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Abstract. We prove that the family of embezzlement states defined by van Dam and Hayden[26]
is universal for both quantum and classical entangled two-prover non-local games with an arbitrary
number of rounds. More precisely, we show that for each ε > 0 and each strategy for a k-round
two-prover non-local game which uses a bipartite shared state on 2m qubits and makes the provers
win with probability ω, there exists a strategy for the same game which uses an embezzlement
state on 2m + 2m/ε qubits and makes the provers win with probability ω −

√
2ε. Since the value

of a game can be defined as the limit of the value of a maximal 2m-qubit strategy as m goes to
infinity, our result implies that the classes QMIP ∗

c,s[2, k] and MIP ∗

c,s[2, k] remain invariant if we
allow the provers to share only embezzlement states, for any completeness value c ∈ [0, 1] and any
soundness value s < c. Finally we notice that the circuits applied by each prover may be put into
a very simple universal form.

1 Introduction

A k-round non-local game is an interactive procedure involving a referee, and two provers Alice and Bob.
At each round the referee randomly selects two questions drawn from finite sets and sends one of them
to each prover. Subsequently, each of the provers replies to her/his question. Alice and Bob are assumed
to be in distinct locations and not to be able to communicate. In this way, none of them knows which
question was sent to the other. At the end of the last round, the referee evaluates a publicly known
predicate which depends on the whole history of questions and answers. The provers win if the predicate
evaluates to true. The value of a non-local game is defined to be the maximum winning probability of
Alice and Bob.

The importance of non-local games is twofold. On one hand they are intimately connected with
multi-prover interactive proof systems [6]. In these systems a polynomial time verifier must decide the
membership of a string x in a language L through an interactive protocol involving several provers which
are not allowed to communicate. We say that a language L has a k-round two-prover interactive proof
system if there exists a polynomial time function which assigns to each x a k-round game Gx in such a
way that if x is in L then the value of the game Gx is above a threshold c, while if x is not in L, the
value of the game Gx is below a threshold s for s < c. We refer to c as being the completeness of the
system, and to s as being its soundness.

On the other hand, by allowing the provers to share a quantum system prepared in an arbitrary
entangled state, non-local games become a suitable formalism to describe experiments that unveil the
inherent non-locality of quantum mechanics. Following Bell’s [4] observation that some predictions of
quantum mechanics are inconsistent with local hidden variables theories, several experiments were pro-
posed with the aim to provide a decisive test between quantum mechanics and hidden local variables
theories. As an example, in the CHSH game which is based on a thought experiment of Clauser, Horne,
Shimony and Holt [9], Bell’s work implies that if the provers are classical the value of the game is 0.75
while if we allow the provers to share entanglement, there is a strategy which achieves a value of ≈ 0.85.
In other examples of games, like the Kochen-Specker game [19, 25] and the Mermin-Peres magic square
game [22, 2, 24], any classical strategy is doomed to fail with some probability while there is a quantum
strategy which always allows the provers to win.

When dealing with interactive proof systems it is customary to impose limits on the computational
power of the verifier, while the provers are assumed to be at most limited by the laws of physics. In
this sense, it is reasonable to consider interactive proof systems in which the provers are allowed to
share arbitrary quantum states. The study of how entanglement may affect the decidability properties
of two-prover interactive proof systems was initiated by Cleve, Hoyer, Toner and Watrous [10]. They
provide several examples of proof systems whose soundness is violated if we allow the provers to share
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an entangled state. Furthermore they provide evidences that entanglement may significantly interfere in
the decidability properties of multi-prover interactive proof systems. Let ⊕MIPc,s[2, 1] denote the class
of languages which can be decided by two prover interactive proof systems in which the final decision
of the verifier is taken solely based on the XOR of the 1-bit answers of the provers, and ⊕MIP ∗

c,s[2, 1]
be its entangled version. Cleve et al. [10] show that ⊕MIP ∗

c,s[2, 1] ⊆ EXP , while in the classical case,
it follows from works of H̊astad [13] and Bellare, Goldreich and Sudan [5] that ⊕MIPc,s[2, 1] = NEXP
for certain completeness and soundness values. Indeed, by combining a result of Wehner [27] and Jain,
Upadhyay and Watrous [14], it is possible to refine the first inclusion to ⊕MIP ∗[2, 1] ⊆ PSPACE. Thus
unless, PSPACE = NEXP entanglement indeed can weaken the decidability properties of XOR games.
Entangled non local games were generalized and studied as well in the scenario in which the verifier is
allowed to be quantum [16, 15, 17]. In particular, some positive aspects of entanglement are explored in
[16], where the authors provide some evidence that prior entanglement may be useful for honest provers.

