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Abstract

Spin-echo experiments are often said to constitute an instant of anti-thermodynamic behavior
in a concrete physical system that violates the second law of thermodynamics. We argue that a
proper thermodynamic treatment of the effect should take into account the correlations between
the spin and translational degrees of freedom of the molecules. To this end, we construct an
entropy functional using Boltzmann macrostates that incorporates both spin and translational
degrees of freedom. With this definition there is nothing special in the thermodynamics of
spin echoes: dephasing corresponds to Hamiltonian evolution and leaves the entropy unchanged;
dissipation increases the entropy. In particular, there is no phase of entropy decrease in the echo.
We also discuss the definition of macrostates from the underlying quantum theory and we show
that the decay of net magnetization provides a faithful measure of entropy change.

1 Introduction

The spin echo effect [1] has received significant attention in relation to the foundations of statistical
mechanics [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. It arguably provides a (partial) physical realization of
Loschmidt’s velocity inversion paradox [12], albeit in the context of nuclear magnetism rather than
of gases. For this reason, it is often stated that the spin-echo effect constitutes an instance of
a physical system manifesting anti-thermodynamic behavior. More complex echo phenomena, for
example, [13, 14, 15], provide a fuller realization of the Loschmidt inversion i.e., involving the full
many-body interactions. Moreover, echo phenomena are a testing ground for ideas on the origin
of the irreversibility in macroscopic and mesoscopic systems. However, the issue of providing a
quantitatively precise thermodynamic description arises even in the simplest case of Hahn echoes
[1].

The importance of the echo effects originates from the fact that, after the inversion of spins by the
action of external pulses, a macroscopic system seems to evolve spontaneously from a disordered
state into an ordered one. This would appear to contradict the non-equilibrium version of the
second law of thermodynamics. Many researchers express the opinion that this contradiction is
only apparent; the evolution is truly irreversible and the decay of magnetization provides a measure
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of entropy change during an echo. However, it is difficult make this statement quantitatively precise.
The usual notions of entropy (coarse-grained Gibbs entropy or Boltzmann entropy), when applied
to a spin system, show a decrease of entropy after spin inversion [9, 10]. Moreover, they bear no
relation to the echo decay that is thought to provide a measure of irreversibility. In this paper, we
emphasize the necessity of a precise thermodynamic description, where the entropy functional that
always remains a non-decreasing function of time during an echo experiment.

To this end, we follow Boltzmann’s definition of entropy and we specify macrostates relevant
to the system. We argue that a consistent definition of macrostates cannot separate the spin from
the translational degrees of freedom, because they develop non-trivial correlations in the course
of a spin-echo experiment. Hence, by adapting Boltzmann’s coarse-graining we define an entropy
functional that provides a thermodynamic description of spin-echo experiments, with no violation
of the second law. Furthermore, using simple quantum open system dynamics for the description
of relaxation, we show that the entropy increase is indeed a monotonically decreasing function of
magnetization decay in an echo.

For the description of the Hahn spin echoes it suffices, as a first approximation, to treat the
thermodynamic system as an assembly of non-interacting microsystems. Interactions are essential
for the understanding of irreversibility, but they do not affect the issue whether there is a phase
of decreasing entropy after spin inversion [10]. We, therefore, consider an assembly of classical

magnetic dipoles precessing in a magnetic field. The assembly consists of N particles with magnetic
moments mi = m(cos θ sinφ, cos θ cosφ, sin θ), in terms of the spherical coordinates θ and φ; m is
constant equal to gs, where g is the gyromagnetic ratio and s the magnitude of the classical spin
vector of the particle.

The total magnetization of the system is M =
∑

imi. If a constant magnetic field B is applied
along the z axis, the equilibrium configuration at temperature β−1 consists of all dipoles oriented
along the direction of the field, provided that βmB >> 1. A π

2 -pulse is then applied on the system
rotating the magnetic moments by π

2 so that they become oriented along the x-axis. At this moment
(t = 0), the magnetic moment of each dipole equals mi = m(1, 0, 0) and a strong magnetization
M(0) = Nm(1, 0, 0) along the x axis is measured.

The dipoles then precess around the z axis according to the equation

ṁi = gmi ∧Bi, (1)

where g is the gyromagnetic ratio. Each dipole precesses with a different value Bi of the magnetic
field, reflecting the fact that the magnetic field B is not homogeneous within the material.

By solving Eq. (1) we obtain

m(t) = m(cos ωit, sinωit, 0), (2)

where ωi = gBi is the angular frequency of precession for the dipole i. The x component of
the magnetization is then Mx(t) = m

∑

i cosωit. Assuming that the angular frequencies ωi are
randomly distributed in an interval [ωmin, ωmax], Mx(t) rapidly becomes vanishingly small because
of dephasing.

At t = τ , a π-pulse is applied on the system, so that the dipoles’ configuration is transformed as

m(cosωiτ, sinωit, 0) −→ m(cosωiτ,− sinωiτ, 0), (3)

i.e., the pulse inverts the dipoles’ orientation on the x− y plane. After inversion the dipoles precess
freely. Hence,

mi(t) = m(cos(ωit− 2ωiτ), sin(ωit− 2ωiτ), 0). (4)
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At t = 2τ , Eq. (4) predicts that mi = m(1, 0, 0), i.e., there is strong magnetization in the x
direction, the same as at time t = 0. Apparently, the system starts from an ‘ordered’ state, it
evolves into a ‘disordered’ one, at time t = τ , but after the inversion it evolves back to the initial
‘ordered’ state. Hence, it seems as though the system evolves from a disordered into an ordered
state, without any external action during the time interval [τ, 2τ ].

