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Abstract

We provide an alternative approach to the decoherence-by-environment
paradigm in the field of the quantum measurement process and the
appearance of a classical world. In contrast to the decoherence ap-
proach we argue that the transition from pure states to mixtures and
the appearance of macro objects (and macroscopic properties) can be
understood without invoking the measurement-like influence of the en-
vironment on the pointer-states of the measuring instrument. We show
that every generic many-body system contains within the class of mi-
croscopic quantum observables a subalgebra of macro observables, the
spectrum of which comprises the macroscopic properties of the many-
body system. Our analysis is based (among other things) on two inge-
nious papers by v.Neumann and v.Kampen.
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1 Introduction

In recent years environment induced decoherence has apparently aquired
the status of a new paradigm in the context of the quantum measurement
process, the appearance of a classical world, or the nature of superselection
sectors (see, just to mention a few representative sources, [1],[2],[3],[4]). It
is even sometimes erroneously claimed, that it solves the quantum measure-
ment problem (cf. [5] and the reply by Adler [6]).

In our view the measurement problem consists of a deeper mystery, that
is, how particular measurement values appear in a single measurement, and
a problem which is of a somewhat lesser calibre, i.e. the transition of a
superposition of states into a corresponding mixture within the ensemble
picture interpretation of quantum mechanics. As papers about this field go
into the hundreds, we refer the reader to the above mentioned reviews what
concerns the decoherence approach and to [7] as to the older history of the
quantum measurement process. Our main concern in the following is not to
write another review but develop an (in our view) coherent complementary
approach to the above mentioned problems which is based on a deep (but
seldomly cited) paper by v.Neumann, a later equally important paper by
v.Kampen and prior work of the author (see [8],[9],[10],[11]).

Remark: One should note that practically nothing of the content of [8] can
be found in his famous book about the foundations of quantum mechanics!

One of the reasons why [8] has been largely neglected in the context of
the quantum measurement process is possibly that it is written in German
and that it deals mainly rather with the ergodic problem. Furthermore, in
the fifties (for reasons difficult to understand) it has been unjustly criticized
as being ‘empty’ etc. (a quite ridiculous remark in our view). As to the
reception history see the recent analysis by Lebowitz et al ([12]).

To describe the difference of our appoach compared to the decoherence
appoach in a nutshell one may say: It goes without saying that no (macro-
scopic) object is completely isolated, i.e. is in a sense an open system.
This does however not! imply that in an idealized but perhaps neverthe-
less reasonable description of nature, we are not allowed to either neglect
these effects or incorporate them in some averaged statistical manner (as
e.g. in the random phase approximation in statistical mechanics, cf. [13]).
The decoherence by environment philosophy claims that the entanglement
with the environment is the crucial property while we will argue that e.g.
the appearance of macroscopic objects can be alternatively understood in a
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more intrinsic manner without invoking the (in our view) rather contingent
influence of some environment.

Remark: We note that a similar dichotomy exists for example in statistical
mechanics and in particular in ergodic theory. That is, can ergodicity or sta-
tistical behavior only be understood by invoking some disorder assumption
(coming from outside) or can it also be understood within closed many-body
systems.

But before we embark on the development of an alternative approach to
the quantum measurement process and the concept of ‘classicality ’ in the
quantum context, we want to give a very brief description of the ideas of
the decoherence-by-environment framework as formulated in e.g. [14].

2 The Decoherence by Environment Concept

In a nutshell, the idea is quite simple. In the ordinary presentation of the
quantum measurement process (in the v.Neumann spirit) we start from the
following chain of equations. Let Φ0,Φi be the (pure) states of the measuring
apparatus, or rather of a subsystem (typically some macro system). Note
however that in the decoherence approach they are frequently called pointer
states, the true nature of which is often not openly specified. Let ψi be the
eigenstates of the quantum observable, A, to be measured. We then have
(with frequently ψiΦi etc. as shorthand for ψi ⊗ Φi etc.)