In order to make the study of entangled games slightly easier, it is reasonable to ask whether the
bipartite state shared by the provers may be restricted to a class of states which is easy to describe and
to work with. The aim of this work is to show that the embezzlement family of states defined by van
Dam and Hayden[26], satisfy these criteria. More precisely, in Theorem 2 we prove that the family of
embezzlement states is universal for two-prover non-local games with any number of rounds, in the sense
that any strategy for a two-prover non-local game which yields a value ω may be replaced by a strategy
for the same game that uses an embezzlement state and that yields a value of at least ω−

√
2ε for any ε

with 0 < ε < 1 with only a linear, in 1/ε, overhead on the number of qubits to be shared. Since the value
ω of a game can be defined as the limit of the value of a maximal 2m-qubit strategy as m goes to infinity,
this implies that ω itself is not changed when only embezzlement states are considered. As a consequence,
the classes QMIP ∗

c,s[2, k] and MIP ∗
c,s[2] remain invariant through our restriction (Corollary 1). Finally,

as an observation, we note in Theorem 3 that the circuits applied by the provers may also be put into a
very simple universal form.

While in the classical case a series of results [3, 8, 20, 11, 12] established the relation MIP [2, k] =
MIP [2, 1] = NEXP for any k, in the setting in which the provers share entanglement it makes sense
to consider interactive proof systems with an arbitrary number of rounds because in this case it is not
known whetherMIP ∗[2, k] =MIP ∗[2, 1] for k ≥ 2. It is also worth noting that the embezzlement family
has been already considered (and generalized to any constant number of provers) by Leung, Toner and
Watrous [21] and used to prove that if we allow the referee to be quantum, then there are one-round
games whose value cannot be achieved by means of strategies that share a finite amount of entanglement.
Nevertheless, the embezzlement family seems to have passed unnoticed as a universal family of states
for non-local games, and in some of the literature concerning entangled multiprover interactive proof
systems, the existence of such family is implicitly stated as an open problem [18].

The rest of this paper is organized as follows: In Section 2 we provide a formal definition of non-local
games. In Section 3 we introduce van Dam and Hayden’s embezzlement family and prove our universality
results (Theorems 2 and 3, and Corollary 1).

2 Non-Local Games

A k-round two-prover non-local game is an interactive procedure undertaken by a verifier and two provers
which we call Alice and Bob. The game proceeds as follows: Given two sets of questions S and T , two
sets of answers A and B, and a predicate V ⊆ Sk × T k ×Ak ×Bk, at round i the verifier choses a pair
of questions (si, ti) ∈ S × T accordingly to a probability distribution πi defined on S × T and sends the
question si to Alice and the question ti to Bob. Alice replies with an answer ai ∈ A and Bob replies with
an answer bi ∈ B. The provers win the game if the history (s1...sk, t1...tk, a1...ak, b1...bk) of all questions
and answers satisfies the predicate V . The goal of the provers is to follow a strategy that maximizes
their winning probability. We note that the probability distribution πi with which the verifier choses
the questions at round i may depend on the questions and answers from previous rounds. We denote a
k-round non-local game by G = (V, π) where π is a set of probability distributions over S × T

π = {πi(s1...si, t1...ti, a1...ai, b1...bi)|1 ≤ i ≤ k − 1} (1)

The provers’ strategies can be described by Positive Operator Valued Measurements (POVM’s).
Formally, a POVM in Cn with outcomes in I is a family of n-dimensional operators M = {Mi}i∈I
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satisfying
∑

M †
iMi = In, where In is the identity in Cn. Measuring a quantum system prepared in a

state |ψ〉 ∈ Cn according toM , yields the outcome i with probability 〈ψ|M †
iMi|ψ〉 and post-measurement

state Mi|ψ〉/〈ψ|M †
iMi|ψ〉 [23].

