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Bloch oscillations of optical NOON states
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We show that when photons in NOON states undergo Bloch oscillations, they exhibit a pe-
riodic transition between spatially bunched and antibunched states. The period of the bunch-
ing/antibunching oscillation is N times faster than the period of the oscillation of the photon den-
sity, manifesting the unique coherence properties of NOON states. The transition occurs even when
the photons are well separated in space.

When electrons in crystalline potentials are subjected
to uniform external fields, classical mechanics predicts
that they will exhibit Ohmic transport. Remarkably,
in 1928 F. Bloch predicted that the quantum coher-
ence properties of the electrons prevent their transport
[1, 2]. He showed that the electrons dynamically localize
and undergo periodic oscillations in space. Bloch oscil-
lations (BOs) manifest the wave properties of the elec-
trons, and therefore appear in other systems of waves in
tilted periodic potentials. BOs were observed for elec-
tronic wavepackets in semiconductor supperlattices [3],
matter waves in optical lattices [4] and light waves in
tilted waveguide lattices [5–7].

In optics, BOs manifest the classical wave properties
of light, and not its quantum (particle) nature. Recently,
quantum properties of light propagating in waveguide lat-
tices have been studied, predicting the emergence of non
trivial photon correlations [8, 9]. Such non-classical cor-
relations between photon pairs were experimentally ob-
served in homogeneous waveguide lattices [10]. BOs of a
single photon in tilted lattices were shown to follow the
dynamics of coherent states [11]. Non-classical features of
BOs of light in a two-band model were studied by Longhi,
who showed that the probability to detect photon pairs
in different bands oscillates nonclassically [12].

In this paper we study BOs for spatially entan-
gled states of light propagating in waveguide lat-
tices. We consider light fields initiated in a superpo-
sition of N photons in site µ′ or in site ν′, |ψ〉 =
1√
2

(

|N〉µ′ |0〉ν′ + eiϕ |0〉µ′ |N〉ν′

)

. Such superpositions,

coined NOON states, exhibit fascinating quantum inter-
ference properties. NOON states are considered the op-
timal quantum states of light for quantum meteorology
applications such as quantum lithography and quantum
imaging [13]. Here we show that when NOON states un-
dergo BOs, the nature of the correlations between the
photons oscillate between spatially bunched and anti-
bunched states. We find that the period of the oscil-
lations is inversely proportional to the photon number
N , resembling the λ/N oscillations of NOON states in
Mach-Zehnder interferometers. Interestingly, the oscil-
lation period is also inversely proportional to the initial
separation of the two input sites µ′−ν′. A unique feature
of the NOON state BOs is that the transition between the
bunched and antibunched states can happen even when

the photons are separated by many lattice sites.
We consider the simplest waveguide structure which

exhibits BOs, a one dimensional lattice of single mode
waveguides which are evanescently coupled. The light
propagation in the lattice is determined by two param-
eters: the rate of the phase accumulation in the waveg-
uides (the propagation constant) and the tunneling rate
between neighboring sites (the coupling constant) [14].
The propagation of the fields in waveguide lattices is
described by the tight-binding model, and was used to
demonstrate many optical analogues of solid-state phe-
nomena [15]. BO are observed when the coupling con-
stants of all the waveguides are identical and the propaga-
tion constants depend linearly on the waveguide position
[5, 6]. To study the propagation of non-classical light
in such a structures we quantize the fields in the lattice.
Since each of the waveguides supports a single mode, the
field in waveguide µ is represented by the bosonic cre-
ation and annihilation operators a†µ and aµ, which satisfy

the commutation relations [aµ, a
†
ν ] = δµ,ν . The operators

evolve according to the Heisenberg equations [9]:

i
∂a†µ
∂z

= µBa†µ + C
(

a†µ+1 + a†µ−1

)

. (1)