ψiΦ0 → ψiΦi (1)

The superposition principle of quantum mechanics then yields:
(
∑

i

ciψi

)
Φ0 →

∑

i

ciψiΦi (2)

Then follows the argument that the rhs of the last equation cannot be
identified (even in the case of macro objects) with the corresponding mixture

∑

i

|ci|2PψiΦi
(3)

PψiΦi
being the projector on the state ψiΦi irrespectively of the fact that

usually (ψiΦi|ψjΦj) = δij is assumed. The reason is that in case some
of the |ci| happen to be equal, we observe a so-called basis-ambiguity (a
mathematically coherent treatment can be found in [15],[16],[17]).
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It is argued in e.g. [14] and elsewhere that in that cases there do exist
other decompositions of the state vector

∑
i ciψiΦi with respect to different

bases, which in the decoherence philosophy can then be associated with
different observables, so that a unique association of macroscopic pointer
states and microscopic states (at first glance) does not seem possible.

Remark: We give a critical analysis of this point of view in the following
sections.

It is said that this stage of the measuring process is only a premea-
surement in so far as the state

∑
i ciψiΦi is still a pure quantum state being

observably different from a mixture! As a typical example the Stern-Gerlach
experiment is frequently invoked where the two split beams can, in principle,
be reunited again into a pure state. This (thought) experiment is frequently
attributed to Wigner (see e.g. [14]). But it can already be found in the book
by Ludwig ([18]) and in an even earlier interesting paper by Jordan ([19]).

The measurement process is, according to this philosophy, closed by an
appropriate entanglement of the above state with the so-called environment.
If εi are (in the ideal case) orthogonal states of the environment, it is claimed
that we finally have

(
∑

i

ciψi

)
Φ0ε0 →

∑

i

ciψiΦiεi (4)

which solves the basis ambiguity (see [15],[16],[17]).
As a typical example illustrating the basis ambiguity, the following situ-

ation is frequently invoked. The singulett state of two spin-one-half particles

1/
√
2 ((↑)(↓) − (↓)(↑)) (5)

can be represented in e.g. the eigen basis of the x-component of the spin,
i.e.

ψ′

1 = ((↑) + (↓)) /
√
2 , ψ′

2 = ((↑)− (↓)) /
√
2 (6)

as
− 1/

√
2
(
ψ′

1ψ
′

2 − ψ′

2ψ
′

1

)
(7)

Remark: Note that the exact compensation of the other cross terms come
about because of the common prefactor 1/

√
2, i.e. the necessary and suffi-

cient condition for a basis ambiguity mentioned above.

In the decoherence philosophy according to e.g. Zurek the second tensor
product component may then be associated with some pointer that is (part
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of) a measurement instrument. It is then argued that in the three-orthogonal
Schmidt-decomposition ,

∑
i ciψiΦiεi, which is a delocalized state due to the

structure of the environment states, εi, one can locally regard the measure-
ment outcome as a mixture,

∑
i |ci|2PψiΦi

, (by tracing over the environment)
while the global state is still a pure vector state with the information spread
into the environment. That is, the crucial point is that one remains globally
in the regime of unreduced quantum states!

In our view, at least two of the conceptual ingredients are problematical.
First, in case of e.g. the Stern-Gerlach experiment, which serves as kind
of a paradigm, the (silver) atoms, carrying the spin degree of freedom, are
frequently regarded as pointers, or at least a similar device. In our view, and
in the original quantum measurement literature (see e.g. [20]), one would
rather call such a subsystem a quantum probe in the context of quantum
non-demolition measurements. A similar role is played by the photon in the
quantum microscope. In general it may be subsumed under the catchword of
shift of the cut between the micro and the macro world in the measurement
process. To put it briefly, we have the impression that important subsystems
like photo plates, magnets, and the like, which we would prefer to regard
as essential parts of the measurement instrument are now simply called
environment in the decoherence approach.

