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Sliding Mode Control of Two-Level Quantum
Systems

Daoyi Dong and lan R. Petersen

Abstract

This paper proposes a robust control method based on slidodge design for two-level quantum
systems with bounded uncertainties. An eigenstate of tleeléwel quantum system is identified as
a sliding mode. The objective is to design a control law testie system’s state into the sliding
mode domain and then maintain it in that domain when boundeztntainties exist in the system
Hamiltonian. We propose a controller design method usirgg Liyapunov methodology and periodic
projective measurements. In particular, we give cond#ifor designing such a control law, which can
guarantee the desired robustness in the presence of theaintes. The sliding mode control method

has potential applications to quantum information proogswith uncertainties.

Index Terms

quantum control, sliding mode control, bounded uncenaiperiodic projective measurement,

Lyapunov methodology.

. INTRODUCTION

The manipulation and control of quantum systems is becommgmportant task in many
fields [1]-[3], such as atomic physids| [4], molecular chemi§5] and quantum information [6].
It is desirable to develop quantum control theory in a systeway in order to adapt it to the

development of quantum technology [7]. Several usefulstdi@m classical control theory have
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been introduced to the control analysis and design of quarsystems. For example, optimal
control theory has been used to assist in control design ecular systems and spin systems
[8]-[12]. A learning control method has been presented foidigg the control of chemical
reactions[[5],[18]. Quantum feedback control approachelsiding measurement-based feedback
and coherent feedback have been used to improve perforni@nseveral classes of tasks such
as preparing quantum states, quantum error correctioryadlimg quantum entanglemerit [14]-
[27]. Robust control tools have been introduced to enhaneedbustness of quantum feedback
networks and linear quantum stochastic systems [28], [29].

Although some progress has been made, more research sff@tessary in controlling quan-
tum phenomena. In particular, the robustness of quanturima@ystems has been recognized as
a key issue in developing practical quantum technology-[38]. In this paper, we focus on the
robustness problem for quantum control systems. Ih [29he3aand co-workers have formulated
and solved a quantum robust control problem usingtfienethod for linear quantum stochastic
systems. Here, we develop a variable structure controloggprwith sliding modes to enhance
the robustness of quantum systems. The variable structurgot strategy is a widely used
design method in classical control theory and industrigliaptions where one can change the
controller structure according to a specified switchingidag order to obtain desired closed-
loop properties([33],[[34]. In[[35], Dong and Petersen hawamiulated and solved a variable
structure control problem for the control of quantum systerowever, the results in [35] only
involve open-loop control design using an idea of changiogtmller structures and do not
consider the robustness which can be obtained througmglidiode control. Ref[ [35] and Ref.
[36] have briefly discussed the possible application ofistjanode control to quantum systems.
In [37], two approaches based on sliding mode design have pemposed for the control of
guantum systems and potential applications of sliding moaletrol to quantum information
processing have been presented. Following these reduklispaper formally presents a sliding
mode control method for two-level quantum systems to deti Wwounded uncertainties in the
system Hamiltoniari [38]. In particular, we propose two agghes of designing the measurement
period for different situations which are dependent on thanld on the uncertainties and the
allowed probability of failure.

Variable structure control design with sliding modes gatigrincludes two main steps: se-

lecting a sliding surface (sliding mode) and controlling gystem to and maintaining it in this



sliding surface. Being in the sliding surface guaranteas ttie quantum system has the desired
dynamics. We will select an eigenstate of the free Hami#toraf the controlled quantum system
as a sliding mode. In the second step, direct feedback dastrmt directly applicable since
we generally cannot acquire state information without rdg#tg the quantum system’s state.
Hence, we propose a new method to accomplish this task, whidfased on the Lyapunov
methodology and periodic projective measurements. The ifieature of the proposed method
is that the control law can guarantee control performancenwiounded uncertainties exist in
the system Hamiltonian.

This paper is organized as follows. Sectidn Il introducesiangum control model, defines the
sliding mode and formulates the control problem. In Sedfibrve present a sliding mode control
method based on the Lyapunov methodology and periodic giregemeasurements for two-level
guantum systems with bounded uncertainties. Using the Rriofermation about uncertainties
(e.g., the uncertainty bound and type of uncertainties) pvapose two approaches (i.e., EQs.
(@3) and [(14)) for designing the measurement period to gieeathe control performance. An
illustrative example is presented to demonstrate the m@gponethod. The detailed proofs of the

main theorems are presented in Secfioh IV. Concluding resnare given in SectionlV.

[I. SLIDING MODES AND PROBLEM FORMULATION

In this section, we first introduce a two-level quantum cohitnodel. Then a sliding mode is

defined using an eigenstate. Finally the control problensiciamed in this paper is formulated.