The quantification of the latter statement requires the definition of a non-equilibrium entropy
function for the system. If the entropy is defined in terms of the dipole degrees of freedom alone,
then the inevitable conclusion is that the disordered state at t = τ is of higher entropy than the
ordered state at t = 2τ—see Refs. [9, 10] and also Sec. 2. It follows that during the time interval
[τ, 2τ ] the system evolves spontaneously to states of lower entropy. This is a manifestation of
anti-thermodynamic behavior.

In spin-echo experiments, the cause of dephasing is the spatial inhomogeneity of the magnetic
field. In statistical mechanics, an external magnetic field is treated as an constraint external to the
thermodynamical system. In particular, in spin-echoes the magnetic field constraint distinguishes
the dipoles by their position. Position is not an abstract label, it is as much a physical degree
of freedom as spin is. The treatment the dipole degrees of freedom in isolation presupposes: (i)
a decoupling between translation and dipole degrees of freedom, and (ii) that any correlations
between them are insignificant. Condition (i) is not satisfied, however the translational degrees of
freedom can be considered—to a good approximation—as a bath inducing dissipation and noise
on the dipoles’ evolution. Condition (ii) is more problematic in the sense the inhomogeneity of
the field creates correlations between position and dipole degrees of freedom. The isolation of the
dipole degrees of freedom is a drastic simplification because it removes all information about such
correlations from the entropy function.

The above argument strongly suggests that a consistent thermodynamic description of the spin-
echo effect should involve a state space that also incorporates translational degrees of freedom. We
demonstrate than in this case, we can define a Boltzmann entropy that accounts for the correlations
between magnetic moments and position. Hence, we conclude that in a spin-echo experiment, the
information of the ordered initial state is transferred into information about non-trivial correlations
[4]. After the application of the π-pulse, this information in correlations is again transferred to
information about spin order. Hence, a phase of decreasing entropy never appears.

The structure of this paper is the following. In Sec. 2, we present the definition of an entropy
function in terms of Boltzmann macrostates that include translational degrees of freedom; this
definition leads to a description of spin echoes with no apparent violation of the second law of
thermodynamics. In Sec. 3, we define this version of Boltzmann entropy function in quantum
theory. In Sec. 4, we show that the Boltzmann entropy is an increasing function of time when
relaxation effects are also taken into account. Finally in Sec. 5, we summarize and discuss our
results.

2 Boltzmann entropy and macrostates for a spin system

In this section, we define an entropy function for spin systems that provides a consistent thermo-
dynamic description of the spin-echo experiments. As explained in the Introduction, the key idea
is that the entropy should also incorporate the correlations between spin and translational degrees
of freedom, for the molecules.

First, we examine the evolution of Boltzmann entropy for the model of Sec. 1, where the
translational degrees of freedom are ignored. The assembly of dipoles is labeled by the abstract index
i. Since the dipoles are independent, their statistical behavior can be described by a distribution
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function f(θ, φ), defined on the two-sphere S2 of directions in space.
Assuming that at t = 0 all dipoles are oriented along the x-axis, then the distribution function

for a single dipole approximates a delta function δS2(θ − π
2 , φ) on the sphere S2. The dipole’s

precession preserves θ, hence, the delta-function evolves as δ(θ − π
2 )

∑∞
n=−∞ ein(φ−ωit). Since the

dipoles are independent, the system’s macrostate is described by the averaged density

f(θ, φ) =
1

N
δ(θ − π

2
)
∑

i

∑

n

ein(φ−ωit). (5)

The detailed evolution of f depends on the distribution of frequencies. We assume a Gaus-
sian distribution around a mean frequency ω̄—corresponding to the mean magnetic field—with a
deviation σω << ω̄. Then,

f(θ, φ, t) = δ(θ − π

2
)

1
√

2πσ2
ω

∑

n

∫

dωe
−

(ω−ω̄)2

2σ2
ω

+in(φ−ωit)
= δ(θ − π

2
)
∑

n

ein(φ−ω̄t)−
n
2
σ
2
ωt

2

2 . (6)

Eq. (6) corresponds to a diffusive equation

∂f

∂t
= −ω̄

∂f

∂φ
+ σ2

ωt
∂2f

∂φ2
, (7)

which is an entropy-increasing equation

ṠB = σ2
ωt

∫

d2s
1

f

(

∂f

∂φ

)2

≥ 0. (8)

For the case of dipoles that are distinguished by variables external to the system, i.e., the label
i, we employ an averaging procedure that leads to an entropy-increasing evolution equation for the
probability density. It follows the entropy at time t = τ , when the pulse is applied, is larger than
the entropy at time t = 0. Hence, when the system retraces its past evolution after t = τ , entropy
decreases.

As mentioned earlier, the actual distinction of the dipoles arises from the inhomogeneity of the
field in space, i.e., from interactions involving translational degrees of freedom of the molecules.
Therefore, the translational degrees of freedom should also be incorporated into the definition of
the macrostates describing the system.

To this end, we recall Boltzmann’s prescription for the macrostates and entropy of rare gases. For
a rare gas of N particles, microstates correspond to points of the state space Γ = R6N . Macrostates
correspond to distribution functions f(x,p) on the state space of a single particle Γ1 = R6.

The Boltzmann macrostates are constructed as follows [16]: one splits the Γ1-space into cells Ca

of volume (∆x)3(∆p)3 >> 1. To each macrostate ξ = (x1,p1;x2,p2; . . . ;xN ,pN ) ∈ Γ we assign the
sequence of numbers n(Ca) corresponding to the number of particles such that (x,p) ∈ Ca. The
sequence n(Ca) fully specifies a macrostate for the system. At the continuum limit, the sequence
n(Ca) defines a probability distribution f(x,p) on Γ1. In what follows, it is convenient to choose
f(x,p) normalized to unity.

