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We investigate whether size imposes a fundamental constraint on the efficiency of small thermal
machines. We analyse in detail a model of a small self-contained refrigerator consisting of three qubits.
We show that this system can reach the Carnot efficiency, and thus demonstrate that there exists no
complementarity between size and efficiency.

Thermodynamics lies at the very heart of physics as
one of its most important and successful branches. Its
foundations were laid by Sadi Carnot when he showed
that nature imposes fundamental limitations on the ef-
ficiency of thermal machines. To arrive at this result
Carnot did not consider a well chosen physical system
but rather had the insight to work with abstract, model-
independent machines. Thus the second law of thermo-
dynamics, one of the cornerstones of physics, was de-
rived by setting aside physics. However, can physics
really be set aside for good, or do there exist other fun-
damental limitations which arise when we fully take it
into account?

In a recent work [1] the question was raised of
whether or not there exists a fundamental limitation on
the size of thermal machines. We found out that no such
limitation exists. Here we go one step further and ask
whether the size of a thermal machine imposes funda-
mental limitations upon its efficiency?

In a Carnot machine the engine passes adiabatically
through very many states; indeed through infinitely
many of them. For example in the case of an ideal gas
contained within a cylinder, a piston is slowly moved,
with the volume of the gas changing continuously from
its initial to final value. However, for the case of a quan-
tum fridge with only a small number of distinct states
it is no longer the case that we can transition through
many states, a design constraint which appears at first
sight rather drastic. The question therefore arises as to
whether this imposes an additional bound which will
prevent us from achieving an efficiency equal to, or even
close to, the Carnot limit. It is conceivable then that this
bound tends towards the Carnot efficiency as the num-
ber of states increases towards infinity. We therefore ask
whether or not there may exist in nature a complemen-
tarity between size and efficiency? Is it the case that to
be efficient you must be large, having access to many
states, or can you be small and efficient also? In the
present work surprisingly we show that there exists no
such complementarity between size and efficiency – we
demonstrate that machines with only a small number of
states can reach the Carnot efficiency.

Quantum thermodynamics is by now a well devel-
oped field [2–4]. In particular, there has been significant

interest in quantum heat engines [5–9] as well as refrig-
erators [10, 11]. Quantum analogues of Carnot engines
have been studied extensively [12–15] as well as other
cycles, such as Otto cycles [16–19] and Brownian mo-
tors [20]. There has also been an interest from the per-
spective of quantum information [21]. The focus to date
however has been on thermal machines which contain
quantum parts but which, either explicitly or implicitly,
have macroscopic objects in the background which sup-
ply either work or some form of control, for example
systems which are externally driven, or make use of se-
quences of unitary evolutions. Here we are interested
in fully quantum machines, and hence study small self
contained refrigerators.

THE MODEL

To start with let us introduce more precisely the model
which we will focus on. As stated above, this is a model
of small, self contained refrigerators. By small we mean
that we consider quantum systems composed of very
few states, and by self contained we mean that we con-
sider systems whose internal evolution is governed by
a time-independent Hamiltonian and whose supply of
free energy comes solely through contact with thermal
reservoirs at differing temperatures; therefore no exter-
nal work is involved. We showed that it is possible to
construct refrigerators meeting our requirements, hence
demonstrating that there is no fundamental limit on the
size of such thermal machines. Initially let us consider
3 non-interacting qubits. The free Hamiltonian for the
three particles is given by

H0 = H1 + H2 + H3 = E1Π1 + E2Π2 + E3Π3 (1)

where Πi = |1〉i〈1| is the projector onto the excited state
for each particle. We will constrain the energy levels
such that E2 = E1 + E3 for reasons which will become
evident.

We take each qubit to be in contact with a thermal
reservoir. The temperature of each reservoir will be
taken to be different; we denote the temperatures of the
reservoir of qubits 1, 2 and 3 as TC, TR and TH respec-
tively, which we will refer to as the “cold”, “room” and

ar
X

iv
:1

00
9.