A. Quantum Control Model

In this paper, we focus on two-level pure-state quantumesyst The quantum state can be
represented by a two-dimensional unit vediph in a Hilbert space’”. Since the global phase
of a quantum state has no observable physical effect, we tdcamsider the effect of global

phase. If we denote the Pauli matricgs= (oy, oy, 0;) as follows:

01 0 —i 1 0
Ox = ,  Oy= 1| ,  O0z= ) (1)
10 I 0 0 -1

we may select the free Hamiltonian of the two-level quantystesm asHg =1, = %az. Its two

eigenstates are denoted|85 and|1). To control a quantum system, we introduce the following



control HamiltonianH, = ¥« uk(t)Hk, whereu(t) € R and {Hy} is a set of time-independent
Hamiltonians. For simplicity, the control Hamiltonian fowo-level systems can be written as

Hu = Ux(t)Ix+ uy(t)ly+ uz(t)l,, where

01 1 1[0 —i
(1 o)’ 'yz“yz(i o)' )

The controlled dynamical equation can be described as (we hasumed = 1 by using

1
IX: éo-x:

NI =

atomic units in this paper)

(1)) = Hol (1)) + S koxyz Utk Y(1)),
|Y(t=0)) = |do).

This control problem is converted into the following prafblegiven an initial state and a target

®3)

state, find a set of controlau(t)} in (3) to drive the controlled system from the initial state t
the target state.

In practical applications, we often use the density oper@p density matrix)p to describe
the quantum state of a quantum system. For a pure gtatehe corresponding density operator
is p = |Y)(y|. For a two-level quantum system, the statean be represented in terms of the

Bloch vectorr = (x,y,z) = (tr{pox},tr{poy},tr{poz}):

1
p=5(+r-0). @)

The evolution equation gb can be written as

p=—iH,p] (5)

where[A,B] = AB— BA andH is the total system Hamiltonian.
After we represent the stagewith the Bloch vector, the pure states of a two-level quansys:
tem correspond to the surface of the Bloch sphere, wheyez) = (sinf cosg, sinf sing, cosb),
0 € 1[0,m, ¢ €[0,2m. An arbitrary pure statey) for a two-level quantum system can be
represented as
V) :cosg|0>+ej¢sing|l>. (6)



B. Siding Modes

Sliding modes play an important role in variable structuoatool [33]. Usually, the sliding
mode is constructed so that the system has desired dynamtlos $liding surface. For a quantum
control problem, a sliding mode may be represented as aifunattof the statgy) and the
HamiltonianH; i.e., S(|¢),H) = 0. For example, an eigenstdtg) of the free HamiltoniarHo
(i.e., Hol@)) = Aj|@) whereA; is one eigenvalue dflg) can be selected as a sliding mode. We
can defineS(|y),H) = 1— [(¢|@;)|> = 0. If the initial state|go) is in the sliding mode; i.e.,
S(|go),H) = 1— |(yo|@;)|> =0, we can easily prove that the quantum system will maintsin i
state in this surface under only the action of the free HamignHo. In fact, |((t)) = e Hot| gp),
and we have

S(l@(t),H) =1-[{@®)|@)]* =1~ [(gole"|g)?
= 1— |(tole)€M'|> = 1~ |(yo|gy) [*|&N}? (7)
=0.
That is, an eigenstate &fy can be identified as a sliding mode. For two-level quantuntesys,
we may select eithej0) or |1) as a sliding mode. Without loss of generality, we identife th

eigenstate0) of a two-level quantum system as the sliding mode in this pape

C. Problem Formulation

In Section II.B, we have identified an eigenst#dg as a sliding mode. This means that if a
guantum system is driven into the sliding mode, its statebimaintained in the sliding surface
under the action of the free Hamiltonian. However, in padtapplications, it is inevitable that
there exist noises and uncertainties. In this paper, we cagpphat the uncertainties can be
approximately described as perturbations in the Ham#tioniThat is, the uncertainties can be
denoted adHp = &(t)Ix+ &(t)ly+ &(t)l.. The unitary errors in[[30] belong to this class of
uncertainties and uncertainties in one-qubit (one quariiijgate also correspond to this class

of uncertainties[[37]. Further, we assume the uncertardgie bounded; i.e.,

Ve +e5(0)+e21) <& (£>0). 8)

When € =0, Hy = 0. That is, there exist no uncertainties, which is triviat tmur problem.
Hence, in the following we assume> 0. An important advantage of classical sliding mode

control is its robustness. Our main motivation for introhgcsliding mode control to quantum



systems is to deal with uncertainties. We further suppoaethie corresponding system without
uncertainties is completely controllable and arbitraritany control operations can be generated.
This assumption can be guaranteed for a two-level quantwtesyif we can realize arbitrary
rotations along the-axis and{-axis ({ = x ory) (e.g., see[[39] for details).

The control problem under consideration is stated as faladesign a control law to drive
and then maintain the quantum system’s state in a slidingentmimain even when bounded
uncertainties exist in the system Hamiltonian. Here a mfjdnode domain may be defined as
2 ={|Y):|(0|Y)|?>>1—po,0< po < 1}, wherepy is a given constant. Here we assume# 0,1
since the casgyg = 0 only occurs in the sliding mode surface and the cpge- 1 is always
true. Hence, the two cases wiflg = 0 andpg = 1 are trivial for our problem. The definition of
the sliding mode domain implies that the system has a prbtyabf at mostpg (which we call
the probability of failure) to collapse out & when making a measurement. This behavior is
quite different from that which occurs in traditional shdi mode control. Hence, we expect that
our control laws will guarantee that the system’s state resis & except that a measurement
operation may take it away frorw with a small probability (not greater thgm). The control
problem considered in this paper includes three main ski&it#y for any initial state (assumed
to be known), design a control law to drive the system’s gtdtea defined sliding mode domain
2; (ii) design a control law to maintain the system’s state/in(iii) design a control law to drive
the system’s state back tg if a measurement operation takes it away frém For simplicity,

we suppose that there exist no uncertainties during thea@gmtocesses (i) and (iii).