In a quantum strategy, the provers share a quantum register consisting of 2m qubits prepared in
a bipartite state |ψ〉 ∈ C2m ⊗ C2m in such a way that each prover holds m of the qubits. The state
shared by the provers can be assumed to be pure, for if it were mixed, we could simply consider a
pure state in a higher dimensional Hilbert space. For each question si ∈ S and history of questions

and answers (s1...si−1, a1...ai−1), Alice has a POVM {Xa1...ai−1|ai
s1...si−1|si

}ai∈A with outcomes in A. Similarly,

for each question ti ∈ T and history of questions and answers (t1...ti−1, b1...bi−1), Bob has a POVM

{Y b1...bi−1|bi
t1...ti−1|ti

}bi∈B with outcomes in B. In a slight abuse of notation we simply write {Xai
si }ai∈A and

{Y biti }bi∈B whenever the history of the previous rounds is clear. A strategy on 2m-qubits is completely
determined by a triple (|ψ〉2m, X, Y ) where |ψ〉 is the shared state, X is the collection of all POVM’s of
Alice and Y of all POVM’s of Bob. Let |ψ〉 = |ψ1〉 be the initial state shared by the provers and |ψi〉
be the state shared by the provers at the i-th round. The probability with which Alice and Bob reply
respectively ai and bi at the i-th round when questioned with si and ti is given by

〈ψi|(Xai
si ⊗ Y biti )

†Xai
si ⊗ Y biti |ψi〉 (2)

and the new state becomes

|ψi+1〉 =
Xai
si ⊗ Y biti |ψi〉

〈ψi|(Xai
si ⊗ Y biti )

†Xai
si ⊗ Y biti |ψi〉

. (3)

As a convention we let boldface letters range over k-tuples of elements: s ∈ Sk, t ∈ T k, a ∈ Ak and
b ∈ Bk. The value of the strategy (|ψ〉, X, Y ) for the game is defined as

ωG(|ψ〉, X, Y ) =
∑

s,t,a,b

V (s, t, a,b)

k
∏

i=1

πi(si, ti)

k
∏

i=1

〈ψi|(Xai
si ⊗ Y biti )

†Xai
si ⊗ Y biti |ψi〉, (4)

which by using Equations (2) and (3), can be rewritten explicitly as a function of the initial shared
state |ψ〉 as

ωG(|ψ〉2m, X, Y ) =
∑

s,t,a,b

[

V (s, t, a,b)

k
∏

i=1

πi(si, ti)

]

〈ψ|
(

Xa1
s1 ...X

ak
sk

⊗ Y b1t1 ...Y
bk
tk

)†

Xa1
s1 ...X

ak
sk
⊗Y b1t1 ...Y

bk
tk

|ψ〉.

(5)
The entangled value of G is defined as the limit of the maximum value among all n-qubit strategies

as n goes to infinity.

ωeG = lim
m→∞

max
|ψ〉

2m
,X,Y

ωeG(|ψ〉2m, X, Y ). (6)

Non-local games can be further generalized to the case in which the verifier has quantum capabilities.
In this case the communication with the provers proceeds through the exchange of quantum registers.

Definition 1 (Quantum Entangled Non-Local Games). A k-round 2-prover entangled quantum
game G(V1, ..., Vk) is defined by a verifier strategy (V1, ..., Vk, Vk+1) where each Vi is a quantum circuit
acting on three quantum registers: A private quantum register privV and two quantum communication
registers comX and comY . A 2m-qubit strategy for G consists of a bipartite quantum state |ψ〉 ∈ C2m ⊗
C2m , and two sequences of quantum circuits X = (X1, ..., Xk) and Y = (Y1, ..., Yk) (prover’s circuits),
where each Xi acts on the quantum communication register comX and on a private quantum register
privX , and each Yi is a quantum circuit acting on the communication register comY and on a private
quantum register privY .