08
65

v1
  [

qu
an

t-
ph

] 
 4

 S
ep

 2
01

0



2

“hot” reservoirs. To model the process of thermalisa-
tion of each qubit by the bath, we take a simple reset
model, whereby with probability density pi per time δt
each qubit may be reset to a standard thermal state τ of
its bath. Formally this amounts, in time δt, to the non-
unitary process

ρ 7→∑
i

piδtτi ⊗ Triρ + (1− piδt)ρ (2)

where, taking kB = 1, τi = e−Hi/Ti /Z ≡ ri|0〉i〈0| +
ri|1〉i〈1| is the Boltzmannian, Z = Tre−H/Ti is the parti-
tion function and ri and ri are the probabilities for the ith

qubit to be in the ground and excited state respectively,
given by

ri = 1/(1 + e−Ei/Ti ) ri = e−Ei/Ti /(1 + e−Ei/Ti ) (3)

To turn this system into a refrigerator we introduce
the interaction Hamiltonian Hint,

Hint = g(|010〉〈101|+ |101〉〈010|) (4)

which couples the three spins. Given the imposed con-
straint, E2 = E1 + E3, we see that this Hamiltonian cou-
ples only states degenerate in energy.

Furthermore we consider only the scenario in which
this interaction is weak, that is we take g � Ei. In this
regime the interaction Hamiltonian does not apprecia-
ble alter the energy eigenvalues or eigenvectors of the
system, which remain governed by H0. We are there-
fore justified in our definition of the thermal state for
the qubits, which depends only upon H0. Note also that
in general the addition of Hint between the particles re-
quires a modification of the dissipative dynamics, (2), if
it is to remain consistent [22]. However, we are inter-
ested only in the limit where g and pi vanish such that
g/pi remains constant. Since corrections to the dissipa-
tive dynamics are of order pg or higher, in this limit they
vanish, and hence (2) remains a consistent dynamics.

In [1] we gave a detailed analysis of how we arrived
at this model and why it behaves as a refrigerator. Here,
to briefly understand the basic idea behind its function-
ing, we note that the Hamiltonian simply interchanges
the population of the states |010〉 and |101〉. In the ab-
sence of any interaction with the environment the tran-
sitions in either direction are equiprobable and therefore
we achieve nothing. However, by introducing environ-
ments at different temperatures, TR < TH , we are able to
‘bias’ the interaction and significantly alter the final oc-
cupation probabilities of the states relative to their val-
ues at thermal equilibrium and thus we are able to con-
struct a refrigerator; the end result is that we are able
to achieve a stationary temperature for qubit one lower
than that of its environment, TS

1 < TC.
Since we have qubits interacting with an environment

the dynamics is described by a master equation. The

master equation governing the dynamics of our refrig-
erator is given by

∂ρ

∂t
= −i[H0 + Hint, ρ] +

3

∑
i=1

pi(τi ⊗ Triρ− ρ). (5)

We are interested in the stationary (or long term) be-
haviour of the system, and thus wish to find ρS satisfy-
ing

0 = −i[H0 + Hint, ρS] +
3

∑
i=1

pi(τi ⊗ Triρ
S − ρS). (6)

This equation can be solved exactly and analytically. It
can be checked straightforwardly that the solution is
given by

ρS = τ1τ2τ3 + γ
(

Q1Z1τ2τ3 + Q2τ1Z2τ3 + Q3τ1τ2Z3

+ q1τ1Z23 + q2τ2Z13 + q3Z12τ3 + Z123 +
q

2g
Y123

)
(7)

where Y123 and Z123 are Pauli-like operators given by

Y123 = i|101〉〈010| − i|010〉〈101|
Z123 = |010〉〈010| − |101〉〈101| (8)

and operators such as Z12 and Z3 are given by Z12 =
Tr3Z123 and Z3 = Tr12Z123. Furthermore the parameters
Qi and qj, depending only upon the thermalisation rates
pk, are given by

Q1 =
p2 p3

p1

(
1

p1 + p2
+

1
p1 + p3

)
, q1 =

p1

p2 + p3
,

Q2 =
p1 p3

p2

(
1

p1 + p2
+

1
p2 + p3

)
, q2 =

p2

p1 + p3
, (9)

