
ar
X

iv
:1

00
2.

37
47

v1
  [

q-
fi

n.
ST

] 
 1

9 
Fe

b 
20

10
epl draft

Large-volatility dynamics in financial markets

B. Zheng(a) and J. Shen

Zhejiang University, Zhejiang Institute of Modern Physics, Hangzhou 310027, PRC

PACS 89.65.Gh – econophysics
PACS 89.75.-k – complex system

Abstract. - We investigate the large-volatility dynamics in financial markets, based on the
minutely and daily data of the Chinese Indices and German DAX. The dynamic relaxation both
before and after large volatilities is characterized by a power law, and the exponents p± usually
vary with the strength of the large volatilities. The large-volatility dynamics is time-reversal
symmetric at the minutely time scale, while asymmetric at the daily time scale. Careful analysis
reveals that the time-reversal asymmetry is mainly induced by exogenous events. It is also the
exogenous events which drive the financial dynamics to a non-stationary state. In general, the
Chinese Indices and German DAX are in different universality classes. An interacting herding
model without and with exogenous driving forces could qualitatively describe the large-volatility
dynamics.

Financial markets are complex systems which share
common features with those in traditional physics. In re-
cent years, it has been piled up large amount of financial
data. This allows an analysis of the fine structure and
interaction of the financial dynamics, and many empiri-
cal results have been documented [1–10]. Although the
price return of a financial index is short-range correlated
in time, the volatility exhibits a long-range temporal cor-
relation [2, 3]. The dynamic behavior of volatilities is an
important topic in econophysics [2, 3, 11, 12].

In usual cases, one assumes that the financial market is
in the stationary state, and analyzes the statistical prop-
erties of the financial dynamics. For a comprehensive un-
derstanding of the financial markets, however, it is also
important to investigate the non-stationary dynamic prop-
erties. A typical example is the so-called financial crash
[6,13]. Lillo and Mantegna study three huge crashes of the
stock market, and find that the rate of volatilities larger
than a given threshold after such market crashes decreases
by a power law with certain corrections in shorter times
[14]. This dynamic behavior is analogous to the classi-
cal Omori law, which describes the aftershocks following a
large earthquake [15]. Selcuk analyzes the daily data of the
financial indices from 10 emerging stock markets and also
observed the Omori law after the two largest crashes [16].
Recently, Weber et al. demonstrate that the Omori law
holds also after ”intermediate shocks”, and the memory of
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volatilities is mainly related to such relaxation processes
[17].
Stimulated by these works, we systematically analyze

the large-volatility dynamics in financial markets, based
on the minutely and daily data of the Chinese Indices
and German DAX. In our study, a large volatility is so
selected that it is sufficiently large compared with the av-
erage volatility, but maybe not yet a real financial crash
or rally. The purpose of this paper is multi-folds. We
investigate the dynamic relaxation both before and after

large volatilities. We focus on the time-reversal symme-
try or asymmetry at the minutely and daily time scales.
To achieve more reliable results, we introduce the rema-
nent and anti-remanet volatilities to describe the large-
volatility dynamics. In particular, we examine the dy-
namic behavior of different categories of large volatilities,
and search for the origin of the time-reversal asymmetry at
the daily time scale. We reveal how the dynamic system is
driven to a non-stationary state by exogenous events. We
compare the results of the mature German market and
the emerging Chinese market. Finally we present a multi-
agent model to simulate the large-volatility dynamics.
In this paper, we have collected the daily data of the