Second, it is claimed that the pointer basis (and ultimately the correct
functioning as a measurement instrument) is established via the interac-
tion of the pointer states with the environment. We must say that we
are extremely sceptical, if this point of view is really correct and we will
substantiate our scepticism below. We rather think that pointer basis and
functioning as a measurement instrument are a priori fixed by the concrete
setup of the instrument according to some pre-theory of measurement, typ-
ically incorporating pieces of classical and quantum physics. This we can
at least learn from the analysis of concrete measurement situations ([20])
and the work of the founding fathers of quantum theory (cf. the beautiful
discussion between Einstein and Heisenberg as described in [21]). A typical
ingredient is usually some sub-system being in a meta-stable state (photo
plate, Wilson chamber, spark chamber etc.).

Third, the ordinary environment is usually of a very contingent character
and it is at least debatable to attribute pure quantum states to it, and, a
fortiori, states which are assumed to play a role relative to the pointer states
similar to measuring instruments relative to the micro objects. We would
like to emphasize that the interaction of a measuring instrument with a
micro object is a very special one while the interaction of a pointer with the
environment is usually of the ordinary statistical type.
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On the other hand, the influence of the environment has played an impor-
tant role already in the classical literature about the quantum measurement
process (cf. e,g, the lucid analysis of Heisenberg in his contribution to the
Bohr-Festschrift [22]). He clearly states that an apparatus, not interact-
ing with the exterior world, is a quantum system and cannot be used as
a measuring instrument. It is, in his words, in a potential, i.e. a quantum
state. It becomes a macro system via its contact with the environment (thus
aquiring factual properties). Furthermore, the illustrations of concrete mea-
suring instruments in the contribution to the Bohr-Einstein debate in [7],
with their solid clamps and bolts clearly show that a strong contact with
the environment is important.

As a last point, the influence of the environment is also incorporated
in statistical mechanics. Starting from a global pure state (system plus
environment) it is shown in e.g. [13] how one arrives via the random phase
approximation at a statistical state of the system. That is, it is not the
influence of the environment which is denied by us but rather the ubiquity
of the invoked measurement-like effect on the pointer states and its role for
the appearance of a classical world.

3 Macro Observables from Quantum Theory

In this section we descibe in a, as we think, coherent way how macro ob-
servables and macroscopic properties do emerge within the framework of
quantum theory. The description is based on the highly original papers by
v.Neumann and v.Kampen ([8],[9]), some related work of Ludwig ([23],[24])
and prior work of the author ([10],[11]).

Most of [23],[24],[10],[11] is written in the many-body-language approach
to the measurement process with relations to phase transitions and super
selection sectors. Papers written in a similar spirit are e.g. from the italian
school (see for example [25]). A central problem discussed in these papers
was the treatment of macroscopic systems as quantum systems, a problen
which also troubled Legett (see e.g. [26]). We think, a transplantation of
the above ideas of v.Neumann and v.Kampen into this measurement context
will clarify this longstanding open question. That is, we will show in the
following how the macroscopic regime is embedded as a subtheory in general
quantum physics.

In this section, for short, we will mainly discuss the ideas of v.Kampen.
We start from a many-body wave function

Ψ(q) =
∑

anψn(q) e
−iEnt/~ , q = (q1, . . . , qf ) (8)
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with ψn(q) the eigenfunctions of the microscopic Hamiltonian, H. We need
not discuss the distribution of spectral values of H in any detail. We know
that for f ≫ 1 they are irregularly distributed in dense clusters and are
also typically (highly) degenerated. The crucial idea is the existence of
what v.Neumann and v.Kampen call macroscopic observables (a possible
construction is given in e.g. [8]), other constructions are given in [24] or
[10],[11]; we come back to this point below, in particular in the last section.

In the following we mainly use the notation of v.Kampen.

Observation 3.1 There exist (almost) commuting observables in the rep-
resentation space of the many-body system, denoted by E,A,B, . . . (E rep-
resenting the macroscopic, i.e. coarse-grained energy operator) and a com-
plete, orthonormal set of (approximate) common eigenvectors, ΦJi, with the
property

A ◦ΦJi = AJ · ΦJi +O(∆A) (9)

where ∆A is the measurement uncertainty of the macro observable A. It is
always assumed that ∆A is macroscopically small but large compared to the
quantum mechanical uncertainty δA. The approximate common eigenvectors
come in groups, indexed by J with i labelling the vectors belonging to the
group J .