The Boltzmann entropy SB is the logarithm of the number of microstates in each macrostate,
hence for any sequence n(Ca), SB ∼ ∑

a lnn(Ca). At the continuum limit,

SB[f ] = −N

∫

d3x d3p f(x,p) ln f(x,p) +N −N lnN. (9)

The key point is that Boltzmann’s definition of macrostates applies to any system of N particles,
even when the particles have degrees of freedom other than the translational ones. It suffices that the
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state space of the system can be expressed as Γ = ΓN
1 . The dipole degrees of freedom corresponds to

a classical spin vector s of constant norm s, i.e., the corresponding state space is the sphere S2 with
area equal to 2s. The two-sphere is a symplectic manifold with symplectic form Ω = s

2π sin θdθ∧dφ.
Hence, the equations of motion for the dipole degrees of freedom are Hamiltonian.

It follows that the classical state space of a single particle with spin is Γ1 = R6 ×S2. The state
space for N -particles with spin Γ = R6N × (S2)N consists of points ξ = (x1,p1, s1; . . . ;xN ,pN , sN ).
Next, we apply Boltzmann’s analysis in a straightforward way. At the continuum limit, a macrostate
is described by a distribution f(x,p,m) on µ, normalized to N . The Boltzmann entropy is then a
functional of f

SB[f ] = −N

∫

d3x d3p d2s f(x,p, s) ln f(x,p, s) +N −N lnN, (10)

where d2s = s
2π sin θdθdφ.

Next, we consider the dynamical evolution of the distribution f in accordance to the simplified
model of Sec. 1. We assume that the particle system is subjected to an external inhomogeneous
magnetic field B(x) = B(x)ẑ. Here, we ignore spin-spin and spin-lattice interactions, as well as
the action of the magnetic field on the translational degrees of freedom. We also assume that
the translational degrees of freedom are initially in a state of thermal equilibrium. Then, the
distribution f(x,p, s) changes in time only because of the spin’s precession around the magnetic
field’s axis. In terms of the spherical coordinates θ, φ, the time evolution law for this class of states,
is f(x,p, θ, φ) → f(x,p, θ, φ− gB(x)), or, equivalently

∂f

∂t
= −gB(x)

∂f

∂φ
. (11)

The key difference of Eq. (11) from Eq. (6) is that in Eq. (11), x is a variable of f and not an
external label. Hence, the necessity to average over different values of f in order to obtain a closed
evolution equation does not arise. Substituting Eq. (11) into Eq. (10) we obtain

ṠB [f ] =
Ns

2π

∫

d3x d3p sin θdθ B(x)

(
∫

dφ
∂(f ln f)

∂φ

)

= 0. (12)

Therefore, we showed the Boltzmann entropy remains constant, irrespective of whether there is
dephasing or rephasing of the transverse magnetic moments. Moreover, the action of the π-pulse
does not change the entropy. Hence, the Boltzmann entropy records no violation of the second law of
thermodynamics during the rephasing stage of a spin-echo experiment. We therefore conclude that
if the particle positions are included into the definition of the system’s macrostates, the system’s
evolution is reversible.

While Eq. (11) is reversible, it does not coincide with Liouville’s equation for a single dipole
coupled to the inhomogeneous magnetic field B(x). The Liouville equation for the Hamiltonian
H = −B(x) ·m = −mB(x) sin θ involves an additional term −m∇B(x) · ∂f∂p sin θ, in the right-hand-
side of Eq. (11).

We proceed to show that the additional term is small, so that Eq. (11) well approximates
the Liouville equation. Since we assume that the translational degrees of freedom are in thermal
equilibrium, the momentum dependence of the distribution f(x,p, θ, φ) is of the Maxwell-Boltzmann

type ∼ e−β p
2

2M , where M is the particles’ mass. Denoting by A(f) the right-hand-side term of Eq.

(11), and by C(f) the additional term above, we find that |C(f)/A(f)| is of the order of
β
√

E/M
M ,

where L is the characteristic scale of inhomogeneities in the magnetic field and E the mean kinetic
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energy of a particle. The latter is of the order of β−1, hence, |C(f)/A(f)| ∼
√

β/M/L. Therefore,
the term C(f) is negligible, if the scale of the inhomogeneities of the magnetic field is much larger
than the thermal de Broglie wavelength λdeB ∼

√

β/M of the particles.

3 Quantum Boltzmann entropy for spin-echo systems

The definition of the function f(x,p, s) that describes the system’s macrostates incorporates Boltz-
mann’s coarse-graining on the classical state space. However, spin is fundamentally a quantum
variable, and unlike the translational degrees of freedom it has discrete spectrum. The question
then arises, how f(x,p, s) can be constructed in terms of the underlying quantum theory. The aim
of this section is to provide one such construction for the distribution function. We also discuss
some subtle points regarding the physical meaning of the corresponding macrostates.

3.1 The description of spin-echo macrostates in quantum theory

In derivations of the Boltzmann equation for quantum gases, the corresponding distribution function
is usually defined in terms of the single-particle reduced density matrix [17, 18]. In particular, let
H = L2(R3) ⊗ C2s+1 be the Hilbert space for a single particle of spin s = n

2 , n = 1, 2, . . . ,. A
system of N particles is described by vectors on the Hilbert space (⊗H)N . The density matrix ρ̂ of
the N -particle system is totally symmetrized for bosonic particles and totally antisymmetrized for
fermionic particles. The single-particle reduced density matrix on H is defined as ρ̂1 = Tr(⊗H)N−1 ρ̂.