German DAX from 1959 to 2009 with 12407 data points,
and the minutely data from 1993 to 1997 with 360000
data points. The daily data of the Shanghai Index are
from 1990 to 2009 with 4482 data points, and the minutely
data are from 1998 to 2006 with 95856 data points. The
daily data of the Shenzhen Index are from 1991 to 2009
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with 4435 data points, and the minutely data are from
1998 to 2003 with 50064 data points. The minutely data
are recorded every minute in the German market, while
every 5 minutes in the Chinese market. A working day is
about 450 minutes in Germany while exactly 240 minutes
in China. In our terminology, the results of the so-called
”Chinese Indices” are the averages of the Shanghai Index
and Shenzhen Index.
Denoting a financial index at time t as P (t), the return

and volatility are defines as R(t) ≡ lnP (t + 1) − lnP (t)
and |R(t)| respectively. Naturally, the dynamic behavior
of volatilities may depend on the time scale. To study
the dynamic relaxation after and before large volatilities,
we introduce the remanent and anti-remanent volatilities
v+(t) and v−(t),

v±(t) = [< |R(t′ ± t)| >c −σ]/Z, (1)

where Z =< |R(t′)| >c −σ, σ is the average volatility, and
< · · · >c represents the average over those t′ with speci-
fied large volatilities. In our analysis, the large volatilities
are selected by the condition |R(t′)| > ζ, and the given
threshold ζ is well above σ. When ζ is sufficiently large,
it corresponds to the financial crashes and rallies. v+(t)
describes how the system relaxes from a large volatility to
the stationary state, while v−(t) depicts how the system
approaches a large volatility.
Large shocks in volatilities are usually followed by a

series of aftershocks. Thus we assume that both v+(t)
and v−(t) obey a power law,

v±(t) ∼ (t+ τ±)
−p± , (2)

where p± are the exponents and τ± are positive constants.
For reducing the fluctuations, we integrate Eq. (2) from 0
to t. Thus the cumulative function of v±(t) is written as

V±(t) ∼ [(t+ τ±)
1−p± − τ

1−p±

± ] (3)

for p± 6= 1. The physical origin for the power-law behavior
of v±(t) is clear. It just represents the long-range temporal
correlation of volatilities. Such a power-law behavior has
been well understood in dynamic critical phenomena, even
in the case far from equilibrium [18,19].
We first analyze the minutely data of the Chinese In-

dices and German DAX. Now |R(t)| is calculated in the
unit of five minutes for the Chinese Indices and one minute
for the German DAX. To select the large volatilities, we
set the threshold ζ = 2σ, 4σ, 6σ, and 8σ. For the minutely
data, a large volatility may not indicate a real macroscopic
crash or rally, and it possibly brings the dynamic system
to a microscopic non-stationary state. In Fig. 1 (a), V±(t)
of the Chinese Indices are displayed on a log-log scale. Be-
cause of the intra-day pattern [3,8,20,21], the curves peri-
odically fluctuate at a working day, i.e., t ∼ 240 minutes.
We remove this intra-day pattern, e.g., with the proce-
dure in Ref. [3, 22] and recalculate V±(t). This is shown
in Fig. 1 (b). Now an almost perfect power-law behav-
ior is observed for both V−(t) and V+(t), starting from

t ∼ 5 minutes. The curves of V±(t) of the German DAX
look very similar to those of the Chinese Indices, with the
intra-day pattern around t ∼ 450 minutes.
Fitting the curves of V±(t) of the minutely data to

Eq. (3), we obtain the exponents p± summarized in the
first and second sectors of Table 1. For both the Chinese
Indices and German DAX, both p+ and p− increase with
the threshold ζ. Especially, p+ and p− of every ζ are equal
within statistical errors. In other words, the dynamic be-
havior at the microscopic time scale, typically in minutes,
is symmetric before and after large volatilities. However,
the exponents p± of the German DAX are larger than
those of the Chinese Indices.
To further understand the large-volatility dynamics of

the financial markets, we have also calculated V±(t) with
the daily data of the Chinese Indices and German DAX. As
shown in Fig. 2, the dynamic behavior of V±(t) can also be
described by Eq. (3), although the curves look somewhat
fluctuating, compared with those of the minutely data.
From the fitting, we obtain τ± ≈ 0 for the Chinese In-
dices, while τ± 6= 0 for the German DAX. The exponents
p± are listed in the fourth and fifth sectors of Table 1.
p± of the daily data also depend on ζ, similar to those
of the minutely data. However, the ζ-dependence of p+
becomes obviously weaker, i.e., p− 6= p+. In other words,
the time-reversal symmetry before and after large volatil-
ities is violated at the daily time scale. These results are
true for both the Chinese Indices and German DAX. But
again p± of the German DAX are larger than those of the
Chinese Indices. The dynamic relaxation of the Chinese
Indices is slower. As a representative of emerging markets,
the Chinese market shares common features with the west-
ern markets in basic statistical properties [22], meanwhile
exhibits its own characteristics in the return-volatility cor-
relation and ”spatial” structure [9, 10].
In Refs. [14, 23], the dynamic relaxation after a finan-