Q3 =
p1 p2

p3

(
1

p1 + p3
+

1
p2 + p3

)
, q3 =

p3

p1 + p2
,

and q = p1 + p2 + p3. Finally, the parameter γ is given
by

γ =
−∆

2 + q2

2g2 + Q1Ω23 + Q2Ω13 + Q3Ω12 + q1 + q2 + q3

(10)
where

∆ = r1r2r3 − r1r2r3, Ω12 = r1r2 + r1r2,
Ω13 = r1r3 + r1r3, Ω23 = r2r3 + r2r3. (11)

The first notable features of the solution is that all single-
party and two-party reduced density matrices are diag-
onal. Second, and of most importance, is the form of the
single-party states which is given by

ρS
i = τi +

qγ
pi

Zi (12)
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thus the occupation probability of the ground state for
each qubit is shifted from its value at equilibrium by an
amount proportional to the parameter γ.

For our model to act as a refrigerator we need that sta-
tionary temperature of qubit 1 to be colder than its bath
temperature, i.e. TS

1 < Tc. This happens whenever the
occupation probability of the ground state for particle 1
is increased compared to its thermal population. This
happens whenever γ > 0. From (10) it can be checked
that the denominator is a positive quantity and therefore
the sign of γ depends only upon the numerator,−∆. Us-
ing the definitions (11) and (3) it can be shown that the
condition −∆ > 0 is equivalent to

e−E1/TC e−E3/TH > e−E2/TR (13)

which, upon further manipulation, can be re-expressed
as

E1

E3
<

1− TR
TH

TR
TC
− 1

(14)

This is the fundamental design constraint on our refrig-
erator; as long as this condition is satisfied our model
works as a refrigerator. As the ratio E1/E3 approaches
the above limit, the temperature of the cold qubit ap-
proaches from below the temperature of its bath; ev-
erything else being held constant, this implies that it
will take longer for the refrigerator to draw heat from
the cold bath, similarly to what happens to a classical
refrigerator as we approach the reversible limit, as its
functioning becomes adiabatically slow. The above fun-
damental design constraint will play the central role in
analysing the efficiency.

THE QUANTUM EFFICIENCY

To connect to the refrigerator we must first derive an
expression for the amount of heat that our quantum ma-
chine is able to exchange with the thermal reservoirs
in which it is in contact. To do this let us consider the
change of one of the particles in a small time δt induced
by the resevoir. From (2) we find that

δρi(t) = ρi(t + δt)− ρi(t) = piδtτi + (1− piδt)ρi(t),
= piδt(τi − ρi(t)). (15)

To this change of state corresponds a change in energy,
δEi, given by

δEi = Tr(Hiδρi(t)) = piδtTr(Hi(τi − ρi(t)) (16)

thus, taking the limit δt → 0 gives us the rate of change
of energy of the particle due to the interaction with the
reservoir

dEi
dt

= piTr(Hi(τi − ρi(t)) (17)

which in other words it is the amount of energy supplied
to the particle from the bath and is therefore the rate of
heat flow, which we shall denote Qi.

Using the explicit form previously obtained for ρi, (12)
along with the definition of the Hamiltonian (1) we find
that this can be re-written as

dEi
dt

= piTr(EiΠi(−
qγ
pi

Zi)) = (−1)i+1qγEi, (18)

where the factor (−1)i+1 arises due to the fact that Z1 =
−Z2 = Z3 = Z, the standard Pauli operator. Thus we
see that the rate of heat flow between each bath and par-
ticle is given by

QC = qγE1, QR = −qγE2, QH = qγE3, (19)

and thus the efficiency of our quantum refrigerator is
given by

ηQ =
QC
QH

=
E1

E3
. (20)

We arrive at the interesting result that although the in-
dividual heat currents have a rather complicated de-
pendence upon all of the parameters in the problem,
through q and γ, the efficiency of the fridge is in fact in-
dependent on all parameters except the ratio of energy
levels. This result, although at first sight contradictory,
is consistent with the results found in [7] and can be un-
derstood qualitatively: It is the interaction Hamiltonian
which takes the particles away from their thermal equi-
librium states, and since the Hamiltonian only acts on
particles 1 and 3 simultaneously its clear that the rates
at which they exchange heat with their reservoirs must
be proportional to each other – hence the dependence in
each case cancels when looking at the ratio.

