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Abstract. We conduct a market experiment with human agents in order to explore the structure of trans-
action networks and to study the dynamics of wealth accumulation. The experiment is carried out on our
platform for 97 days with 2,095 effective participants and 16,936 times of transactions. From these data,
the hybrid distribution (log-normal bulk and power-law tail) in the wealth is observed and we demonstrate
that the transaction networks in our market are always scale-free and disassortative even for those with
the size of the order of few hundred. We further discover that the individual wealth is correlated with its
degree by a power-law function which allows us to relate the exponent of the transaction network degree
distribution to the Pareto index in wealth distribution.

PACS. 87.23.Ge Dynamics of social systems – 89.65.Gh Economics; econophysics, financial markets,
business and management – 89.75.Da Systems obeying scaling laws – 89.75.-k Complex systems

1 Introduction

It has been widely observed that the distribution of wealth
among individuals in various economies follows a remark-
ably simple pattern, namely, a power-law tail for the rich
(also known as Pareto’s law) and a log-normal distribution
for the rest [1,2,3,4]. In other words, the wealth distribu-
tion Pw(w) can be expressed as

Pw(w) ∼
{w−(α+1) for w ≥ w∗,

exp[− (logw−µ)2

2σ2 ] for w < w∗,
(1)

where w∗ denotes the threshold wealth for the transition
between the log-normal and power-law distribution. α is
a time-dependent parameter called Pareto index ranging
from 1 to 2 for different countries, while µ and σ denote
the mean and standard deviation of logw, respectively.

In order to explain the empirical distribution, several
attempts have been made to model the dynamics of wealth
accumulation process. For instance, some models describe
the process as an multiplicative stochastic process (MSP)
where the agents can interact with each other through a
transaction network. By further introducing the additive
noise and boundary constraints, it has been shown that
these models can generate the power-law tail in the wealth
distribution [5,6]. The kinetic exchange model is another
example, which maps a closed trading market to a gas-like
many-body system [7]. This type of model is capable of
producing the wealth distribution resembling the pattern
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observed in reality, and has been well studied recently [8,
9,10].

In MSP models, an underlying transaction network is
introduced to describe the interactions among agents and
the effects of the network topology on the wealth accumu-
lation have also been explored. Until recently, several net-
work topologies have been tested, including small-world
networks [11], scale-free networks [12,13], heterogeneously
linked networks [14] and family networks [15]. It has been
shown that either the log-normal or the power-law distri-
bution arises when the network is homogeneous, therefore
a heterogeneously connected network is needed to generate
the hybrid distribution [16]. However, since it is difficult
to study these networks empirically, the further knowledge
regarding them is still lacking. An alternative approach is
proposed by Diego Garlaschelli and his colleagues, where
they study the interplay between the World Trade Web
(WTW) and the gross domestic product (GDP) of world
countries [17,18,19]. They have found that the WTW pos-
sesses nontrivial topological properties and is tightly re-
lated to the GDP of world countries. However, the size
of the network is bounded by the number of countries in
the world, therefore some characteristics of the network
might not be observed due to this limitation. In order to
have a better understanding about the interplay between
transaction networks and wealth accumulation process, we
here propose yet another approach, namely by analyzing
the data from the market experiment on our platform.

In what follows, we first introduce our platform and de-
scribe how the market experiment is performed. We then
report the findings for the topology of the transaction net-
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works and demonstrate the observed relationship between
the network topology and the individual wealth in our
experiment. Finally, we summarize all the findings and
propose a possible implication in explaining the wealth
accumulation process.

2 Experiment

We build a Web-based platform - Taiwan Political Ex-
change (TAIPEX) which can perform the market experi-
ment with anonymous volunteers from the Web. Including
the latest experiment ending on March 2008, there have
been five runs of official experiments performed on our
platform [20,21,22]. The architecture of TAIPEX and the
details about the market experiment are explained as fol-
lows.

2.1 TAIPEX platform

The concept of TAIPEX originates from the so-called Pre-
diction Market1, but there are dozens of ways to imple-
ment this idea. We here design our platform TAIPEX as
a 24-hour Web-based prediction market which facilitates
the exchange of political futures contracts whose liquida-
tion prices are coupled to specific election outcomes [20,
21,22]. Since October 2003, TAIPEX can be accessible at
http://socioecono.phys.sinica.edu.tw. Through the Inter-
net, anyone with a Web browser can participate in the
market experiment by an on-line registration. A private
account with user-provided login name will be created
for this registrant and the platform will deposit an initial
amount of virtual money into the account immediately
after successful registration. The information about user
demography, price fluctuation and accumulated volumes
are public to any browser irrespective of her registration or
not, however, only registered user with a valid account can
trade in this market upon login. In Fig. 1, we depict the ar-
chitecture of our platform. The rules and instructions for
the market experiment are detailed in the Announcement
and FAQ sections. Before starting to trade, participants
would be asked to learn the rules and instructions. Anyone
who violates the rules to a certain extent, will be expelled
from the experiment and his account will be suspended.