cial crash, which is an event corresponding to an extremely
large ζ and with R(t′) < 0 in our terminology, has been in-
vestigated. The observable N+(t), which is the number of
times that the volatility exceeds a certain threshold ζ1 in
the time t after the financial crash, decays by a power law.
For comparison, we have also performed such an analysis.
To reduce the fluctuations, we choose a large but not ex-
tremely large threshold ζ = 12σ to gain some samples for
average. Additionally we extend the calculations to both
N+(t) and N−(t). For the minutely data, we observe that
N±(t) of ζ1 = 2σ to 5σ could be fitted by Eq. (3). The
exponents p± are weak ζ1-dependent, and with p− = p+,
i.e., similar to those for V±(t) in Table 1. For the daily
data, the fluctuations are large, although the asymmetric
behavior between N+(t) and N−(t) could be qualitatively
observed. The weak point of this analysis is that there are
two thresholds ζ and ζ1.
Up to here, we always average over all the selected

large volatilities in computing V±(t) (or N±(t)). How-
ever, the large volatilities could originate differently, and
the dynamic relaxation may depend on the category of

p-2



Large-volatility dynamics in financial markets

the large volatilities. Especially, it is puzzling how the

time-reversal asymmetry arises at the daily time scale?

Our first thought is to classify the large volatilities |R(t′)|
by R(t′) < 0 and R(t′) > 0, i.e., the so-called ”crashes”
and ”rallies”. We compute V±(t) for the ”crashes” and
”rallies” separately, and fit the curves to Eq. (3). At the
minutely time scale, the exponents pc± of the crashes are
equal to pr± of the rallies within statistical errors. At the
daily time scale, however, pc± 6= pr±. As shown in Ta-
ble 2, such an asymmetry behavior between the ”crashes”
and ”rallies” is especially prominent for the German DAX,
usually pc± > pr±. This result sounds reasonable, for the
”crashes” should generally be more radical than the ”ral-
lies”. In addition, the time-reversal asymmetry remains
for both the ”crashes” and ”rallies”.
The large volatilities at the daily time scale could be also

classified into endogenous events and exogenous events
[6, 24]. An exogenous event is associated with the mar-
ket’s response to external forces, and an endogenous event
is generated by the dynamic system itself. Looking care-
fully at the history of the Shanghai stock market, for ex-
ample, we find that there are 9 exogenous events among
the 16 large volatilities selected by the threshold ζ = 8σ.
For the large volatilities corresponding to the thresholds
such as ζ = 2σ and 4σ, it is not so meaningful to naively
identify the external forces. In Fig. 3, V±(t) of ζ = 6σ
and 8σ are displayed for the endogenous and exogenous
events of the Shanghai Index. Obviously, the endogenous
and exogenous events exhibit different dynamic behaviors.
The dynamic relaxation of the exogenous events is faster.
For the Shenzhen Index, we obtain qualitatively the same
results but with somewhat larger fluctuations. For the
German DAX, we are not able to directly identify the ex-
ternal forces, due to our unfamiliarity of the history of the
German stock market.
In Fig. 3, we observe that the dynamic relaxation of

the exogenous events is time-reversal asymmetric, i.e.,
p− 6= p+, while that of the endogenous events is approxi-
mately time-reversal symmetric, i.e., p− ≈ p+. Based on
this observation, we introduce an asymmetric factor r to
characterize the large volatilities,

r =
s+ − s−
s+ + s−

, (4)