Here z is the spatial coordinate along the propagation
axis, C is the coupling constant and B is the difference
in the propagation constants of neighboring sites. The
evolution of the creation/annihilation operators is cal-
culated using the Green function Uµ,µ′(z) of Eq. (1),

a†µ(z) =
∑

µ′ Uµ,µ′(z)a†µ′(z = 0) [9]. The unitary trans-
formation Uµ,µ′(z) describes the amplitude for the tran-
sition of a single photon from waveguide µ′ to waveguide
µ. The Green function of Eq. (1) is given by [6, 17]:

Uµ,µ′(z) = ei
π
2
(µ′−µ)ei

Bz
2

(µ′+µ)Jµ′−µ (4C/B sin (Bz/2)) ,
(2)

where Jµ(x) is the µth Bessel function of the first kind.
Since any input state can be expressed with the creation
operators a†µ and the vacuum state |0〉, the evolution of
nonclassical states along the lattice can be calculated us-
ing Eq. (2). The probability to locate at site µ a photon
that is injected into the lattice at site µ′ = 0 is given
by the photon density nµ =

〈

a†µaµ
〉

= |Uµ,µ′=0|
2 and

is depicted in Fig. 1a. The photon exhibits BOs: it
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Figure 1: (a) (Color online) The photon density nµ(z) =
〈

a†µaµ
〉

for a single photon initiated at the waveguide µ′ = 0.
The photon is localized in two branches. Each branch con-
sists of a main lobe which covers approximately 4 waveguides
and oscillates around the input waveguide with a period λB.
(b) The photon density nµ(z) for a NOON state input with
N=1 coupled to waveguides µ′ = 0 and ν′ = 1. The photon is
located at a single branch which oscillates around the input
waveguide with a period λB . (c) The photon density nµ(z)
for a NOON input state with N=2 coupled to waveguides
µ′ = 0 and ν′ = 1 The contribution of photons coming from
the µ′ = 0 input and the µ′ = 1 input add up incoherently,
showing double branch oscillations.

spreads across the lattice by coupling from one waveg-
uide to its neighbors in a pattern characterized by two
strong branches. Each branch consists of a main lobe
which covers approximately 4 waveguides, and oscillates
around the input site with a period λB = 4π/B. We note
that such a double-branch pattern is not a special feature
of single photons. Any state of light which is coupled to
a single waveguide in the lattice will exhibit exactly the
same photon density. However, when the light is coupled
to more than one waveguide, the propagation of the pho-
tons becomes state-dependent. Rai et al. have shown
that a single photon which is coupled into the lattice in
a superposition of several waveguides exhibits BOs like
a coherent state [11]. Figure 1b shows the photon den-
sity for a superposition of a single photon coupled to
two neighboring waveguides. The two paths the photon
can take, starting either from waveguide µ′ = 0 or from
waveguide ν′ = 1, contribute coherently to the photon
density nµ = |Uµ,µ′=0 + Uµ,ν′=1|

2. Due to this interfer-
ence the photon oscillates in a single branch, exactly like
a coherent beam. In contrast, when a NOON state with
N > 1 is coupled to the lattice, the photon density is
identical to the photon density obtained by two incoher-
ent beams nµ = N

2 |Uµ,µ′=0(z)|
2 + N

2 |Uµ,ν′=1(z)|
2 (Fig.

1c).

Non-classical features of quantum states of light, and
specifically of NOON states, are probed by the correla-
tions between the photons. We focus on the multiple de-
tection probability for detecting p photons in waveguide

µ and q photons in waveguide ν Γ
(p,q)
µ,ν =

〈

a†
p

µ a
†q
ν a

q
νa

p
µ

〉

[18]. For a NOON state coupled to waveguides µ′and ν′,
the multiple detection probability is:
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Figure 2: (Color online) Bloch oscillations of NOON states
with N = 2 coupled to two adjacent waveguides |ψ〉 =
1√
2
(|2〉0 |0〉1 + eiϕ |0〉0 |2〉1). (a) The multiple detection prob-

ability Γ
(1,1)
µ,ν at several propagation distances, for ϕ = 0. At

the beginning of the propagation the two photons exhibit an-
tibunching and are located at the two different branches of
the oscillations. As the photons approach the turning point
(z = λB

4
), they bunch and are found with the highest prob-

ability in the same branch. (b) Same as (a) for ϕ = π
2
.