In our design, a given futures contract is associated
with the liquidation price which equals to the percentage
of votes that a candidate will get on the day of election.
As for the bundle, it consists of contracts for all candi-
dates in the race as well as for all the invalid ballots. Af-
terward, the market prices of these contracts should sum
up to around 100 if the traders behave rationally or if
the market is efficient. The minimal unit for the virtual

1 Prediction market (also known as information market) is
a market designed to run for the primary purpose of mining
and aggregating information scattered among traders. The ag-
gregation of the information will therefore be reflected in the
form of market prices so as to make predictions about specific
future events.
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Fig. 1. Architecture of TAIPEX

money is set to one in our platform and with the virtual
money in the account, traders can buy bundles of futures
contracts from the platform for a guaranteed price or can
buy/sell the contracts from/to the market directly. One
should keep in mind that all the contracts in the account
must be liquidated with the official results from the elec-
tion at the end of experiment, therefore, the bundle price
of 100 is fair since neither the user nor our platform loses.
Traders can place market or limit orders to either buy
or sell futures contracts. These bid (ask) orders are then
stored in the order book maintained by our platform which
adopts the continuous double auction (CDA) as the order
matching and price discovery mechanism. If no matches
are found, market orders will expire immediately while
the limit orders will stay in the book and wait for further
matches with new orders. Nevertheless, these limit orders
would either expire or be canceled by traders before the
matches. Once the matches are found, the transaction is
made immediately, followed by a corresponding balance
within the traders’ accounts. The platform keeps all the
details about the trading information including the order
submission, cancellation, expiration and transactions.

In addition to what we have mentioned above, since
the virtual money is used for the trading in our market,
we run the experiment as a tournament to encourage par-
ticipants for further trading. The traders can make in-
vestment decisions of their own free will to compete for
the monetary prizes provided by us, however, only those
whose ultimate wealth ranks in top ten will be rewarded.
The amount of monetary prizes varies for different exper-
iments but it is announced each time when a experiment
begins. Thus, the participant knows the payoff when her
wealth finally ranks in the top ten. At the end of experi-
ment, all the futures contracts are liquidated according to
the official results of the election. We will then announce
the names of the winners on our platform so that they
can contact us to claim their rewards. After identifying
these winners, we will transfer the money to the banking
accounts they provide. As for the source of participants,
each time when we launch an experiment, we first spread
the news of this event throughout the internet on daily
bases and sometimes this news would also be reported by
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the press. Therefore the number of traders and the market
size will grow with time.

2.2 Parameters and data set

The data set analyzed in this study comes from a market
experiment targeting at 2008 Taiwan presidential election.
This experiment has lasted for 97 days, spanning from
2007/12/17 to 2008/03/22 which is the voting date for
the election. According to the official announcement from
Central Election Commission of Taiwan, we issued three
futures contracts which consisted of two candidates from
two major political parties in Taiwan, namely Kuomintang
(KMT) and Democratic Progressive Party (DPP), and one
for any invalid ballots cast on the election day. As we have
mentioned earlier, a bundle consisting of three contracts is
provided at price 100 by our platform. Each account began
with no futures contracts but with an amount of virtual
money up to 10,000 units as the initial wealth. During
the experiment, the traders’ accounts earned no interest
while no fees would be charged upon the transaction or
order submission. As for the rewards, the traders whose
ultimate wealth ranking from top 1 to top 10 could get a
monetary prize of 10,000, 8,000, 6,000, 5,000, 4,000, 2,500,
1,500, 1,000, 1,000 and 1,000 NT dollars2, respectively.

The experiment has been monitored everyday to pre-
vent from any possible incident (system crash, blackout,
hacker’s attacks, etc.). By the last day of experiment, we
accumulated 16,936 entries of transactions from 39,209 en-
tries of orders submitted by 2,095 effective traders and out
of them, there were only 1,985 traders who had made suc-
cessful transactions. According to the official result, we
liquidated each contract of KMT, DPP and invalid bal-
lots at the price of 58, 41 and 1, respectively. Fig. 2 shows
the price time series covering the experiment. The con-
tracts for candidates from KMT and DPP are drawn in
blue and green, respectively, while the contract for invalid
ballots is drawn in gray. The intermittence of price spikes
in the plot may originate in a multiplicative process with
additive noise which is supposed to yield the power-law
fluctuations [23,24] or the so-called stylized facts in the
financial market [25]. In an earlier work [21], we demon-
strated that these stylized facts can be reproduced in our
experiment. Therefore, we assume that our market should
act like a real financial market and we further propose
that our platform might be a good candidate for perform-
ing the market experiment.