where s± are the areas bounded by the curves of m±(t)
and two coordinate axes. Careful analysis of the Shang-
hai Index shows that r > 0.25 and r < 0.25 reasonably
classify the exogenous and endogenous events respectively.
With such a classification, we are able to compute V±(t)
for the exogenous and endogenous events respectively, for
both the Chinese Indices and German DAX. These cal-
culations confirm that the time-reversal asymmetry at the
daily time scale is mainly induced by the exogenous events.
In particular, p±(t) of the endogenous events are almost
independent of the threshold ζ.
In financial markets, a large volatility does not neces-

sarily indicate that the dynamic system already jumps

to a non-stationary state, for the probability distribution
of volatilities is with a power-law tail. Since p±(t) of
the endogenous events are almost independent of ζ, the
dynamic system probably remains still in the stationary
state. However, exogenous events may drive the dynamic
system to a non-stationary state.
Although there have been many activities devoted to the

macroscopic description of the financial crashes, it remains
a great challenge to simulate the dynamic relaxation of
the large volatilities or financial crashes and rallies at the
microscopic level. A Gaussian process or a usual minority
game fails to explain the large-volatility dynamics. In this
paper, we present an interacting herding model, which
may qualitatively reproduce the dynamic behavior of the
large volatilities. The model consists of N agents, which
form clusters during dynamic evolution. Initially, each
agent is a cluster. The dynamics evolves in the following
way.
(1) At a time step t′, an agent i (and thus its cluster)

is selected at random.
(2) With probability a, i becomes active and decides

buying or selling, and all agents in the cluster follow. After
that, this cluster is broken into a state that each agent is
a separate cluster. The size of this cluster is then recorded
as s(t′).
(3) With probability 1− a, i remains inactive. Another

agent j is randomly selected. If i and j are in different
clusters, combine the two clusters into a bigger one.
The parameter a apparently controls the dynamic evolu-

tion. In fact, 1/a is the rate of transmission of information
[25]. Practically, one assumes that s(t′) is proportional to
the volatility at time t′. If a is a constant, the model
does not produce the long-range temporal correlation of
volatilities. To mimic the real markets, a should not be a
constant. For example, a may interact with the volatility
in a form like [26, 27]

a(t′) = b+ c/s(t′ − 1). (5)

Here b and c are positive constants. Such an interaction
may generate a long-range temporal correlation of volatil-
ities. We have performed the simulations with N = 40000
and b = 0.00025. The critical value of c is estimated to be
0.6. In Fig. 4 (a), V±(t) is displayed. Fitting the curves to
Eq. (3), we obtain the exponents p±(t), as shown in the
third sector of Table 1. Obviously, p±(t) are ζ-dependent,
and the difference of p− and p+ is small. Therefore, this
model could be compared with the minutely data of the
financial markets, although its exponents p±(t) are larger.
Actually, one may define the volatility |R| = sα with α 6= 1
to change the values of p±(t).
To simulate the dynamic relaxation before and after

large volatilities at the daily time scale, we may introduce
exogenous driving forces to the interacting herding model.
Here we present a simple scheme. At a certain time, we
randomly select several pairs of clusters, and combine each
pair into a bigger cluster. As shown in Fig. 4 (b) and the
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sixth sector of Table 1, such a simple scheme does enhance
the time-reversal asymmetry in the dynamic relaxation
before and after large volatilities. To achieve an accurate
comparison with the financial markets, one needs more so-
phisticated exogenous driving schemes, e.g., to modify the
dynamic rules for the exogenous events.

In summary, we have investigated the large-volatility
dynamics in financial markets, based on the minutely and
daily data of the Chinese Indices and German DAX. The
dynamic relaxation before and after large volatilities is
characterized by the power law in Eq. (3). At the minutely
time scale, the exponents p± increase with the thresh-
old ζ, and the large-volatility dynamics is time-reversal
symmetric, i.e., p− = p+. At the daily time scale, the
ζ-dependence of p+ is weaker, and the large-volatility dy-
namics is time-reversal asymmetric, i.e., p− 6= p+. Careful
analysis reveals that not only the time-reversal asymme-
try but also the ζ-dependence of p± are mainly induced
by exogenous events. In this sense, the exogenous events
may drive the financial dynamics to a non-stationary state,
while the endogenous events may not. Quantitatively, the
exponents p± of the Chinese Indices and German DAX
belong to different universality classes. The dynamic re-
laxation of the Chinese Indices is slower. An interacting
herding model without and with exogenous driving forces
could qualitatively describe the large-volatility dynamics.
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Fig. 1: (a) V±(t) for the minutely data of the Chinese Indices.
From above, the threshold is ζ = 2σ, 4σ, 6σ and 8σ respec-
tively. (b) The same as (a), but the intra-day pattern has been
removed. Dashed lines show the power-law fits with Eq. (3).
The ζ-dependent exponents p− = p+, and τ± = 0.