IIl. SLIDING MODE CONTROL BASED ONLYAPUNOV METHODS AND PROJECTIVE

MEASUREMENTS
A. General Method

The first task is to design a control law to drive the conteblystem to the chosen sliding
mode domairnZ. Lyapunov-based methods are widely used to accomplishabisin traditional
sliding mode control. If the gradient of a Lyapunov functismegative in the neighborhood of
the sliding surface, then the controlled system’s staté lveilattracted to and maintained in.
The Lyapunov methodology has also been used to design ttavwr®for quantum systems [40]-
[43]. However, these existing results do not consider theeof robustness against uncertainties.

Since the measurement of a quantum system will inevitabsrag the measured state, most



existing results on Lyapunov-based control for quantuntesys in fact use a feedback design
to construct an open-loop control. That is, Lyapunov-bas@arol can be used to first design
a feedback law which is then used to find the open-loop cotyadimulating the closed-loop
system. Then the control can be applied to the quantum systean open-loop way. Hence,
the traditional sliding mode control methods using Lyapunontrol cannot be directly applied
to our problem.

Although quantum measurement often has deleterious sffecjuantum control tasks, recent
results have shown that it can be combined with unitary foansations to complete some
quantum manipulation tasks and enhance the capability aftgu control([36],[44]:[48]. For
example, Vilela Mendes and Man’ko [36] showed nonunitaciytrollable systems can be made
controllable by using “measurement plus evolution”. Quamtmeasurement can be used as a
control tool as well as a method of information acquisititins worth mentioning that the effect
of measurement on a quantum system as a control tool can be/@dhhrough the interaction
between the system and measurement apparatus. In this pagpeill combine the Lyapunov
methodology and projective measurements (with the meammeoperatoro;) to accomplish
the sliding mode control task for two-level quantum systems

The steps in the control algorithm are as follows (see Fig. 1)

1) Select an eigenstat®) of Hg as a sliding mod&(|),H) =0, and define the sliding mode
domain as? = {|y) : |(0|w)|? > 1 po}.

2) For a known initial statép), construct a Lyapunov functiov(| o), S) to find the control
law that can driveyyp) into the sliding modes.

3) For a specified probability of failurpp andV (|(p),S), construct the control perioty so
that the control law can drive the system’s state igton a time periodTp.

4) For an initial condition which is another eigenstdfe, design a Lyapunov function
V(]1),S) and construct the perio® by using a similar method to that in 3).

5) According topg and g, design the period for periodic projective measurements.

6) Use the designed control law to drive the system’s state #n in To. Then repeat
the following operations: make periodic projective measugnts with the period to
maintain the system'’s state in; if the measurement result correspondslio we use the
corresponding control law to drive the state back igto

From the above control algorithm, we see that the design afpupov functions and the
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Fig. 1. The sliding mode control scheme for a two-level quamsystem based on Lyapunov methods and periodic projective
measurements. In this figure, “Lyapunov”, “Measurementi amcertainties” mean the evolution process of the quargystem

under the Lyapunov control law, the projective measureraedt uncertainties in the system Hamiltonian, respectively

selection of the period for the projective measurements are the two most importeskst To
design a control law for quantum systems, several Lyapunagctions have been constructed,

such as state distance-based and average value-baseadcgsd40]:[43]. Here we select a

function based on the Hilbert-Schmidt distance betweerate 8p) and the sliding mode state
|@j) as a Lyapunov functiori [41]( [43]; i.e.,
1 2
V(lw),5) =51 -[a[y)[).
It is clear thatV > 0. The first-order time derivative &f is

Vo =- ZK:x,y,zUkD[<w|(pi><(pi||k|'~l’>] ©)
= 2kzx7y7zuk|<w|(pj>|D[e|é<w‘¢j><(pj||k|'~l’>]a
whered[a+bi] = b (a,b € R) and Zc denotes the argument of a complex numbefo ensure

V <0, we choose the control laws as In[43]:
U = Kicf(D[E“ Y @), (k=xy.2) (10)

whereKy > 0 may be used to adjust the control amplitude d1d satisfiesxf(x) > 0. Define
Z{P|@) = 0° when (|g;) = 0. LaSalle’s invariance principle guarantees that theesthtthe



two-level quantum system converges to the sliding m@leunder the control law constructed
using the Lyapunov methodology (for details, [43]).

Another important task is to design the measurement pefiotlVe can estimate a bound
according to the bound on the uncertainties and the allowed probability of failyge Then,
we construct a period to guarantee control performance according to the estomdeind.
An extreme case i§ — 0. That is, after the quantum system’s state is driven inéodliding
mode, we make frequent measurements. This correspondsetguintum Zeno effect [49]
and can guarantee that the state is maintained in the slidiode in spite of the presence of
uncertainties. However, it is usually a difficult task to raakich frequent measurements. We may
conclude that the smallér is, the bigger the cost of accomplishing the periodic measents
becomes. Hence, we wish to design a measurement peradarge as possible. In the following

subsection, we will propose two approaches of desigiirfgr different situations.