Given the single-particle density matrix ρ̂1, we construct different versions of the functions
f(x,p, s) according to the theory of quantum quasi-probability distributions. In the derivation of the
quantum Boltzmann equation for gases the Wigner function is usually employed [17], mainly because
it simplifies the calculations. A Wigner function on the single-particle state space Γ1 = R6 × S2 is
indeed defined from the reduced density matrix ρ̂1 [19]. However, Wigner functions are not positive-
valued in general, therefore: (i) they do not have a physical interpretation in terms of particle number
as in Boltzmann’s definition of macrostates, and (ii) they cannot be used to define Boltzmann
entropy according to Eq. (10). A coarser quasi-probability distribution that is positive-definite
should be used instead. In general, such distributions are constructed from Positive-Operator-
Valued Measures (POVMs) [20]. Any family of positive operators, Π̂(x,p, s) normalized to unity
as

∫

dµ(x,p, s)Π̂(x,p, s) = 1, (13)

for some invariant measure dµ on Γ1, defines a mathematically appropriate probability distribution

f(x,p, s) = Tr[ρ̂1Π̂(x,p, s)]. (14)

The simplest case of such a POVM is obtained from the coherent states |x,p, s〉 on H, setting
Π̂(x,p, s) = |x,p, s〉〈x,p, s|, so that

f(x,p, s) = 〈x,p, s|ρ̂1|x,p, s〉. (15)

The density f(x,p, s) is the Husimi distribution associated to the single-particle reduced density
matrix ρ̂1 through the coherent states |x,p, s〉.
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The coherent states |x,p, s〉 are defined as the tensor product |x,p〉 ⊗ |s〉, where |x,p〉 are the
standard coherent states on L2(R3) and |s〉 := |θ, φ〉 are the spin-coherent states on C2s+1 [21]

|θ, φ〉 =
s

∑

ms=−s

(

2s
s+m

)

coss+ms
θ

2
sins−ms

θ

2
e−imsφ/2|ms〉. (16)

In Eq. (16), |s,ms〉 are the eigenstates of the Ŝz generator in the (2s+1)-dimensional represen-
tation of SU(2). The resolution of the unity for the spin coherent states is

(2s + 1)

∫

sin θdθdφ

4π
|θ, φ〉〈θ, φ| = 1. (17)

Hence, the invariant measure d2s equals (2s + 1) sin θdθdφ
4π and the volume of the corresponding

two-sphere is (2s + 1).
Since the particles are assumed independent, then the single-particle reduced density matrix

evolves under the Hamiltonian Ĥ = −gB(x̂)µŜz, where µ is the particle’s magnetic moment. A spin
coherent state |θ, φ〉 in an external magnetic field along the z-direction evolves into another coherent
state with parameters following the corresponding classical equations of motion, i.e., |θ, φ〉 → |θ, φ+
gBt〉. As in the classical case, the assumption that the inhomogeneity scale of the magnetic field is
much larger than the thermal de Broglie wavelength of the particles suffices to guarantee that the
distribution f(x,p, s) evolves under Eq. (11).

3.2 Interpretation of the quasi-classical description

In Sec. 3.1 we showed a suitable definition for the function f(x,p, s) from the underlying quantum
description. However, we must elaborate here on the adequacy of the description of a quantum
system by a classical variable. We ignore the translational degrees of freedom and focus on the spin
ones, so that we can write the POVM (14) simply as Π̂(s). The classical state space for a single
spin is the sphere S2. If C is a region of S2 then we define Π̂C =

∫

C d2sΠ̂(s). The positive number

Tr(ρ̂1Π̂C) is interpreted as an approximate probability that the spin vector lies in the region C. Thus
the assignment C → Π̂C defines an approximate correspondence between operators and state space
regions. A necessary (but not sufficient) condition for this correspondence to be meaningful is that
the volume [C] =

∫

C d2s of the region C is much larger than unity [22]. A correspondence between
quantum and classical observables exists only for coarse-grained phase space regions of volume much
larger than h̄. The area of the spin two-sphere is h̄(2s + 1), so a proper correspondence between
operators and regions is only possible for values s >> 1.

Therefore, it seems that it is not possible to define a classical description for particles with low
values of spin—in particular spin s = 1

2 . The answer to this problem lies in the remark that ρ̂1 is
not the density matrix of a single particle but the reduced density matrix in a system of N particles.
We express the probabilities obtained from ρ̂1 in terms of the density matrix ρ̂ of the total system,
and we obtain that Tr(ρ̂1Π̂C) = Tr(ρ̂P̂C).

P̂C = Π̂C ⊗ 1⊗ . . .⊗ 1 + 1⊗ Π̂C ⊗ . . . ⊗ 1 + . . .+ 1⊗ 1⊗ . . . ⊗ Π̂C , (18)

is a positive operator corresponding to the proposition that “the spin of at least one particle takes
values in the region C”. Trρ̂P̂C is therefore the corresponding probability. The positive operator
P̂C corresponds to the region C = (C×S2× . . .×S2)∪ (S2×C× . . .×S2)∪ . . .∪ (S2×S2× . . .×C)
within the classical state space (S2)N for the N spins. The volume of C is therefore

[C] = TrP̂C = (N − 1)(2s + 1)[C]. (19)

7



Hence, for systems with a large number of particles, the volume of the region [C] can be signifi-
cantly larger than unity, and the approximate correspondence between positive operators and state
space regions is meaningful.