ζ 2σ 4σ 6σ 8σ

CHN(min)
p− 0.11(1) 0.15(1) 0.17(1) 0.20(1)
p+ 0.11(1) 0.15(1) 0.18(1) 0.22(1)

DAX(min)
p− 0.16(1) 0.23(1) 0.27(1) 0.29(1)
p+ 0.16(1) 0.22(1) 0.26(1) 0.29(1)

Model 1
τ− 1.58 2.51 3.07 3.24
p− 0.46(1) 0.58(2) 0.65(1) 0.70(2)
τ+ 2.67 2.13 1.94 1.71
p+ 0.44(2) 0.52(1) 0.58(2) 0.62(2)

CHN(day)
p− 0.27(3) 0.31(4) 0.36(4) 0.51(6)
p+ 0.26(2) 0.32(3) 0.33(4) 0.36(5)

DAX(day)
τ− 13.11 9.06 4.07 3.78
p− 0.41(3) 0.47(4) 0.60(5) 0.77(7)
τ+ 10.66 9.23 7.28 3.98
p+ 0.40(2) 0.42(3) 0.45(5) 0.46(5)

Model 2
τ− 1.33 2.08 2.88 3.99
p− 0.55(3) 0.68(4) 0.77(3) 0.86(5)
τ+ 2.07 2.39 2.05 1.96
p+ 0.46(3) 0.57(3) 0.63(3) 0.68(3)

Table 1: p± are measured with the minutely and daily data
of the Chinese Indices (CHN) and German DAX, in compar-
ison with those of the interacting herding model (model 1)
and its variant with exogenous driving forces (model 2). For
CHN(min), DAX(min) and CHN(day), τ± = 0.

ζ 2σ 4σ 6σ 8σ

DAX(day)
pc− 0.46(4) 0.47(5) 0.69(6) 0.99(13)
pr− 0.34(3) 0.35(4) 0.49(5) 0.55(7)
pc+ 0.44(2) 0.46(4) 0.52(6) 0.66(7)
pr+ 0.31(3) 0.30(3) 0.33(5) 0.30(5)

CHN(day)
pc− 0.21(3) 0.30(4) 0.35(5) 0.53(7)
pr− 0.31(3) 0.32(4) 0.39(5) 0.47(6)
pc+ 0.23(2) 0.34(4) 0.36(6) 0.41(6)
pr+ 0.30(2) 0.32(4) 0.33(5) 0.35(6)

Table 2: pc± for the ”crashes” and pr± for the ”rallies” measured
with the daily data of the Chinese Indices and German DAX.
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Fig. 2: V±(t) for the daily data of the Chinese Indices and
German DAX. From above, the threshold is ζ = 2σ, 4σ, 6σ
and 8σ respectively. Dashed lines show the power-law fits with
Eq. (3). τ± = 0 for the Chinese Indices and τ± 6= 0 for the
German DAX. (a) p− depends on ζ. (b) the ζ-dependence of p+
is weak. For clarity, some curves have been shifted downwards
or upwards.
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Fig. 3: V±(t) for the daily data of the Shanghai Index. For ζ =
6σ and 8σ, V±(t) are displayed for endogenous and exogenous
events separately.
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Fig. 4: V±(t) for the interacting herding model and its variant
with exogenous driving forces. From above, the threshold is
ζ = 2σ, 4σ, 6σ and 8σ respectively.
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