The above equation is assumed to hold for all macro observables. The
subspace, belonging to J is called a phase cell. It is assumed that the
eigen values AJ are macroscopically discernible, i.e. they describe different
macroscopic behavior. That is, quantum states belonging to the same phase
cell have the same macroscopic properties.

Remark: In order that an observable qualify as a macro observable, some
properties have to be fulfilled (cf. e.g. [9]).

Typically a macro observable is the sum over few-body micro variables
(cf. [24] or [11], see also the last section) like e.g.

A = c−1
f

∑

partitions

a(qi1 , . . . , qin) , f ≫ n (10)

with the sum extending over all partitions of (1, . . . , f) into n-element sub-
sets and cf is of the order f . It can be shown that such observables fulfill
the above assumptions.

One can now represent an arbitrary state vector Ψ(q) as a sum over this
new basis, i.e.

Ψ(q) =
∑

bJiΦJi(q) (11)
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In a next step we will introduce coarse observables E,A,B, . . . with the
property

AΦJi = AJ ΦJi , A =
∑

Ji

AJ · PJi (12)

i.e., the ΦJi are now exact common eigenvectors of the commuting set
{E,A,B, . . . }.

Remark: Note that the existence of such observables is guaranteed by the
explicit construction via the above spectral representation.

The expectation of e.g. A in the state Ψ(q) is

〈Ψ|A|Ψ〉 =
∑

J

AJ

(
∑

i

|bJi|2
)

=:
∑

J

AJ wJ (13)

with wJ the probability that the (macro) system is found in the phase cell
J .

Observation 3.2 The wJ fix the macroscopic properties of the state Ψ(q).

As to the technical details of the construction of such a set of macro
observables see the above cited papers. We give only one technical property.

Observation 3.3 With A = c−1
f

∑
k ak, B = c−1

f ′
∑

k′ ak′ ak, bk′ micro-
scopic few-body observables, we have

[A,B] = c−1
f · (c′f )−1

∑

kk′

[ak, bk′ ] ≈ 0 for f ≫ 1 (14)

Proof: Note that by assumption most of the [ak, bk′ ] ≈ 0, that is, the set
of terms, [ak, bk′ ], being essentially different from zero is of cardinality O(f)
and that cf = O(f).

A fortiori, a macro observable (almost) comutes with all micro observables
in the large f -limit.

Conclusion 3.4 Within the framework of true (many-body) quantum me-
chanics we found a subset of observables E,A,B, . . . which behave almost
macroscopic, while the coarse observables {E,A,B, . . . } exactly commute
and have the common set of eigenvectors ΦJi which come in groups indexed
by J . The macroscopic eigenvalues EJ , AJ , BJ , . . . are macroscopically dis-
cernible for J 6= J ′.

7



In the above approach we assumed (for convenience) that the spectrum
of the observables under discussion is discrete. In case we have an observable
with continuous spectrum the approach only needs a few technical modifi-
cations. On the one hand, we can form observables with discrete spectrum
from observables with continuous spectrum by appropriate coarse-graining.
In a next step we can e.g. via rescaling construct macro observables with
(almost) continuous spectrum. As example take certain position observables
of some (macroscopic) subsystems (cf. for example the last section).

4 The Quantum Mechanical Measurement Pro-

cess in the Light of the preceeding Analysis

Our notion of macro systems and macro observables emerges as a second
level subtheory from the underlying quantum level. I.e., in the space of
microscopic observables we (rigorously) construct a subspace of macro ob-
servables, AM , the members of which almost commute while the correspond-
ing coarse-grained observables, AM , exactly commute by construction. The
measurement devices or the pointers are assumed to be essentially macro-
scopic, that is, pointer states or pointer observables are assumed to belong
to this class.

