[63] and they are two of the properties that contribute to the

classification of elemental particles. At present we are working on a further extrapolation of

the MHI to the standard model.

IV. THE ONTOLOGICAL PICTURE OF THE QUANTUM WORLD

In general, the discussions about modal interpretations are concerned with the traditional

problems, as the measurement problem and the no-go theorems. But these are not the only

relevant issues: one should not forget the ontological question about the structure of the

world referred to by QM.
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All modal interpretations rely on a common assumption: QM does not describe what is

the case, but rather what may be the case. The problem of the nature of possibility is as old

as philosophy itself. Since Aristotle’s time to nowadays, however, two general conceptions

can be identified. On the one hand, actualism reduces possibility to actuality. This was the

position of Diodorus Cronus, who defined “the possible as that which either is or will be”. [64]

This view survived up to 20th century; for instance, for Russell ‘possible’ means ‘sometimes’,

whereas ‘necessary’ means ‘always’.[65] On the other hand, possibilism conceives possibility

as an ontologically irreducible feature of reality. From this perspective, the stoic Crissipus

defined possible as “that which is not prevented by anything from happening even if it does

not happen”.[66] In present day metaphysics, the debate actualism-possibilism is still alive.

For the actualists, the adjective ‘actual’ is redundant: non-actual possible items (objects,

properties, facts, etc.) do not exist. According to the possibilists, on the contrary, not every

possible item is an actual item: possible items—possibilia—constitute a basic ontological

category.[67]

For our MHI, probabilities measure ontological propensities, which embody a possibilist,

non-actualist possibility: a possible fact does not need to become actual to be real. This

possibility is defined by the postulates of QM and is not reducible to actuality. This means

that reality spreads out in two realms, the realm of possibility and the realm of actuality. In

Aristotelian terms, being can be said in different ways: as possible being or as actual being,

and none of them is reducible to the other. Moreover, the ontological structure of the realm of

possibility is embodied in the definition of the elemental quantum system S : (O , H), with

its initial state ρ0: (i) the space of observables O identifies all the possible type-properties

(observables) with their corresponding possible case-properties (eigenvalues), and (ii) the

initial state ρ0 codifies the measures of the propensities to actualization of all the possible

case-properties at the initial time, propensities that evolve deterministically according to

the Schrödinger equation.

The fact that propensities belong to the realm of possibility does not mean that they

do not have physical consequences in the realm of actuality. On the contrary, propensities

produce definite effects on actual reality even if they never become actual. An interest-

ing manifestation of such effectiveness is the case of the so-called “non-interacting experi-

ments”,[68],[69] where non-actualized possibilities can be used in practice, for instance, to

test bombs without exploding them.[70] This shows that possibility is a way in which reality
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manifests itself, a way independent of and not less real than actuality.

One of the main areas of controversy in contemporary metaphysics is the problem of the

nature of individual objects: is an individual a substratum supporting properties or a mere

“bundle” of properties?[71] The idea of a substratum acting as a bearer of properties has

pervaded the history of philosophy: it is present under different forms in Aristotle’s “primary

substance”, in Locke’s doctrine of “substance in general” or in Leibniz’s monads. Neverthe-

less, many philosophers belonging to the empiricist tradition, from Hume to Russell, Ayer

and Goodman, have considered the posit of a characterless substratum as a metaphysical

abuse. As a consequence, they adopted some version of the bundle theory, according to

which an individual is nothing but a bundle of properties: properties have metaphysical

priority over individuals and, therefore, they are the fundamental items of the ontology.

In the Hilbert space formalism, states have logical priority over observables since observ-

ables apply to states. This logical priority favors the picture of an ontology of substances

and properties, with the traditional priority of substances over properties. Our MHI, on

the contrary, is based on the algebraic formalism, where the basic elements are observables

and states are functionals over the space of observables. Then, the MHI favors the bundle

theory, that is, an ontology of properties, where the category of substance is absent.

According to the traditional versions of the bundle theory, an individual is the con-

vergence of certain case-properties, under the assumption that all the type-properties are

determined in the actual realm. For instance, a particular billiard ball is the convergence of

a definite value of position, a definite shape, say round, a definite color, say white, etc. Then,

the properties taken into account are always actual properties: bundle theories identify in-

dividuals with bundles of actual properties. In QM, on the contrary, the Kochen-Specker

theorem prevents the assignment of case-properties (eigenvalues) to all the type-properties

(observables) of the system in a non-contradictory manner. Therefore, the classical idea of

a bundle of actual properties does not work for the quantum ontology.

If, from the perspective of the MHI, the quantum world unfolds into two irreducible

realms, the realm of possibility has to be taken into account when deciding what kind of

properties constitutes the quantum bundle. Since the quantum system is identified by its

space of observables, which represent possible properties, an individual quantum system

turns out to be a bundle of possible properties : it inhabits the realm of possibility, which is

as real as the realm of actuality.
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This interpretation of quantum individual systems has the advantage of being immune

to the challenge represented by the Kochen-Specker theorem, since this theorem imposes no

restriction on possibilities. Moreover, it seems reasonable to expect that this conception of

individual supplies the basis for solving the problem of the indistinguishability of “identical

particles”,[72] introduced in the formalism as an ad hoc restriction on the set of states. At

present, we are working on this problem: if the traditional assumption of substantial objects,

which preserve their individuality when considered in collections, is the main obstacle to

explain quantum statistics, the conception of the quantum system as a bundle of possible

properties seems to offer a promising starting point in the search for a solution of the

problem.

Summing up, from our interpretational perspective, the talk of individual entities as

electrons or photons and their interactions can be retained only in a metaphorical sense. In

fact, in the quantum framework even the number of particles is represented by an observable

N , which is subject to the same theoretical constraints as any other observable of the

system; this leads, specially in quantum field theory, to the possibility of states that are

superpositions of different particle numbers.[73] Therefore, the number of particles N has

an actual definite value only in some cases, but it is indefinite in others. This fact, puzzling

from an ontology populated by substantial objects, is deprived of mystery when viewed

from our ontological perspective. The quantum system is not a substantial individual, but

a bundle of possible properties. The particle picture, with a definite number of particles,

is only a contextual picture valid exclusively when the observable N is picked out by the

preferred context. In this case, we could metaphorically retain the idea of a composite

system composed of individual particles that interact to each other. But in the remaining

cases, this idea proves to be completely inadequate, even in a metaphorical sense.

V. CONCLUDING REMARKS

We hope that this journey through the main contributions of Castagnino in the field

of the foundations of QM supplies an idea of the active work that he and his research

group are developing. Nevertheless, we do not want to finish this review without recalling

the rest of the areas of the philosophy of physics where he has fruitfully produced: time’s

arrow,[74]−[81] time-asymmetric QM,[82],[83] quantum chaos,[84],[85] and even philosophy
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of chemistry.[87] Not bad for a baby philosopher. However, this is not surprising when

coming from an even-eager spirit as Mario Castagnino.
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