B. The Design of the Measurement Period T

We select the sliding mode &|@),H) = 1—|(@|0)|?> = 0. If there exist no uncertainties and
we have driven the system’s state to the sliding mode at tyng will be maintained in the
sliding mode using only the free Hamiltoni&f; i.e., S(|J>1,)),Ho) = 0. That is, if the quantum
system’s state is driven into the sliding mode, it will ewiw the sliding surface. However, in
practical applications, some uncertainties are unavégdathich may drive the system’s state
away from the sliding mode. We wish to design a control lawnsuge the desired robustness
in the presence of uncertainties. Assume that the statenat tis p;. If we make measurements
on this system, the probability that it will collapse into|1) (the probability of failure) is

p={1ay =%, (11)

In this paper, we have assumed that the possible unceesicdan be described iy = &x(t)Ix+
&y(t)ly+ &(t)lz, where unknowrg(t), &(t) ande,(t) satisfy\/e)%(t) +€2(t) + €2(t) < €. We now

give detailed discussions to design the measurement périod possible uncertainties.

First we consider a special cablg = £(t)l; (|&(t)| < &). This case corresponds to phase-flip



type bounded uncertainties. For aHy = &1, (Where|g;| <€), if §(|gp),H) =0, we have
S(lw(t),H) =1-Kw(1)0)
= 1—|(yole o et |0) 2
=1 |{YolO)2le" 272
=0.

(12)

This type of uncertainty does not drive the system’s statayafrom the sliding mode. Hence
we ignore this type of uncertainty in our method.
Now we consider the unknown uncertainttds = &x(t)Ix+ &(t)ly (Where,/eZ(t) +&Z(t) < €)
and have the following theorem.
Theorem 1: For a two-level quantum system with the initial stafg0)) = |0) at the time
t = 0, the system evolves tay(t)) under the action oH(t) = I+ &(t)lx+ &(t)ly (where
e2(t) +€2(t) <& ande > 0). If t € [0, TD], where

T _ arcco$i—2po)7 (13)

the system’s state will remain i = {|¢) : |(O|@)|> > 1— po} (Where 0< pg < 1). When one
makes a projective measurement with the measurement operadt the timet, the probability
of failure p = |(1|y(t))|? is not greater tham.

Using Theorem 1, we may try to maintain the system’s stat&ifi.e., the subtask (ii)) by
implementing periodic projective measurements with thesneement period = T, If we
have more knowledge about the uncertainties, it is possibimprove the measurement period
T@. Now assume that the uncertaintyHs = £(t)l, ({ =x ory) and p € (0, f;]. We have
the following theorem.

Theorem 2: For a two-level quantum system with the initial stagg0)) = |0) at the time
t =0, the system evolves tay(t)) under the action oH(t) = I, +&(t)l, (where{ =x ory,
le(t)| < € ande > 0). If py e (O,%} andt e [0,T?], where

1
10 _ arcco$l — 2(1+ ) po] | (14)
V1+ €2

the system’s state will remain i = {|@) : |(O|¢))|? > 1— po} (Where 0< pp < 1). When one

makes a projective measurement with the measurement operadt the timet, the probability

of failure p = |(1|y(t))|? is not greater tham.



Remark 1. The proofs of Theorem 1 and Theorem 2 will be presented ini@efdV]
The two theorems mean the following fact. For a two-level rquen system with unknown
uncertaintiedHy = &(t)Ix+ &y(t)ly (Where /e2(t) + &Z(t) <€), if its initial state is in the sliding
mode|0), we can ensure that the probability of failure is not gretitan a given constam (0 <
po < 1) through implementing periodic projective measuremeavith the measurement period
T =TW using [IB). Further, if we know thaty ande satisfy the relationship & pg < %282 and
there exists only one type of uncertainty (iJa = £(t)lx or Hy = &(t)ly, where|e(t)| < €), we
can design a measurement perioe: T2 using [I%) which is larger thaf?). This measurement
period will guarantee the required robustness. It is easprove the relationshig (@ > T
for arbitrary pg € (O,%}. The detailed proof will be presented in the Appendix. Basedhe
above analysis, the selection rule fbris summarized in Table I. Moreover, from (13) andl(14),
it is clear that for a constargt, T(Y) — 0 andT(? — 0 whenpy — 0. That is, for a given bound
€ on the uncertainties, if we expect to guarantee the prababil failure po — 0, it requires us
to implement frequent measurements such that the measoirger@odT — 0. This special case
corresponds to the quantum Zeno efféct| [49]. Another speeaise is€ — +, which leads to
TW - 0 andT®@ — 0. That is, to deal with very large uncertainties, we need &kerfrequent
measurementsT(— 0) to guarantee the desired robustness. Ffarh (13), we atse #mat for a
given po, T monotonically decreases with increasiagThis means that we need to employ

a smaller measurement period to deal with uncertaintiels avitarger bound.