3 Results and analysis

In previous studies [22,26], we demonstrated that the trans-
action networks resulting from two parallel market ex-
periments on our platform possess scale-free, hierarchi-
cal and disassortative structure. However, due to the low
statistics in earlier experiments, we can not make solid
conclusions for neither the dynamics of network growth

2 The exchange rate during March 2008 is 1 USD≈ 31 NTD.

07�12�17 08�01�01 08�02�01 08�03�01 08�03�22

25

50

75

100

date

pr
ic

e

Fig. 2. The price time series during the whole experiment is
shown. The contracts for candidates from KMT and DPP are
drawn in blue and green, respectively, while the contract for
invalid ballots is drawn in gray.

nor the relation between individual wealth and network
structure. Nevertheless, in the latest experiment, we have
higher statistics and finer details about the trading in-
formation. We can therefore obtain the individual wealth
dynamically or rebuild the transaction networks in many
different ways. For example, the network in an arbitrary
period of time or the sub-network consisting of only the
trading of specific contract can be rebuilt without any dif-
ficulty.

3.1 Topology of transaction networks

Each time a bid/ask order of trader i is matched with an
ask/bid order of trader j, a transaction take place, fol-
lowing by an underlying exchange of virtual money and
contracts between the accounts of trader i and j. Dur-
ing the experiment, the platform keeps all the details of
these kinds of exchange processes occurring in the market.
Therefore, from these records, one can readily reconstruct
the so-called transaction networks where the nodes rep-
resent the traders in our market and the edges between
each pair of nodes imply transactions among traders. For
demonstration, a typical appearance of the transaction
network during a given period of time is drawn in Fig. 3. In
this snapshot, we have a network consisting of 24 nodes
and 30 edges. The names on the nodes denote the user
names for traders who have made at least one transaction
during this period while the edges depict the transactions
among these traders. From bunches of these snapshots, we
notice that a hub (aggressive trader) develops quickly in
our networks.

In the literature, a network is classified as a scale-
free network provided that its degree distribution func-
tion Pd(k) decays as a power-law of the degree k. Namely,
we have Pd(k) ∼ k−γ where the exponent γ is a constant
ranging from 1 to 3 for different kinds of networks [27].
However, due to the low statics in the empirical data,
in alternative, one usually checks the cumulative degree
distribution for the power-law behavior. The cumulative
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Fig. 3. A snapshot of the transaction network in our experi-
ment. This network consists of 24 nodes and 30 edges.

degree distribution is defined as

P>(k) ≡

kmax
∑

k′=k

Pd(k
′). (2)

and we have P>(k) ∼ k−(γ−1) if Pd(k) ∼ k−γ . In Fig. 4,
we plot P>(k) of the transaction networks reconstructed
in two different ways, namely, from the data over an arbi-
trary period of time and from the data containing only the
trading of a specific contract. The largest network, shown
as the black dot in Fig. 4(a), consisting of 1, 985 nodes and
9, 092 edges is the one that spans across the whole time
horizon (from 2007/12/17 to 2008/03/22). The other three
networks in Fig. 4(a) with the size n = 426, 562 and 588
are rebuilt from three non-overlapping periods, while the
results of another three sub-networks for individual con-
tracts (KMT, DPP and invalids) are shown in Fig. 4(b).
One should notice that because these networks are of dif-
ferent sizes, we have rescaled the degree k to its average
value 〈k〉 and normalized P>(k) in order to make the com-
parison among these distributions. We observe that if we
ignore the sudden drop of the distributions near the end
of large k, which might be due to the finite size effects, all
the distributions shown in Fig. 4 seem to collapse onto a
single distribution which can be well fitted by a power-law
decay with a corresponding exponent γ ranging from 2.14
to 2.24. Therefore, it is fair to assert that the transaction
networks in our market are scale-free with a similar expo-
nent γ when time evolves. Even we extract a sub-network
from the whole network, the scale-free nature is still pre-
served.

In addition to the degree distribution, we also work
out the average nearest neighbors degree (ANND) to see
whether there exists the degree-degree correlation in our
networks. The ANND is defined as

〈knn(k)〉 ≡

kmax
∑

k′=k

k′Pd(k
′|k), (3)
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Fig. 4. The normalized cumulative degree distribution P>(k)
of some selected transaction networks are plotted, where the
solid and dash lines denote the power-law fit. The distributions
for four different periods are shown in (a) while the results
for three individual contracts (KMT, DPP and invalids) are
plotted in (b).

where Pd(k
′|k) denotes the conditional probability that

an edge belonging to node with degree k links to an-
other one with degree k′ [28]. For uncorrelated networks,
〈knn(k)〉 = 〈k2〉/〈k〉, independent of k. In Fig. 5, we plot
〈knn(k)〉 for the transaction networks in three different pe-
riods of time. The 〈knn(k)〉 is shown to decay with increas-
ing k, therefore we conclude that our networks are always
disassortative, which means that the aggressive traders in
our experiment tend not to trade with each other.