The game proceeds as follows: At the start, privV , comX and comY are initialized to |0〉 while privX
and privY are initialized to the bipartite state |ψ〉. The j-th round of the game consists in the application
of the circuit Vj followed by the application of Xj and Yj to their respective registers. After the k-th
round, Vk+1 is applied and the first private qubit q of the verifier is measured in the computational basis.
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The quantum value ωq(|ψ〉2m, X, Y ) of a strategy (|ψ〉2m, X, Y ) is defined as the probability with
which the measured qubit q is |1〉. Similarly to the classical entangled case, the value of a k-round
quantum game G = (V1, ..., Vk, Vk+1) is defined as

ωqG = lim
m→∞

max
|ψ〉

2m
,X,Y

ωqG(|ψ〉2m, X, Y ). (7)

In the most general case, the circuits corresponding to both the verifier and the provers may contain any
kind of physically realisable operations. However such circuits may be efficiently simulated by quantum
circuits consisting only of unitary operations followed by a single measurement [1]. Furthermore, by
considering higher dimensional Hilbert spaces, we may assume that the state shared by the provers is
pure.

Classical entangled games may be cast as a subclass of quantum entangled games: Each verifier circuit
consists of a measurement of the communication registers comX and comY in the computational basis,
followed by the application of a permutation of the basis states. The formulation of classical entangled
two-prover non-local games in terms of predicates is more natural, and allow us to define the value
of the entangled game by a closed formula, which is completely circuit independent. Nevertheless the
reformulation of classical entangled games as a special case of quantum entangled games is more suitable
for the goals of this paper. In particular, the proof of Theorem 2 turns out to be much simpler in this
setting.

Definition 2 (Quantum (Classical) Entangled Multiprover Interactive Proof Systems). A
language L over an alphabet Σ can be decided by a k-round quantum (classical) entangled two-prover
interactive proof system with completeness c and soundness s if there exists a deterministic polynomial
time algorithm P that on input x ∈ Σ∗ constructs the description of the circuits of a quantum (classical)
entangled k-round two-prover non-local game G = (V1, ..., Vk, Vk+1), such that if x ∈ L then ωqG ≥ c
(ωeG ≥ c) and if x /∈ L then ωqG ≤ s (ωeG ≤ s).

We denote by QMIP ∗
c,s[2, k] and MIP ∗

c,s[2, k] the classes of all languages that have a quantum, resp.
classical, entangled k-round two-prover interactive proof system with completeness c and soundness s.

3 Universality of the Family of Embezzlement States

Embezzlement states were defined in [26] as follows:

|µ〉2n =
1

C

2n
∑

j=1

1√
j
|j〉n|j〉n C =

√

√

√

√

2n
∑

j=1

1

j
. (8)

Let |ψ〉2n =
∑2m

i=1 αi|θi〉|θi〉 be a bipartite 2m-qubit state written according to its Schmidt decompo-
sition. Then the state |µ〉 ⊗ |ψ〉 admits a Schmidt decomposition of the form

∑

j,i

γj,i|j〉|j〉|θi〉|θi〉 (9)

Let γj1,i1 ≥ γj2,i2 ≥ ... ≥ γjN ,iN be the N = 2n largest coefficients of the above Schmidt decomposi-
tion. Then define the n− th embezzled version of |ψ〉 to be the state

|E(ψ)〉2n,2m =

2n
∑

r=1

1√
r
|jr〉|jr〉|θir 〉|θir 〉. (10)

We note that Alice and Bob may transform the state |µ〉2n into the state |E(ψ)〉2n,2m by performing
only local operations and without communication. First each prover prepares a local ancilla register of
size m in the state |1〉m, so that |µ〉2n becomes |µ〉2n ⊗ |1〉m|1〉m. Subsequently both Alice and Bob
apply a unitary U that maps each basis state |j〉n|1〉m to the basis state |jr〉n|θir 〉m, thus transforming
|µ〉2n ⊗ |1〉m|1〉m into |E(ψ)〉2n,2m. Surprisingly, as stated in the next theorem, by increasing n the state
|E(ψ)〉2n,2m can be made arbitrarily close to |µ〉2n ⊗ |ψ〉2m.
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Theorem 1 (Embezzlement [26]). Let |ψ〉2m =
∑2m

j=1 αi|θi〉|θi〉 be a 2m qubit bipartite state written
according to its Schmidt decomposition, ε be such that 0 < ε < 1; and n,m ∈ N be such that n ≥ m

ε .
Then (〈µ|2n ⊗ 〈ψ|2m)|E(ψ)〉2n,2m ≥ 1− ε.