Observation 4.1 (Superposition Principle) With Ψ1,Ψ2 many-body quan-
tum states of a measurement instrument or of some macroscopic part of it
(pointer), which are assumed to have unique macroscopic properties, i.e.
belonging to single but different phase cells, that is

Ψl(q) =
∑

i

blJiΦJi(q) , l = 1, 2, J fixed (15)

we have
Ψ := Ψ1 +Ψ2 =

∑

i

b1JiΦJi(q) +
∑

i′

b2J ′i′ΦJ ′i′(q) (16)

and

(
Ψ|AM |Ψ

)
=

(
∑

i

|b1Ji|2
)
·AJ+

(
∑

i′

|b2J ′i′ |2
)
·AJ ′ =

(
Ψ1|AM |Ψ1

)
+
(
Ψ2|AM |Ψ2

)

(17)
That is, within the realm of the smaller algebra AM states like Ψl or Ψ
behave as mixtures and not as pure states.
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Note that in our approach the system is treated as a true quantum
many-body system in the microscopic regime and at the same time as a
macro system with respect to the smaller algebra AM . This answers (in
our view) also some longstanding questions as to a possible threshold where
quantum properties go over (in a presumed phase-transition-like manner)
into macro properties. According to our analysis there is no such threshold.
It is rather the many-body behavior as such which enables the selection of
a subalgebra AM .

Observation 4.2 (Schroedinger’s Cat) The above result concerns super-
positions of macro states being observably different, a catchword being
Schroedinger’s Cat. In many discussions the wrong picture is invoked as if
a superposition of dead and alive is something like a macroscopically blurred
state. This impression is incorrect! What can be macroscopically observed is
given by the class of macroscopic observables. But as we have shown, these
observables annihilate the respective interference terms. Such interference
terms could only be observed in some super cosmos with the help of observ-
ables which connect macroscopically many degrees of freedom at a time (cf.
the last section).

In a next step we want to show that the basis ambiguity problem becomes
obsolete in our context.

Observation 4.3 As all elements of AM quasi-commute or rigorously com-
mute in AM , there do not exist the so-called complementary observables.

This has the following effect. In e.g. the Stern-Gerlach experiment we can
of course repeat the analysis of Zurek and write:

1/
√
2 ((↑)(↓) − (↓)(↑)) = −1/

√
2
(
ψ′

1ψ
′

2 − ψ′

2ψ
′

1

)
(18)

(cf. section 2) and associate again the second terms in the tensor prod-
uct with some pointer states. I.e., the superposition principle is taken for
granted. However, there do not! exist a macro observable, BM , so that the
new states, Ψ′

i, are its eigenstates.

Observation 4.4 With ΦJ eigenstates of the coarse macro observable A,
i.e. belonging to some phase cells CJ ,

A ◦ ΦJ = AJ · ΦJ (19)

there does not exist a coarse observable B with e.g.

B ◦ (Φ1 +Φ2) = B3 · (Φ1 +Φ2) (20)
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while we have
B ◦ΦJ = BJ · ΦJ (21)

and B1 6= B2 being assumed (macroscopically distinct properties). The state
Φ1 +Φ2 rather represents a mixture with respect to AM .

Conclusion 4.5 The basis ambiguity does not exist for AM . We can of
course represent some many-body state with respect to another basis but the
macroscopic properties remain the same! They are encoded in the a priori
fixed decomposition

Ψ =
∑

bJi · ΦJi , AΦJi = AJΦJi (22)

In physical terms we can explain this result with the help of the Stern-
Gerlach experiment, following Bohr’s dictum that the quantum mechanical
measurement of two complementary observables as e.g. σz and σx need two
different! and mutually exclusive experimental setups. That is, in order
to measure the z-component one has to split the beam along the z-axis.
This implies that the magnets have to be oriented accordingly. The same
procedure with respect to the x-direction implies the respective orientation
of the magnets parallel to the x-axis. That is, we have to apply a macroscopic
rotation of the magnets.

Observation 4.6 This rotation cannot be described by means of a super-
position of states of the magnets being oriented in the z-direction as e.g. in
microscopic quantum mechanics.