3.3 Quantum definition of spin-echo Boltzmann entropy.

The distribution f(x,p, s) is positive-valued. Therefore, we can define the Boltzmann entropy as
in Eq. (10)

SB = −N

∫

d3xd3p
(2s + 1) sin θdθdφ

4π
f(x,p, θ, φ) ln f(x,p, θ, φ) +N −N lnN. (20)

We note that the expression

SW [ρ̂1] = −
∫

d3xd3p
(2s+ 1) sin θdθdφ

4π
f(x,p, θ, φ) ln f(x,p, θ, φ) (21)

is the Wehrl entropy, associated to the coherent states |x,p, θ, φ〉 [23]. Hence,

SB = NSW [ρ̂1] +N −N lnN. (22)

The description of macrostates in terms of the single-particle reduced density matrix ρ̂1 does
not represent accurately the Boltzmann definition of macrostates, as described in Sec. 2. The
coarse-graining corresponding to ρ̂1 is determined by the projectors Eq. (18), which represent the
statement “at least one particle is characterized by values of the observables that correspond to
the region C ∈ Γ1”. In contrast, Boltzmann macrostates are defined in terms of the number of
particles in C at a moment of time. The equivalence between these coarse-grainings requires the
assumption that statistical fluctuations in the number of particles in C and particle correlations are
negligible; then, the probabilities Tr(ρ̂1P̂C) are indeed proportional to the number of particles in C.
The latter distinction is not specific to the construction presented here, but it reflects the difference
between the original derivation of Boltzmann’s equation and the alternative derivation through the
truncation of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of correlation functions. It is
in fact the reason why the two approaches employ different physical conditions for the domain of
validity of Boltzmann’s equation.

We believe that Boltzmann’s coarse-graining is conceptually more satisfying, however in this
paper we have chosen to work with the single-particle reduced density matrix. One reason is the
significant technical difficulty in implementing Boltzmann’s coarse-graining in quantum theory. In
particular, an implementation of Boltzmann’s coarse-graining from first principles requires an proof
of decoherence (the corresponding variables behave quasi-classically), a property that is likely to
require significant restriction to the initial states of the system—see Refs. [22, 24]. More impor-
tantly, the difference above is not significant for the Hahn echoes studied here because the π-pulse
inversion does not affect the part of the Hamiltonian that corresponds to the many-body interac-
tion. Hence, a detailed description of the generation of irreversibility through spin-spin interactions
is not necessary.

It is important to note that the difference between the two coarse-grainings is more pronounced
in spin systems than in gases. In principle, it is possible that in some systems the different coarse-
grainings lead to different predictions. The reason is that in Boltzmann’s coarse-graining, there is
no kinematical restriction on the distribution function f(s) on S2. On the other hand, the form
of the distribution function f(s), corresponding to the single-particle reduced density matrix, is
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constrained by the value of the spin s. f(s) belongs to the subspaces of L2(S2) corresponding to s.
For example, for spin s = 1

2 , the function f(θ, φ) = 〈θ, φ|ρ̂1|θ, φ〉 can only be of the form

f(θ, φ) = sin2
θ

2
+ x cos θ + r sin θ cos(φ+ χ), (23)

for some constants x, r, χ, while there is no restriction in the form of f when defined in terms
of Boltzmann’s coarse-graining. Hence, evolution equations obtained through Boltzmann coarse-
graining may not have a representation in terms of the single-particle reduced density matrix of the
system. This issue will be explored elsewhere, in relation to the Loschmidt echoes.

Given the single-particle density matrix ρ̂1, one also has the option of employing the von Neu-
mann entropy SvN (ρ̂1) = −NTr(ρ̂1 log ρ̂1). In particular, the irreversible evolution equations con-
sidered in Sec. 4 lead to an increase of the von Neumann entropy. However, given the fact that
the Boltzmann coarse-graining in a spin system could lead to a distribution function that does not
correspond to the single-particle density matrix, we consider that the Boltzmann entropy Eq. (22)
is a better candidate for the non-equilibrium entropy of the system.

4 Entropy increase in spin echoes

4.1 Evolution equation for the distribution function

The description of the spin system described in Sec. 2 ignored the relaxation effects that characterize
the evolution of nuclear spins. The inclusion of such effects requires the derivation of effective
equations for the evolution of the distribution function f(x,p, s).

There are two main sources of irreversibility in the evolution of the spin system: interactions
between spins (dipole-dipole coupling) and interactions between the spin and the translational
degrees of freedom (spin-lattice interaction). The former processes are responsible for the relaxation
of the transverse components of the magnetization. The latter processes are responsible for the
approach to thermal equilibrium. We assume that the translational degrees of freedom are in a state
of thermal equilibrium, so that they essentially act as a thermal reservoir for the spin variables.

Irreversible evolution is often described by a master equation for the single-particle reduced
density matrix ρ̂1. To this end, one invokes a random field approximation, i.e., the assumption that
each dipole evolves separately in a random magnetic field b̂(t), generated by the other particles.
Assuming that the autocorrelation time of the random field is negligible, one invokes the Markov
approximation and one obtains a master equation of the Lindblad type [25]. The simplest such
master equation is [26]

∂ρ̂

∂t
= −igB[Ŝz, ρ̂]−

ΓT

2
α
(

[Ŝ−, [Ŝ+, ρ̂]] + [Ŝ+[Ŝ−, ρ̂]]
)

−ΓT

2

(

[Ŝ−, ρ̂Ŝ+]− [Ŝ+, Ŝ−ρ̂]
)

− ΓL

2
[Ŝz, [Ŝz, ρ̂]], (24)

where ΓT and ΓL are phenomenological dissipation constants, corresponding respectively to the
transverse and longitudinal components of the random magnetic field. The parameter α is deter-
mined by the requirement that the stationary solution to Eq. (24) is a thermal state at temperature
β−1

α =
1

eβgB − 1
. (25)
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Eq. (24) yields the phenomenological magnetic Bloch equations for the macroscopic magnetiza-
tion Mi = N〈Ŝi〉

Ṁz = ΓT

[

(−1

2
)− (2α + 1)Mz

]

(26)

Ṁ± = ∓igBM± −
(

ΓT (α +
1

2
) + ΓL

)

M±. (27)

The Bloch equations are usually expressed in terms of the spin-lattice relaxation time T1 and the
spin-spin relaxation time T2, which are identified from Eqs. (27-27) as