Type of uncertainties Ha = &(t)Ix+&y(t)ly Ha=€(t)lz ({ =xory)
. . 2 2
Allowed probability of failurepg O<po<1 0<po<ifm|iz<P<l1
The measurement period T=T1 T=T® T=TO
TABLE |

A SUMMARY ON THE SELECTION RULE OF THE MEASUREMENT PERIOT

C. An lllustrative Example

Now we present an illustrative example to demonstrate tbpgeed method. Assunm =
0.01. Consider two cases: (&= 0.02; (b) € = 0.2. For simplicity, we assuméyp) = |1).

Hence,Top = T1. We first design the control anti using [10). Here, we consider control only
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Fig. 2. The probability of0) under Lyapunov control.

usingHy = su(t)oy. Using [I0), we seleat(t) = K(O[€4¥®19(0gy|y(t))]) andK = 100. Let
the time stepsize be given bt = 1074 We can obtain the probability curve ¢@) shown

in Fig.[2, the control value shown in Figl 3 afgd = 0.060. Fore = 0.02, we can design the
measurement periotl = T(Y) = 10.017 using[(IB). Foe = 0.2, we can design the measurement
period T = TW = 1.002 using [(IB). Sincey = 1«8;2 =3.8x1072 > pp whene = 0.2, if the
uncertainties take the form dfiy = £(t)l; ({ = x or y), we can improve the measurement

period toT = T(@ = 1.049 using [(T4). It is clear thak > Ty in these two cases, which makes
the assumption of no uncertainties in the control proceasomable. Moreover, the fact that
the measurement period is much greater than the control time required to ggOjofrom |1)
indicates the possibility of realizing such a periodic meament on a practical quantum system.
Remark 2: In the process of designing the control law for driving theteyn’s state from
|1) to |0), we employ an approach based on the Lyapunov methodologpd&antage of such
an approach is that it is relatively easy to find a control lawsbmulation. It is worth noting
that most existing applications of the Lyapunov methodghmgquantum systems do not involve
measurement. Here, we combine the Lyapunov-based comtdopepjective measurements for
controlling quantum systems, which in some applicationkeraur method more useful than the
Lyapunov-based control for quantum systems proposed wique papers. In[37], an approach
based on time-optimal control design has also been progosmimplete this task. The advantage

of such an approach is that we take the shortest time to coentile control task. However,
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Fig. 3. The control value(t).

it is generally difficult to find a complete time-optimal stan for high-dimensional quantum
systems. For the above simple task, it has been proven taainie-optimal control employs
a bang-bang control strategy [12]. Using the methodlin [12}, should takeu = —100 in

t € [0, 0.016 and then usel =100 int € (0.016, 0.030. In this case, the total time required is
T{ =0.030 (< T, = 0.060).

IV. PROOF OFTHEOREMS

This section will present the detailed proofs of Theorem d @heorem 2. Considering that
the arguments in the proof of Theorem 2 are useful for the fppbdheorem 1, we will first

present the proof of Theorem 2 and then prove Theorem 1.

A. Proof of Theorem 2

Proof: For HA = I, +£(t)ly, usingp = —i[HA, p] and [3), we have
, e — 1Y g(t —yr —ix +ig(t
| Zt” % .yt _ _()yt. %-ixtieM)z | (15)
X +iye 2 W +ix —ig(t)z —&(O%
That is,
Xt 0 -1 0 Xt
e [=] 1 0 —et) K (16)

7 0 gt) O z



where (o, Yo0,20) = (0,0,1).
We now considek(t) as a control input and select the performance measure as

J(g) = zs. (17)

Also, we introduce the Lagrange multiplier vectdtt) = (A1(t),A2(t),A3(t))T and obtain the

corresponding Hamiltonian function as follows:

0 -1 0 Xt
H(r(t),e®), A1), ) =AT®) | 1 0 —et) vi |- (18)
0 gt) O z
wherer (t) = (%, %,z). That is
H(r(t), (1), A(t),t) = —As(t)yt + A2(t)x + £(t) (A3(t)yr — A2(t)z). (19)

According to Pontryagin’s minimum principlé [560], a necagscondition fore*(t) to minimize
J(g) is

H(r(t), €7(t), A%(t),t) <H(r"(t),e(t), A"(t),1). (20)
Hence, if we do not consider singular cases (Ae(t)y: — A2(t)z = 0), the optimal controE*(t)

should be chosen as follows:

£°(t) = —esgnAs(t)yr — A2(t)z). (21)

That is, the optimal control strategy fart) is bang-bang control; i.eg*(t) = € = +¢& or—e¢.

Now we consideH® = 1, + €Iy which leads to the state equation

Xt 0 -1 O Xt
yt - 1 0 _E W ) (22)
Z 0 ¢ O Z

where (Xo,Y0,20) = (0,0,1). The corresponding solution is

X — iz coswt + £
— & G
Y | = gz Sinat (23)
g2 1
4 1+€? cosat + 1+€?

where w = v/1+€2. From [23), we know thag is a monotonically decreasing function tn

whent € [0,—Z=]. Hence, we only consider the case [0,t;] wheret; € [0,

T
V1te? v 1+52] '