The photons show bunching/antibunching cycle, but in this
case start the oscillation partially bunched. (c) Same as (a)
and (b), for ϕ = π. Here the photons start the bunch-
ing/antibunching cycle bunched. (d) The normalized coin-

cidence rate γ(1,1)(z) as a function of the lattice length for
ϕ = 0 (blue line), ϕ = π

2
(green line), and ϕ = π (red line).

The coincidence rate is calculated between the positions of the
central waveguide in each branch, showing oscillations with a
period λB/2. See [25] for a movie visualizing the propagation
of (a).
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Γ(p)
µ,ν =

(

N
p,q

)

∣

∣

∣
Jµ′−µ(ζ)

pJµ′−ν(ζ)
q (3)

+ eiθ(z)Jν′−µ(ζ)
pJν′−ν(ζ)

q
∣

∣

∣

2

Where
(

N
p,q

)

= N !
p!q!(N−p−q)! , ζ = 4C/B sin (Bz/2),

and the phase θ(z) is given by:

θ(z) = ϕ+
1

2
(π +Bz)(ν′ − µ′)N . (4)

Eq. (3) shows that two terms contribute to the mul-
tiple detection probability: the detected photons arrive
either from the input waveguide µ′ or from waveguide ν′.
Since the photons are indistinguishable, these two paths
interfere. The phase of the interference term increases
linearly with N z, an indication for oscillations with a
period that scales like 1/N (see below).

In Fig. 2 we depict Γ
(1,1)
µ,ν , the probability to detect one

photon at waveguide µ and another photon at waveguide
ν, for a NOON state with N = 2. The left column shows
the evolution of the probability for a NOON state with
a phase ϕ = 0. At the beginning of the propagation
(Bz ≪ π

2 ), the photons follow the same path as in a pe-
riodic array of identical waveguides [9, 10]. At this stage

the off-diagonal terms of the probability matrix Γ
(1,1)
µ,ν are

much stronger than the diagonal term, indicating that
the photons exhibit antibunching: each photon takes a
different branch of the oscillation. However, during the
expansion period of the BO, as the photons approach the
turning point, the symmetry of the two-photon proba-
bility matrix changes significantly. The diagonal terms
of the matrix become more pronounced, i.e. there is a
higher probability to find the two photons in the same
branch of oscillations. At the turning point z = λB

4 , the
photons bunch: the off-diagonal terms of the probabil-
ity matrix vanish, indicating that the photons are never
found simultaneously at the two different branches. Re-
markably, even though the photons start the propaga-
tion in spatially separated branches, at the turning point
they bunch to one of the branches, with equal proba-
bility. Beyond this point the photon density contracts
back towards the origin waveguides. During this contrac-
tion the pairs again switch to an antibunched state. We
note that the bunching/antibunching transition happens
when the two branches of the BO are spatially separated,
whereas the bunching/antibunching transition predicted
in binary lattices occurs only when the photons are in
the same waveguide [12]. The cycle in the symmetry of
the probability matrix is observed for any initial phase
of the NOON state phase ϕ, as demonstrated Fig 2b
and 2c. The phase ϕ sets how bunched/antibunched the
photon is at the z = 0, but the period of the cycle is
phase-independent (see Eq. (4) ).

The bunching/antibunching cycle described above can
be realized experimentally in arrays of evanescently cou-

pled waveguides. A straight forward approach is to
measure the correlation between the photons in lattices
with identical parameters but with different propaga-
tion lengths, thus probing different stages of the oscil-
lations. For each propagation length, the outputs of two
the waveguides at the center of each oscillating branch
(henceforth waveguides x and y) can be imaged on two
photon-number resolving detectors. The rate of events
of p photons detected at waveguide x and q photons at

waveguide y is proportional to Γ
(p,q)
x,y . This should be

compared to the rate of the same events when a delay
is introduced between the photons that are injected to
waveguide µ′ and those injected to waveguide ν′. Simi-
lar to the Hong-Ou-Mandel (HOM) experiment, such a
delay introduces distinguishability between the photons
[19], and corresponds to replacing the NOON state with
an initial mixed state of N photons in either one of the
two input waveguides. The ratio of multiple detection
events for the NOON and mixed states is given by