To show our main theorem, we need some more notation: The trace distance between two states |ψ〉
and |φ〉 in Cn is defined as D(|ψ〉, |φ〉) = 1

2 tr|(|ψ〉〈ψ| − |φ〉〈φ|)| where |A| ≡
√
A†A. If {Mi}i∈I is a

POVM with outcomes in I and pi = 〈ψ|M †
iMi|ψ〉 and qi = 〈φ|M †

iMi|φ〉 are the probability distributions
induced by the measurement on |ψ〉 and |φ〉 respectively, then D(pi, qi) ≤ D(|ψ〉, |φ〉) where D(pi, qi) =
1
2

∑

i |pi − qi| is the classical total variance distance between the probability distributions pi and qi (see
for example theorem 9.1 of [23] for a proof). In other words if two quantum states are close in trace
distance, then any measurement performed on those states will give rise to probability distributions

which are close in the classical sense. Also it can be proved that D(|ψ〉, |φ〉) ≤
√

1− 〈ψ|φ〉2 and thus if

〈ψ|φ〉 ≥ 1− ε, then D(|ψ〉, |φ〉) <
√
2ε.

Next we prove our main theorem. It says that the value of a quantum strategy for a quantum entangled
non-local game in which the provers share a pure state |ψ〉 on 2m qubits can be arbitrarily approximated
by the value of a strategy in which the provers share an embezzlement state. Since classical entangled
games can be regarded as a special case of quantum entangled games, Theorem 2 holds also in the
classical entangled setting.

Theorem 2. Let (|ψ〉2m, X, Y ) be a 2m-qubit quantum strategy for a k-round two-prover non-local game
G(V1, ..., Vk, Vk+1). Then for any ε with 0 < ε < 1 there exists a 2m(1 + 1/ε)-qubit strategy (|µ〉2m/ε ⊗
|1〉m|1〉m, X ′, Y ′) such that ωqG(|µ〉2m/ε|1〉m|1〉m, X ′, Y ′) ≥ ωqG(|ψ〉2m, X, Y )−

√
2ε.

Proof. Let (|µ〉2m/ε ⊗ |ψ〉2m, X, Y ) be a strategy for G where |µ〉2m/ε is the embezzlement state and

X and Y are obtained by tensoring each circuit in X and each circuit in Y with the identity on m/ε
qubits acting on half of the qubits of |µ〉2m/ε. Then clearly ωqG(|µ〉2m/ε⊗|ψ〉2m, X, Y ) = ωqG(|ψ〉2m, X, Y ).
By Definition 1, the interplay of the verifier’s strategy with the provers’s strategies, prior to the final
measurement of the verifier, may be regarded as the application of a single unitary UG to a pure state. Let
|E(ψ)〉2m/ε,2m be the embezzled version of |ψ〉 as defined in Equation (10) and set |φ〉 = UG|E(ψ)〉2m/ε,2m
and |φ′〉 = UG|µ〉2m/ε ⊗ |ψ〉. Since by Theorem 1, (〈µ|2m/ε,2m ⊗ 〈ψ|2m)|E(ψ)〉2m/ε,2m ≥ 1 − ε, we have

〈φ|φ′〉 ≥ 1 − ε and the trace distance D(|ψ〉, |φ〉) <
√
2ε. Let {Mi}i∈I be the POVM measurement

made by the verifier in the end of the k-th round and let pi = 〈φ|M †
iMi|φ〉 and qi = 〈φ′|M †

iMi|φ′〉.
Then D(pi, qi) ≤ D(|φ〉, |φ′〉) ≤

√
2ε. Finally there is a unitary U such that U ⊗ U |E(ψ)〉2m/ε,2m =

|µ〉2m/ε ⊗ |1〉m|1〉m where one of the U ’s acts on Alice’s qubits and the other on Bob’s qubits. Then the