Now consider the optimal control problem with a fixed final ¢its and a free final state

rt = (Xf,Ys,2¢). According to Pontryagin’s minimum principl@,*(ts) = %r*(tf). From this, it

is straightforward to verify thafAs(ts),A2(ts),As(ts)) = (0,0,1). Now let us consider another

necessary condltloh _OH(r ), ())‘() Y which leads to the following relationships:
/\1(t 0 -1 0 Aq1(t)
A = | Ast) —£ Aa(t) |, (24)
Aa(t) 0 )\ Ast)

where (A1(ts),A2(ts),As(ts)) = (0,0,1). The corresponding solution is

( 1+82 cosw(ty —t) + 1+52

t—l-r—P

i sinw(t; —t) . (25)
1+£2cosa) tr—t) + 12
We obtain
Aty — Aa(t)z = ;—i[smwt—i-e sinaty + sinc(ty —t)]. (26)

It is easy to show that the quantitys(t)y: — A2(t)z) occurring in [21) does not change its sign
Whentf € [O, W] andt c [O,tf]
Now we further exclude the possibility that there exists ragslar case. Suppose that there

exists a singular intervdtp,t;] (wheretg > 0) such that whet € [to, t1]

h(t) = A3(t)yt — A2(t)z = 0. (27)

We also have the following relationship
h(t) = As(t)x —As(t)z =0 (28)

where we have used ([16) and the following costate equation

Ax(t) 0 -1 0 A1(t)
AD=] 20 |=]1 0 —e) A (t) |- (29)
As(t) 0 gt) O As(t)

If to =0, we have(xo, Yo,Z) = (0,0,1). By the principle of optimality[[50], we may consider
the casets = t;. Using [27), [(ZB) andA1(t1),A2(t1),As(t1)) = (0,0,1), we havex, = 0 and
yi, = 0. Using the relationship of? +y? +2z = 1, we obtainz, =1 or —1. If z, = 1, the initial



state and the final state are the same sf@teHowever, if we use the contral(t) = €, from
(23) we havez, (¢) = %coswtﬁr Flsz <z, = 1. Hence, this contradicts the fact that we are
considering the optimal case nain If z, = —1, there exists & f; < t; such thatz;, = 0. By
the principle of optimality[[50], we may consider the cdse-f;. From the two equation§ (27)
and [28), we know thaztgl = 1 which contradicts;; = 0. Hence, no singular condition can exist
if tp=0.

If to > 0, using [21) we must selee{t) = &€ whent € [0,to]. From [26), we know that there
exist notg € (0,t¢) satisfyingAs(to)yt, — A2(to)z, = 0. Hence, there exist no singular cases for

our problem.

From the above analysig(t) = ¢ is the optimal control when € [0, \/%]. Hencez} =

z(e(t)) > z(€) = Z°. From [I1), it is clear that the probabilities of failureisgt pf* = %

IN

1— . - . .
P = TZtB That is, the probability of failurgof* is not greater thampf for t € [0, —57=]. When

t € [0, M&]’ Z® is monotonically decreasing angf is monotonically increasing. When=

ﬁ, using [238) we havef = ﬁii That is, the probability of failurg’ = 1582. Hence, we
can design the measurement peribdising the case dfi® when 0< pg < %282
Using (11) and[(23), fot € [O,ﬁ] we obtain the probability of failure
2
B €° 1—coswt
= . 30
W=1re 2 (30)
Hence, we can design the maximum measurement period as$ollo
arcco$l —2(1+ =
T — $ ( gz)pO] , (31)
V1+e?
For Hy = €(t)ly (where |e(t)| < €), we can obtain the same conclusion as that in the case
Ha = €(t)Ix (Wwhere|e(t)| < ¢€). u

B. Proof of Theorem 1

To prove Theorem 1, we first prove two lemmas (Lenitha 3 and Lefna
Lemma 3: For a two-level quantum system with the initial stétg,yo,z0) = (0,0,1) (i.e.,
|0)), the system evolves tod, yf, Z') and (xB,yE, %) under the action oH” = I, + gy cosyply +
gsinyly (& is a nonzero constant) and® = goCoSylx + & Sinyply, respectively. For arbitrary
0l 2 >7.



Proof: For the system with Hamiltoniad” = 1,4 €0 COSYolx+ EoSinyly, usingp = —i[H, p]

and [3), we obtain the following state equations

X 0 -1 goSinyy e
va | = 1 0 —£9COSYy e |, (32)
7/ —£9SiNY  £0COSYh 0 z

where (x§,Y5,75) = (0,0,1). The corresponding solution is as follows

£0SINYY ; __ £0COSyy £0COSYy
X Weer: sinaot — =" s cosupt + e
o _ £0COSYh i _ &siny £Sinyy
v | = e sinopt e cosupt + 2" e | (33)
&3 1
ZEA 1+€3 COStpt + 1+€3
wherewy = /1+ €2.
For the system with HamiltoniaH® = g Cosylx+ £osinyly, usingp = —i[H, p] and [4), we
obtain the following state equations
xE 0 0 gosinyp xE
v = 0 0  —gcosy vl (34)
z —gosSinyy  £0COSYy 0 z

where (x§,y58,78) = (0,0,1). We can obtain the corresponding solution as

B

Xt sinyp singpt
ye | = | —cospsingt |- (35)
z cosegt

Since cosgot = cog—&t), we may first assumey > 0. We defineF(t) and f(t) as follows.
Fi)y=7"-7, (36)

2
f(t) = F/(t) = gsinggt — %0 sincat. (37)

. . .
Now we considet € [0, —\/Fsg]’ and obtain
£/(t) = £2(coseot — cosapt) — 2e2sin T804 4in woz— 2;>0 (38)




It is clear thatf’(t) = 0 only whent = 0. Hencef (t) is a monotonically increasing function and
mtinf(t) = f(0)=0.