T1 = [ΓT (2α+ 1)]−1 (28)

T2 = [ΓT (α+
1

2
) + ΓL]

−1. (29)

For the case s = 1
2 , we obtain the solutions to Eq. (24)

ρ11(t) = ρ00(t0)e
−ΓT (1+2α)(t−t0) +

α

1 + 2α
(1− e−ΓT (1+2α)(t−t0)) (30)

ρ01(t) = ρ01(t0)e
−igB(t−t0)−(ΓT (α+ 1

2
)+ΓL)(t−t0) (31)

ρ00(t) = 1− ρ11(t). (32)

If we include the translation degrees of freedom and consider an inhomogeneous magnetic field,
Eq. (24) generalizes to

∂ρ̂1
∂t

= −igB(x)[Ŝz , ρ̂1]−
ΓT

2
α(x)

(

[Ŝ−, [Ŝ+, ρ̂1]] + [Ŝ+[Ŝ−, ρ̂1]]
)

−ΓT

2

(

[Ŝ−, ρ̂1Ŝ+]− [Ŝ+, Ŝ−ρ̂1]
)

− ΓL

2
[Ŝz, [Ŝz , ρ̂1]], (33)

where in this case ρ̂1 is a density matrix on the Hilbert space H = L2(R3)⊗C2s+1.
In Eq. (33) the parameter α depends on the position x due to its dependence on the inho-

mogeneous magnetic field B as in Eq. (25). However, the α term does not change the phases
generated during time evolution, which are the important variables in the spin-echo experiment.
Hence, assuming that the field inhomogeneities are small, we may treat α as a constant.

4.2 Time-evolution of entropy.

From Eq. (33) we construct the distribution f(x,p, s) that describes the macrostates according
to Eq. (15). The corresponding Boltzmann entropy Eq. (22) is expressed in terms of the Wehrl
entropy. In order to calculate the latter for spin s = 1

2 , we exploit the fact that the Wehrl entropy is
invariant under SU(2) transformations [23]. An SU(2) transformation can bring any density matrix
ρ̂ to its diagonal form ρ̂ = diag (x, 1− x), parameterized by the single mixing parameter x ∈ [0, 1].
Then,

SW [ρ̂] =
1

2x− 1

[

(1− x)2(ln(1− x)− 1

2
)− x2(ln x− 1

2
)

]

. (34)

We now consider an evolution of the system according to Eq. (33) together with the operation
of the two external pulses that characterize the spin-echo experiments. Initially, the system of N
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dipoles occupies volume V and it is in a state of thermal equilibrium, in the presence of the magnetic
field B(x). The probability distribution factorizes as f(x,p, s) = N

V g(p)uth(θ, φ), where g(p) is the
Maxwell distribution for the momenta normalized to unity, and where uth corresponds to a thermal
state for the spin degrees of freedom at temperature T = β−1

uth(θ, φ) =
1

1 + 2α
(α+ sin2

θ

2
). (35)

At t = 0, a π
2 -pulse acts upon the system sending the positive z-axis into the positive x-axis.

This induces a change uth → u0, where

u0(θ, φ) =
1

2

(

1 +
1

1 + 2α
sin θcosφ

)

. (36)

The system then evolves under Eq. (33). The p-dependent component is unaffected, while u0
evolves to

ut(θ, φ,x) = sin2
θ

2
+

[

1

2
e−ΓT (1+2α)t +

1 + α

1 + 2α
(1− e−ΓT (1+2α)t)

]

cos θ

+
1

2

1

1 + 2α
e−(ΓT (α+ 1

2
)+ΓL)t sin θ cos[φ− ωp(x)t], (37)

where ωp(x) = gµB(x). At t = τ , a π-pulse acts by inverting the spin’s direction; then the system
evolves again under Eq. (33). So for t > τ ,

ut(θ, φ,x) = sin2
θ

2
+

[

1

2
e−ΓT (1+2α)t +

1 + α

1 + 2α
(1− e−ΓT (1+2α)t)

]

cos θ

+
1

2(1 + 2α)
e−[ΓT (α+ 1

2
)+ΓL]t sin θ cos[φ− ωp(x)(t− 2τ)]. (38)

If ΓT > 0, Eq. (33) does not preserve the energy, since the spin-lattice coupling transfers energy
from the spin to the translational degrees of freedom. First, we consider the energy-preserving case
ΓT = 0, and we calculate the evolution of the Boltzmann entropy SB Eq. (10). The dependence of
SB on ωp(x) cancels out due to the invariance of the Wehrl entropy under SU(2) transformations.
This property is not affected by the position-dependence of the transformations. We differentiate
Eq. (10) with respect to time and we obtain

ṠB =
N

2(2α + 1)
e−ΓLt

∫

dθdφ

2π
sin2 θ cosφ(1 + lnu) ≥ 0. (39)

The last step follows from the fact that the terms multiplying the positive values of cosφ are always
larger than the terms multiplying negative values of cosφ ( u(θ, φ) ≥ u(θ, π − φ), for 0 ≤ φ ≤ π).
Therefore, we conclude that the Boltzmann entropy is an increasing function of time, and the
evolution is genuinely irreversible.