3.2 Correlation between degrees and wealth

The wealth distribution functions Pw(w) on 2008/03/22
(the end of experiment) is shown in Fig. 6(a), where the
richest guy earns 115,353 units of the virtual money in
this experiment. One can observe that the distribution for
whom accumulate more than average wealth (〈w〉 =2,342
in this case) follows a power-law decay with a Pareto in-
dex α = 0.65± 0.02, while the remaining bulk can be well
fitted by a log-normal distribution. To demonstrate the
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Fig. 5. The normalized 〈knn(k)〉 for transaction networks
taken from three different periods of time. The solid line is
a fit of the form 〈knn(k)〉 ∼ k−ν with ν = 0.52 ± 0.02.

temporal evolution of the wealth distribution in our mar-
ket, we also plot, in Fig. 6(b), the wealth distribution on
three different dates. The circle, triangle and dot denotes
the distribution obtained on 2008/03/02, 2008/03/13 and
2008/03/22, respectively, while the wealth is rescaled to
its average value 〈w〉 estimated on these dates. One can
observe that although the Pareto index α varies from 0.65
to 0.81 in Fig. 6(b), the hybrid distribution (log-normal
bulk and power-law tail) of the wealth is still preserved.
We also attempt to figure out how α involves with time
in our market, but have not yet succeeded.

To further study the relationship between the wealth
accumulation and transaction networks, we calculate the
correlation between the wealth w and degrees k. The re-
sults are shown in Fig. 7 where the dot (triangle) denotes
the data for individual wealth counted in units of 100 (1),
while the circle with cross indicates the cheaters3 in our
experiment. It is shown that w and k are strongly cor-
related above some critical values. We can thus obtain a
power-law fit for the data with the individual wealth be-
yond the average wealth 〈w〉, which reads as k ∼ w−µ

with µ = 0.68± 0.05. Summarizing all the findings so far,
we have

Pd(k) ∼ k−2.14±0.01 , (4)

Pw(w) ∼ w−1.65±0.02 for w > 〈w〉, (5)

and

k ∼ w0.68±0.05 for w > 〈w〉. (6)

One may notice that, among the above equations, the
three fitting exponents γ, α and µ can be related to each
other. For instance, if we insert Eq. 6 into Eq. 4, the
value of (0.68± 0.05)× (−2.14± 0.01) falls between −1.34

3 The cheater here refers to whom benefits from the insider
trading in our market. The suspect cheaters are first distin-
guished from the large deviation to the normal trend and then
identified after checking their trading records.
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Fig. 6. The wealth distribution at the end of experiment is
plotted as the dots in (a), where the solid line denotes the
Pareto-law tail with α = 0.65 ± 0.02 while the dash line is
the log-normal fit to the bulk. (b) shows the wealth distri-
bution obtained on 2008/03/02 (circle), 2008/03/13 (triangle)
and 2008/03/22 (dot) while the dash, dotted and solid lines
denote the Pareto-law tails for the distribution on these dates.

and −1.57 which is roughly comparable to the exponent
−1.65 ± 0.02 for the wealth distribution in Eq. 5. Al-
though the relations are not exact, we nevertheless shed
the light on the possible explanation why Pareto’s law
persists across economies.

4 Conclusion

From a market experiment with human agents who can
make investment decisions of their own free will, we ex-
plore the topology of transaction networks and demon-
strate that it is scale-free and disassortative for those with
the size of the order of few hundred. Even as time evolves,
these nontrivial properties are still preserved. We also ob-
serve that the wealth distribution in our market follows
the Pareto’s law with a Pareto index α = 0.65 ± 0.02
for the rich and a log-normal distribution for the remain-
ing bulk. As the time evolves, the hybrid distribution of
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with µ = 0.68± 0.05.

the wealth persists. By further calculating the correlation
between degrees and wealth, we argue that in our experi-
ment, the exponent α for individual wealth, the exponent
γ for degree distribution and the exponent µ for wealth-
degree correlation can be roughly related to each other.
This finding may also be true for the cases in other real
world markets. Apart from that, we have also noticed that
by probing the wealth-degree correlation one can read-
ily identify the suspects of cheaters or the participants
who benefit from the insider trading in our market, which
might be useful against economic crimes in real financial
markets. With more and more data coming from the mar-
ket experiments, we believe that the interplay between the
growth of transaction networks and wealth accumulation
process should be understood in the near future.
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