final strategy is (|µ〉2m/ε,2m, X ′, Y ′) where X ′ = UXU † and Y ′ = UY U †. �

As pointed out in the introduction, Leung, Toner and Watrous [21] showed that there are quan-
tum entangled games whose value is never attained by a strategy whose shared state has a constant
number of qubits, and thus the limit in Equation (7) is fundamental. It is still not known whether
the same situation holds for classical entangled games. Despite the fact that Theorem 2 concerns only
strategies with a finite number of qubits, it is still possible to prove that the limit in Equations 6 and
7 does not change if we consider only embezzlement states. This in particular implies that the classes
QMIP ∗

c,s[2, k] and MIP ∗
c,s[2, k] remain invariant if we allow the provers to share only embezzlement

states. Let QMIPE
∗

c,s [2, k] (MIPE
∗

[2, k]) be the class of languages that can be decided by quantum
(classical) entangled k-round two-prover interactive proof systems whose provers are only allowed to
share embezzlement states.

Corollary 1. For any completeness value c ∈ [0, 1] and any soundness value s < c, QMIPE
∗

c,s [2, k]

(MIPE
∗

c,s [2, k]) is equal to QMIP ∗
c,s[2, k] (MIP ∗

c,s[2, k]).

Proof. Let L be a language in QMIP ∗
c,s[2, k] (MIP ∗

c,s[2, k]). It is enough to prove that for any x ∈ L the
value of the game Gx associated to x remains the same if we restrict the state shared by the provers to
belong to the embezzlement family. Since the proof holds both for classical entangled and for quantum
entangled games, we write simple ωGx

for the value of Gx. If ωGx
is reached by a strategy in which the

provers share a finite dimensional state |ψ〉2m, then by Theorem 2 there exist a sequence of strategies
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sharing states |µ〉2n ⊗ |1〉m|1〉m whose value approaches ωGx
as n → ∞. Now suppose that there is no

finite dimensional strategy whose value is ωGx
, and let ω2, ω4, ..., ω2m, ... be an infinite sequence where

ω2m is the maximum value among strategies sharing a quantum states on 2m qubits. Then by Theorem
2, for any two such consecutive values ω2(m−1) and ω2m, and for a small enough ε, there exists a strategy

on 2(1 + 1/ε)m qubits whose value ω ≥ ω2m −
√
2ε is between ω2(m−1) and ω2m. �

In Theorem 3 we state a dual of Theorem 2 which says that the circuits applied by the provers can
be put into a universal form.

Theorem 3 (Universal Strategy). For each k and each ε > 0 there is a universal set of k-round
circuits {(XM ,YM )}M∈N such that for each k-prover non-local game G and each strategy (|ψ〉2m, X, Y ),
there is a M ∈ N and a state |ψ〉2m|A〉M |B〉M , such that

ωG(|ψ〉2m|A〉M |B〉M ,XM ,YM ) ≥ ωG(|ψ〉2m, X, Y )− ε.

Proof. Any unitary matrix acting on d qubits can be ε-approximated by a circuit with poly(2d, log 1/ε)
gates from the universal set of gates {CNOT,H, π/8} [7]. By adding the SWAP gate to this set, such
circuits can be put into a nearest neighbor configuration, in which the CNOT and SWAP operate only
on adjacent pair of qubits. Alice and Bob hold two registers each: one working register with d = m + v
qubits, where v is the size of the communication register with the verifier, and an ancilla register of
size M = k · poly(2d, log k/ε) divided into k regions with equal number of qubits. Each prover regards
the state of the j-th region of her/his ancilla register as a program which will determine the unitary
that will be applied to her/his working register at the j-th round. More precisely, each prover applies
a circuit of the form CMCM−1...C1 where each Ci is a controlled gate which applies one of the four
gates SWAP,CNOT, I ⊗H or I ⊗ π/8 to qubits 2i(mod d) and 2i+1(mod d) 1 of the working register
depending whether the state of qubits 2i and 2i + 1 of the ancilla register is |00〉, |01〉, |10〉 or |11〉
respectively. For some configuration of |A〉, |B〉 of the ancillae registers of Alice and Bob respectively,
each unitary in XM (resp. YM ) will be ε/k-close to its corresponding unitary in X (resp. Y ). Since there
are k rounds and the errors accumulate additively, ωG(|ψ〉|A〉|B〉,XM ,YM ) ≥ ω(|ψ〉, X, Y )− ε. �
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