Next, we consider the general case ΓT > 0. We assume that the system is in contact with
thermal reservoir of temperature β−1, coupling to the translational degrees of freedom. We also
assume that the relaxation time of the translational degrees of freedom is much shorter than Γ−1

L .
Hence, they always remain in a thermal state. The energy ∆E lost by the spin degrees of freedom
is transferred to the thermal reservoir, and the entropy of the reservoir increases by an amount
∆Sr ≥ β∆E. The total entropy change ∆Stot satisfies the inequality

∆Stot ≥ ∆SB + β∆E = ∆(SB − βH̄), (40)
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Figure 1: SB − βH̄ shown as an increasing function of time for different temperatures β. In this plot
ΓT /ΓL = 0.75.

where SB is the Boltzmann entropy and H̄ is the mean value of the system’s Hamiltonian. From
Eq. (37) we find

H̄(t) = − ω̄p

1 + 2α

(

1− e−ΓT (1+2α)t
)

, (41)

where ω̄p =
1
V

∫

V ωp(x) = gµB̄ is the spatial average of the precession frequency.
Using Eqs. (22, 34), we find that the quantity SB − βH̄ is an increasing function of t for all

values of relaxation time and temperature. The behavior of SB−βH̄ is plotted in Fig. 1 for different
values of temperature. Consequently

dStot

dt
≥ d(SB − βH̄)

dt
≥ 0. (42)

Hence, the total entropy increases in time during the spin echo experiment: there is no anti-

thermodynamic behavior and no violation of the second law of thermodynamics.

The above results are valid for the Markovian master equation Eq. (38) that governs the
evolution of the system. The predicted decay of the echo at time t = 2τ , defined as

D(τ) :=
Mx(2τ)

Mx(0)
= e−2[ΓT (2α+1)+ΓL]τ = e−2τ/T2 , (43)

is an exponential function.
The distribution Eq. (37) at time t = 2τ depends on τ only through exponentials. Hence,

we perform a change of variables and we express the increase ∆Stot(τ) of the total entropy as a
function of the decay D(τ). ∆Stot is a strictly decreasing function of D—see Fig. 2. Hence, the
common conjecture that the echo decay parameter provides a faithful measure of entropy increase—
for example, Refs. [4, 15]—is verified.

4.3 Loscmhidt echoes

Here we considered Hahn spin echoes, where the external pulses invert only the evolution by the
free spin Hamiltonian—they do not affect the spin-spin and spin-lattice interactions. More complex
pulse sequences may also achieve the inversion of spin-spin couplings, whence a more complete
realization of Loschmisdt’s idea is achieved [13]. Moreover, echoes for localized excitations have
been obtained. In general, inversion is never perfect, and the echo signal decays with time. We
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Figure 2: The increase in the total entropy ∆Stot during an echo is a monotonously decreasing
function of the echo decay D = Mx(2τ)

Mx(0)
. The curves correspond to values T2/T1 = 1.4 and T2/T1 = 2

respectively.

emphasize here the existence of systems with fast spin dynamics, where the decay is not determined
by any external interactions (e.g., spin-lattice coupling) but by the reversible spin dynamics itself
[15] (Loschmidt echoes). In this case, the function D(τ) is best described by Gaussian rather than
exponential decay as in Eq. (43).

In this work, emphasis is given on the construction of a non-equilibrium entropy, according to
Boltzmann, that provides a consistent thermodynamic description of spin-echo experiments. We
showed that this entropy is a monotonic function of the echo decay D(τ). We defined the entropy
by adapting Boltzmann’s coarse-graining for the rare gases into the spin context: macrostates
correspond to a distribution function on the state space of a single particle. There seems no difficulty
in applying the same construction to all echo experiments. In fact, we can take the analogy with
Boltzmann’s theory of rare gases one step further. We can construct an evolution equation for the
macrostates, in analogy to Boltzmann’s equation, where the spin-spin interaction is incorporated
in non-linear collision terms. The possibility that such an evolution equation could account for the
Gaussian decay law in Loschmidt echo experiments is at present being explored.

5 Discussion

An important conclusion is drawn from the work presented here: the interpretation of the spin
echo experiments depends closely on the choice of macrostates one adopts for the system. In
particular, if the macroscopic description is at the level of the spin degrees of freedom only, then the
conclusion that the spin echo manifests an anti-thermodynamic behavior is inevitable. If, however,
the macrostates refer also to the translational degrees of freedom, then the loss of information due
to dephasing is compensated by non-trivial correlations between the spin and position variables.
If the chosen macrostates accommodate such correlations, then the corresponding entropy does
not exhibit a decreasing phase. When dissipation effects are ignored, the entropy of the system
remains unchanged during time evolution. The evolution law for the macrostates is reversible and
the dephasing is generated by volume-preserving Hamiltonian dynamics.

The main conclusion is strengthened by the consideration of relaxation effects. The usual semi-
phenomenological Bloch equations, describing relaxation in magnetic systems, correspond to a de-
scription of irreversible dynamics in terms of a Lindblad master equation. We showed that the total
entropy strictly increases as a function of time under this dynamics. In effect, there is nothing ex-
traordinary in the thermodynamic behavior of spin echoes: Hamiltonian effects such as dephasing
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do not change the entropy and the relaxation effects increase the entropy. There is no phase of
decreasing entropy.

Our results have some interesting implications in relation to the foundations of statistical me-
chanics. The properties of equilibrium thermodynamics are not always reliable guides for the de-
scription of non-equilibrium processes. In one sense, the apparent anti-thermodynamic behavior
in the spin-echo experiments is due to the fact that the concept of entropy in equilibrium config-
urations is naively transferred into a non-equilibrium context [8]. In an equilibrium spin system,
the presence of a net transverse magnetization is highly ‘improbable’, hence it can be viewed as a
witness of a low entropy state. If such a state is considered to arise ‘spontaneously’, one would then
say that we have a violation of the second law of thermodynamics. However, in the non-equilibrium
context there is no one-to-one correspondence between magnetization and entropy.

Our results also suggest that macrostates are not subjective: they do not correspond to a
description of the system in terms of variables that are accessible to us through measurements
of macroscopic variables. In spin-echo experiments, the spin-position correlations are not directly

accessible, and one is, therefore, tempted to ignore them in the treatment of the system. However,
this is an approximation. It turns out that it is a drastic one: it ignores the correlations between spin
and position degrees of freedom and, consequently, it misrepresents the thermodynamic behavior of
the system.