γ(p,q) =
Γ
(q,p)
x,y

(

N
p,q

)

(

|Jp
µ′−xJ

q
µ′−y|

2 + |Jp
ν′−xJ

q
ν′−y|

2
) . (5)

Figure 2(d) shows γ(1,1) as a function of the lattice
length, for NOON states with N = 2 and ϕ = 0, π/2, π.
When γ(1,1) = 0, the photons are bunched and are never
found in the two different branches of the BO; scanning
the delay between the input ports of the lattice will yield
a HOM dip. When γ(1,1) = 2, the photon are anti-
bunched, and a delay scan will result in a HOM peak [20].
Figure 2d clearly shows that bunching/antibunching os-
cillations have a period of λB/2.

We next study input states which exhibit correlation
oscillations with shorter periods. Eq. (4) suggests that
the period of the oscillations in the correlation properties
depends on the spacing between the input waveguides
and on the number of photons in the NOON state. Fig-
ure 3 shows several examples of correlation oscillations
with periods shorter than λB/2. In figure 3a we show
the propagation for a NOON state with N = 2, where
the input sites are separated by one waveguide. In this
case the photons exhibit a bunching/antibunching affect
with a different spatial symmetry [9]. The correlation
map oscillates between a state in which the peaks are
highest at the corners of the correlations matrix, to a
case in which the highest probability is between the cor-
ners. The oscillation period is λB/4, twice the period
observed for a NOON state input with adjacent waveg-

uides. Finally we calculate Γ
(N/2,N/2)
µ,ν for NOON states

with N = 6 (Fig. 3b) and N = 10 (Fig. 3c), with adja-
cent input waveguides. The oscillation period is indeed
λB/N , as predicted by Eq. (4). Within one oscillation
of the single photon density, the N-photon distribution
switches N times from all the photons in the same branch
to photons divided equally between the two branches.
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Figure 3: (Color online) Bloch oscillations of NOON states
with sub λB/2 correlation-oscillation periods. (a) The mul-

tiple detection probability Γ
(1,1)
µ,ν at several propagation dis-

tances for the input state |ψ〉 = 1√
2
(|2〉−1 |0〉1 + |0〉−1 |2〉1).

The photons exhibit bunching/antibunching oscillations (see
text) with a period λB/4. (b),(c) The multiple detection

probability Γ
(N/2,N/2)
µ,ν for a NOON state with N = 6 (b)

and N = 10 (c), injected to adjacent waveguides |ψ〉 =
1√
2
(|N〉0 |0〉1 + |0〉0 |N〉1). The oscillations of the correlation

matrix are much faster, hence the probability matrix is calcu-
lated for five lattice lengths close to the turning point z = λB

4
.

(d) The normalized coincidence rate γ(N/2,N/2)(z) as a func-
tion of the lattice length for the above three cases. The period
of the oscillations are λB/4 (a, blue line) λB/6 (b, green) and
λB/10 (c, red line). See [25] for a movie visualizing the prop-
agation of (a) and (b).

In conclusion, we studied the propagation of photonic
NOON states in waveguide lattices which exhibit Bloch
oscillations. We found that while the photon density os-
cillates in the Bloch frequency, the multiple detection
probability oscillates at higher frequencies. These oscil-
lations indicate that the photons show a transition from a
bunched to antibunched states, with a period that scales
as 1/N . To experimentally observe these high order oscil-
lations, we propose to perform a Hong-Ou-Mandel mea-
surement between two waveguides at the two branches of
oscillations using photon-number resolving detectors. By
scanning the delay between the photons entering the two
input waveguide, oscillations between a HOM dip and
peak will be observed as a function of the propagation
length. Recent progress in waveguide lattice fabrication
[21, 22], photon number resolving detectors [23] and pho-
tonic NOON state sources [24], make such measurements
in reach.
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