Hence, we have

f(t) >0. (39)
From this, it is clear thaF(t) is a monotonically increasing function and

mtinF(t) =F(0)=0.

—_]. Moreover, it is clear that mjz> = Z',___ =~ and
\/Fsg] Iﬁ Zﬁ|t—m

Z2 = cosgt is a monotonically decreasing function whee [0, B |] It is easy to obtain the

HenceF(t) > 0 whent € [0,

following relationship

A |te

B
=2 =, 5
\/— 0 1+£§ \/E

Hence we can conclude th#t > Z° for arbitraryt < [0, )

Let yp =0, and we have the following corollary.

Corollary 4: For a two-level quantum system with the initial stdt®,yo,Z) = (0,0,1)
(i.e., |0)), the system evolves t6, vy, Z) and (x2,yE,Z) under the action oH” = I, + glx
(wheregg is a nonzero constant) ad® = gy, respectively. For arbitrary < [0, Teol | |, 2> 2.

We now present another lemma.

Lemma 5: For a two-level quantum system with the initial stéte, yo,z0) = (0,0,1) (i.e.,
|0)), the system evolves tod, v, Z') and (xE,yE,Z) under the action ofi” = I,+£(t)lx (where
|&(t)| < &) andHB = ey, respectively. For arbitrary< [0, 2], Z* > ZP.

Proof: First, we take an arbitrary evolution state (excépf starting from|0) as a new
initial state. ForHB = €1y, the initial state can be represented &s Yj, 2o) = (0, — sin6p, cos6y),

where 6y € [0, T). We have

X[B
v l=]00 —¢ ve |- (40)
7



The corresponding solution is as follows:

X 0
v | =| —zsinet+yjcoset |- (41)
z ZpCOSet + Y, Sinet

For HA =1, +£(t)lx, we have
X 0 -1 0 e
v =11 0 —gt Al (42)
z 0 &t) O z

where (x5, Y5, 2) = (X0, Yo, 20) = (sinBpcospo, sinBosingo, costo) and ¢o € [0,271. From [42),

we have "
Zi_o = lim 2%

Jim =—= £(0)yo = £(0) sinBysingy. (43)

From (43) and[(41), it is easy to obtain the following relaship:

Zy — 28, =12p+€(0)sinBysingolt — zp[1— 52(3‘)2] +sinBoelt 4+ O((At)?) (a4)
= AtsinBy(g + £(0) singg) + O((At)?).
When 6, € [0, 1), sinBy > 0. Moreover, it is always true that+ £(0) singg > 0. If 6y # 0 and
€+ &(0)singg # 0, we have

Zn > Zny- (45)

If 6o=0, we have(x;,Yq,20) = (X0,Y0,20) = (0,0,1). According to Corollary ¥ and the proof
of Theorem 2, we have
2y > 7y (46)

For e+ ¢(0)singo = 0, it corresponds to two cases: @)0) = € and ¢ = 37"; (b) £(0) = —¢
and ¢o = Z. In the following, we consider the case (a) (for the case (k) have the same
conclusion as the case (a)). Singg = 37" (X0,Y0,20) = (0, —sin6Bp,cosfy). Using a similar
argument to the proof of Theorem 2, we know that féf = I, 4 £(t)l, with (Xo,Y0,20) =
(0, —sin6p, cosbp), the optimal control for the performance inddke) = z; takes a form of

bang-bang contro(t) = € = € or —&. So we only need to consider a bang-bang strategy.



For such a bang-bang strategy 48 = 1, + €ly, we have
X 0 -1 0 xf
v l=l1 0 —¢ v |, (47)
2 0 £ O 2
where (x5, 25) = (Xo0,Y0,20) = (0, —sinfy,cosbp) and ¢o € [0,271]. We can obtain the corre-

sponding solution as

XA *‘i‘ﬁe‘) coswt + \;ﬂ sinwt + 5;;’220
yva | = jlci_seo sinwt — sinBy coscwt ) (48)
z slfssfo coswt — f/i'i_z‘; sinwt + i‘ffg
Now, we consider the limit adt — 0 and obtaln
A = PN H 1 £t VIT e
+95% _ cosf[1— ] + sm@osAt — £ (At)3singy+O((At)%) 49)
:Atsineo(e—E)JrsmBo(At) 3(e+e€2—€3)+0O((At)%
> 0.
Hence, for arbitraryy = cos6y (6 € [0, 1)), we have
Zn > 7. (50)

Fort = I, 22 = —1. Hence the relationshig* > Z® is always true.