We must emphasize that our definition of the macrostates in the spin-echo system is not arbi-
trary. Boltzmann’s coarse-graining in terms of the state space of a single particle (with spin) can be
immediately generalized to other set-ups, including relativistic systems. It is a natural definition, in
the sense that the macrostates carry a representation of the fundamental symmetries of the system,
and they arguably correspond to the external operations that can be effected on its constituents.

References

[1] E. L. Hahn, Phys. Rev. 80, 580 (1950).

[2] J. Rothstein, Am. J. Phys. 25, 510 (1957).

[3] J. M. Blatt, Prog. Th. Phys. 22, 745 (1959).

[4] I. Prigogine, in A Critical Review of Thermodynamics, edited by E. Stuart, B. Gal-Or, and
A.Brainard (Mono Books, Baltimore, 1970); I. Prigogine, C. George, F. Henin and L Rosenfeld,
Chem. Scr. 4, 5 (1973).

[5] R. G. Brewer and E. L. Hahn, Sc. Am. 251, 50 (1984).

[6] K. G. Denbigh and J. S. Denbigh, Entropy in Relation to Incomplete Knowledge (Cambridge
University Press, Cambridge, 1985).

[7] L. Sklar, Physics and Chance (Cambridge University Press, Cambridge, 1993).

[8] P. T. Landsberg, Dialectica, 50, 247 (1996).

[9] T. M. Ridderbos and M. L. G. Redhead, Found. Phys. 28, 1237 (1998); P. Ainsworth, Found.
Phys. Lett. 18, 621 (2005).

[10] D. A. Lavis, Found. Phys. 34, 669 (2004).

[11] S. Loyd and W. H. Z. Zurek, J. Stat. Phys. 62, 819 (1991); K. Shizume, J. Stat. Phys. 70, 1572
(1993).

14



[12] J. Loschmidt, Sitzungsber. Kais. Akad. Wiss. Wien Math. Naturwiss. 73, 128 (1876).

[13] W. K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. B3, 684 (1971); J. S. Waugh, W-K Rhim
and A. Pines, J. Magn. Reson. 6, 317 (1972); J. S. Waugh, in Pulsed magnetic resonance–NMR,

ESR, and optics: a recognition of E.L. Hahn, (Oxford University Press, Oxford, 1992).

[14] V.A. Skrevbnev and R.N. Zaripov, Appl. Magn. Reson. 16, 1 (1999).

[15] G. Usaj, H.M. Pastawski, P.R. Levstein, Mol. Phys. 95, 1229 (1998); P.R. Levstein, G. Usaj,
H.M. Pastawski, J. Chem. Phys. 108, 2718 (1998); H. M. Pastawski, R. P. Levstein, G. Usaj, J.
Raya and J. Hirschinger, Physica A283, 166 (2000).

[16] See, for example, R. S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, (Dover,
1984); J. R. Dorfman, An introduction to chaos in nonequilibrium statistical mechanics (Cam-
bridge University Press 1999). Also, J. L. Lebowitz, Physica A194, 1 (1993).

[17] D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, J. Stat. Phys. 116, 381 (2004); 124,
951 (2005). For the Wigner function description of the relativistic Boltzmann equation see, for
example, E. Calzetta and B. L. Hu, Phys. Rev. D 37, 2878 (1988).

[18] N.M. Hugenholtz, J. Stat. Phys. 32, 231 (1983); L. Erdös, M. Salmhofer and H. T. Yau, J.
Stat. Phys. 116, 367 (2004).

[19] N. I. Balazs and B. K. Jennings, Phys. Rep. 104, 347 (1984); M. Hillery, R. F. O’Connell, M.
O. Scully, and E. P. Wigner, Physics Reports, 106, 121 (1984).

[20] E. B. Davies, Quantum theory of open systems (Academic Press, 1976); P. Busch, P. J. Lahti
and P. Mittelstaedt, The Quantum Theory of Measurement, (Springer, 1996).

[21] J. R. Klauder and B. S. Skagerstam, Coherent States: Applications in Physics and Mathematical

Physics ( World Scientific, Singapore, 1985); A, M. Perelomov, Generalized Coherent States and

Their Applications, (Springer, Berlin, 1986); W. M. Zhang, D. H. Feng and R. Gilmore, Rev.
Mod. Phys. 62, 867 (1990).

[22] R. Omnès, J. Stat. Phys. 53, 893, 1988; The Interpretation of Quantum Mechanics, (Princeton
University Press, Princeton, 1994); Rev. Mod. Phys. 64, 339 (1992).

[23] A. Wehrl, Rep. Math. Phys. 16, 353 (1979); E.H. Lieb, Commun. Math. Phys. 62, 35 (1978).

[24] J. J. Halliwell, Phys.Rev. D58, 105015 (1998); Phys. Rev. Lett. 83, 2481 (1999); Phys Rev D68,
025018 (2003).

[25] G. Lindblad, Comm. Math. Phys. 48, 119 (1976).

[26] H. P. Breuer and F. Petruccione, The theory of quantum open systems, (Oxford University
Press, New York, 2002).

15


	1 Introduction
	2 Boltzmann entropy and macrostates for a spin system
	3 Quantum Boltzmann entropy for spin-echo systems
	3.1 The description of spin-echo macrostates in quantum theory
	3.2 Interpretation of the quasi-classical description
	3.3 Quantum definition of spin-echo Boltzmann entropy.

	4 Entropy increase in spin echoes 
	4.1 Evolution equation for the distribution function
	4.2 Time-evolution of entropy.
	4.3 Loscmhidt echoes

	5 Discussion