Equation (20) however must be taken in conjunction
with the basic design constraint, equation (14), which
then yields an upper bound on the quantum efficiency:

ηQ <
1− TR

TH
TR
TC
− 1

. (21)

It is important to note that since the refrigerator works
as long as the condition (14) is satisfied that this is in-
deed an achievable bound on the efficiency of the refrig-
erator. In other words, we can get as close as we like to
the following quantum efficiency

ηQ
max =

1− TR
TH

TR
TC
− 1

. (22)

THE CARNOT EFFICIENCY

In order to see the significance of the above derived
maximum quantum efficiency for our particular model,
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we need to compare it with the Carnot efficiency derived
from a ‘standard’ model.

In the standard analysis of the efficiency of a heat en-
gine or refrigerator the efficiency is defined in terms of
the work; we are interested in how much work we can
extract from a given amount of heat, or how much heat
we can extract for a given amount of work. However,
in the current scenario we have avoided the explicit no-
tion of work – the only free energy we allow ourselves
access to is in the form of two baths at differing tem-
peratures. We must therefore analyse the efficiency of
such a device. Diagrammatically the machine we need
to consider is depicted in Fig. 1 (a).

FIG. 1: (a) Diagrammatic representation of a thermal machine
which uses a supply of heat QH extracted from a reservoir at
TH to extract an amount of heat QC from a reservoir at TC, i.e.
a refrigerator whose source of work is supplied by a thermal
bath. (b) An explicit construction of such a device composed
of two Carnot machines – the top functioning as a heat engine,
the bottom as a heat pump.

That is, by extracting heat QH from a hot reservoir
at temperature TH , we are able to extract an amount of
heat QC from a cold reservoir at temperature TC whilst
‘dumping’ an amount of heat QR into a reservoir at
some intermediate temperature TR. It follows that the
appropriate measure of efficiency for such a machine is
given by

η =
QC
QH

(23)

that is, for a given supply of heat from a hot bath, how
much heat can we possibly extract from the cold bath.
The two important points to note are first that the most
efficient such machine will be a reversible machine, just
as in the case of all thermodynamic machines. The sec-
ond point to note is that all reversible machines – how-
ever they are constructed – must run at the same ef-
ficiency, and therefore we can focus on a specific re-
versible model without loss of generality. The model we
will focus on is comprised of a Carnot heat engine sup-
plying an amount of work W into a Carnot heat pump,
as depicted in Fig. 1 (b).

To calculate the efficiency of this machine, we first ap-
ply the first law of thermodynamics to the heat engine

and heat pump separately to obtain

QH = Q′R + W, QC + W = Q′′R, (24)

followed by the second law, telling us that entropy is
conserved in a Carnot machine,

QH
TH

=
Q′R
TR

,
QC
TC

=
Q′′R
TR

. (25)

Equations (24) together imply that Q′R + Q
′′
R = QH +

QC, which, when combined with (25) leads to the Carnot
efficiency for this machine,

ηc =
QC
QH

=
1− TR

TH
TR
TC
− 1

(26)

and is thus an upper bound on the efficiency of any
such engine which we run between three reservoirs and
which extracts heat from the bath at TC using a supply
of heat from the reservoir at TH . We note that when
TR = TH then we have an efficiency of zero; in this
case we are unable to extract any work with the heat
engine and thus are unable to power the heat pump.
Conversely, when TR → TC we see that ηc diverges; in
this limit we can effectively move heat between the two
reservoirs for ‘free’.

CONCLUSIONS

By comparing the maximum quantum efficiency of
our model (22) and the Carnot efficiency, (26) we see a
remarkable result: they coincide. In other words, de-
spite the fact that our refrigerator has a discrete and very
small number of states, which one could have assumed
to lead to stringent limitations on its efficiency, we see
that it can actually achieve the maximum efficiency pos-
sible in nature.

Finally, we note that there have been many discus-
sions of whether or not the second law of thermody-
namics is valid in the context of quantum mechanics.
We haven’t address this particular question, what we
have done is to study a particular model of a thermal
machine – the smallest possible refrigerator. It is tan-
talising though that we have found its maximum effi-
ciency to be exactly the Carnot efficiency. This suggests
that indeed the second law of thermodynamics is valid
in the context of quantum mechanics.
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