We now defineg(t) = z* — ¥ and assume that there exist t1 € [0, Z) such thatz} < z3. That
is, g(t1) < 0. Sinceg(t) is continuous int andg(0) = 0, there exists a time&* = sup{t|0 <t <
t1,g(t) = 0} satisfyingg(t) < 0 fort € (t*,t;]. However, we have proven that for agy= z® and
At — 0, 7% 5 > 22, 5, Which contradictg(t) < O for t € (t*,t1]. Hence, we have the following
relationship fort € [0, Z]

YA (51)
|

Now we can prove Theorem 1 using Lemfa 3 and Lerhima 5.

Proof: For HA = 1, + &(t)Ix+ &(t)ly, using p = —i[H,p] and [@), we can obtain the
following state equations
e 0 -1 gt e

va | = 1 0 —&(t) e |, (52)



where (x5, Y5, %) = (0,0,1).
Define (t) = |/€2(t) +€2(t) and &(t) = £(t)cosy , &(t) = £(t)siny. This leads to the

following equation

Xt 0 -1 g(t) siny X
v = 1 0 —&(t) cosy i (53)
2 —g(t)siny  &(t) cosy 0 z

where (x84, 25) = (SinBy cosgo, SinBy singo, cosdp) and ¢o < [0, 2m]. From [53), we have

Zli—o= Jim -=-— = £(0) cosyoyo — £(0) sinyoxo (54)

From [54) and[(41), it is easy to obtain the following relashbip:
Zy — 28, = 2o+ £(0) cosypyolt — £(0) sinypXoAt
—2o[1— £@Y%) 4 sinBpent + O((At)?) (55)
= AtsinBg(g + £(0) sin(do — yo)) + O((At)?).
When 6, € [0, ), sinBy > 0. Moreover, it is always true tha + £(0)sin(¢o — o) > 0. If
6o # 0 ande + €(0) sin(¢o — yo) # 0, we have

2y > 25y (56)

If 8o =0, we have(xy, Yo, 20) = (X0, Yo, 20) = (0,0,1). According to Lemmal3 and Pontryagin’s
minimum principle, we have
5 > 7y (57)

For € +€(0)sin(¢o — ) = 0, it must be true that(0) = € or —&. We considere(0) = ¢
(for £(0) = —& we have the same conclusion &%) = €). Moreover, we havgp = ¢o+ 5 or
Vo= ¢o—F.

Foryo = ¢o+ 3, it is easy to prove the relationsh@[ > zﬁt using Lemmab and Pontryagin’s
minimum principle. Fory = ¢o — 37" we have the same conclusion as in the case ¢o+ 5.
Thus, we obtain

0 > 7y (58)

Now using a similar argument to that in the proof of Lemimha 5, ddvitraryt € [0, T), we

have
2> (59)



From [11), it is clear that the probabilities of failure s&fipf = % <pB= % That
is, the probability of failurepf* is not greater thampf for t € [0, Z). Hence, we can design the
measurement perio@l using the case affB.

Using (11) and[(41), fot € [0, ¥), we obtain the probability of failure

le—czosst. (60)

Hence, we can design the maximum measurement period as$ollo
T _ ar000$i—2po)' 61)
[

V. CONCLUSIONS

This paper proposes a variable structure control schente sliling modes for the robust
control of two-level quantum systems where an eigenstatdeistified as a sliding mode. We
present a design method for the control laws based on a Lyaporethodology and periodic
projective measurements to drive and maintain this systeate in the sliding mode domain.
The key task of the control problem is converted into a pnoblef designing the Lyapunov
functions and the measurement period. The Lyapunov fumatem be constructed to define
a control law. By using simulation, we obtain an open-loomtoal to drive the controlled
guantum system'’s state into the sliding mode domain. Féerifit situations of the uncertainties
in the system Hamiltonian, we give two approaches to designmieasurement period, which
guarantees control performance in the presence of the taités. This sliding mode control
scheme provides a robust quantum engineering strategpmdratler design for quantum systems
and has potential applications in state preparation, deolce control, quantum error correction
[37], etc. Future work which can be carried out in this aredudes the physical implementation
of the proposed method on specific quantum systems, thesétefrom two-level systems to
more complex quantum systems, and the exploration on pehpplications of the proposed

approaches.

APPENDIX: PROOF OFT(® > T

Proof. Take pp as the variable and define

F(po)=T@ T (62)



For po € (O, %), we have the following relationship

F(

Whenpg=p = 2

1 B 1
\/E2po— (1+e)p8  /e2po— 7P}
It is clear from [62) and[(83) that(pp) > 0 for pp € (O,ﬁi_z) andF(pp — 07) = 0. Hence

Po) > 0 for pp € (O,%).

f(po) = F'(po) =

(63)

1+e2’

1-¢2
N arccos{lHZ)

TO(p) = —_ =, (64)
TPy = 65
Let x = iii and
ET 1—¢?

G(g§) = —— —arccos ——). 66
(8) = 5 —arccos ;) (66)

We have

~ 13

G(X) = —=v1—X—arcco. 67
(X) 73V (67)
For x € [—1, 1], G(x) is continuous inx and we also know thaB(x) = 0 only whenx = +1.

It i

s easy to checlG(x = 0) > 0. Hence, we know that fox € [-1, 1], G(x) > 0. That is, for

£ >0, G(g) > 0. From the relationshig(g) > 0, we knowT @ (p/) > TW(p') for £ > 0.
Hence we concluded that for arbitrapg € (O, fzgz], T@ >TO), m
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