Conclusion 4.7 We can infer that the macroscopic pointer states are not
determined via interaction (by decoherence) with the environment. They are
obviously fixed a priori by the concrete experimental setup as described in
the above example.

5 The Analysis of a Concrete Measurement Situ-

ation

We now want to give a concrete example illuminating the approach, de-
scribed above. It was already essentially given in [10],[11]. We assume that
the pointer of our measurement instrument is a macroscopic subsystem con-
sisting of N (N ≫ 1) quantum particles (e.g. a solid state system or an
avalanche in a Geiger-counter), being capable of performing approximately
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a coherent motion, depending on the micro state of the quantum system to
be measured.

I.e., in a concrete individual measurement event, the pointer as a whole
starts to move with a macroscopic momentum

(
Φi(t)|P̂ |Φi(t)

)
≈ N · < p >i (23)

with P̂ =
∑N

i=1 p̂i the quantum mechanical total momentum observable,
Φi(t) a collective state of the pointer (induced by the contact with the micro
object) and

< p >i:=
(
Φi(t)|N−1 · P̂ |Φi(t)

)
(24)

the (approximately constant) mean-momentum per (quantum-) particle of
the pointer. We assume that different measurement results imply < p >i 6=<
p >j with the < p >i being in correspondence with microscopic values qi of
some quantum observable to be measured.

The center-of-mass observable of the pointer

R̂CM :=
∑

i

mir̂i/
∑

i

mi (25)

then behaves as (with M :=
∑

imi)

〈R̂CM 〉i(t) :=
(
Φi(t)|R̂CM |Φi(t)

)
≈ const.+ t· < p >i ·N/M (26)

Observation 5.1 i) For N ≫ 1 and < p >i 6=< p >j the states Φi(t),Φj(t)
become (almost) orthogonal for macroscopic t.
ii) In our simple model the values {< p >i} label different phase cells (or sec-
tors) with (almost) sharp eigen values of the macro observables N−1 ·∑i p̂i
or R̂CM .
iii) An arbitrary microscopic state vector of our pointer system is a super-
position of the above sector states, i.e.

Ψ =
∑

Ji

bJiΦJi (27)

with i labelling the different vectors belonging to the same phase cell descibed
by < p >J .
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6 Interference among Macro States

In this section we want to analyse the possibility of the observation of inter-
ference effects among macroscopically distinct macro states. We adressed
this problem already in [10] and [11]. We have shown in the preceeding
analysis that this cannot be done in the regime of macro observables, AM

or AM . If one goes into the technical details one observes that one (crucial)
property, in order to qualify as a macro observable, is the following

Observation 6.1 With N the number of microscopic constituents of a macro-
scopic (many-body) system (N ≫ 1), we see that typical microscopic quan-
tum mechanical observables are so-called few-body observables. I.e.

â(xi1 , . . . , xin) (28)

denotes a microscopic n-particle observable, correlating n≪ N microscopic
constituents at a time. A typical many-body observable which qualify as a
macroscopic observable can then be written as

Â :=
∑

Per

â(xi1 , . . . , xin) (29)

where the sum extends over all possible clusters of n micro objects out of the
N constituents of the many-body system. Furthermore, a prefactor of the
order N−1 frequently occurs in front of the sum.

If we try to observe now possible off-diagonal elements of Â, that is,
between different macro states, we get approximately, making certain sim-
plifying assumptions

Observation 6.2 The degree of overlap between different macro states with
respect to the macro observable Â is approximately

|
(
Φi|Â|Φj

)
| ≈ N !/n!(N − n)! · τ (N−n) (30)

with τ a small number (≪ 1) which denotes the individual overlap of the
wave function relative to the same microscopic constituents in the different
macro states, which do not! belong to the cluster, coupled in a contribution
coming from e.g. â(xi1 , . . . , xin).

Conclusion 6.3 Interference between macroscopically different macro states
could only be observed, if we were able to construct observables which do cor-
relate n ≈ N ≫ 1 microscopic constituents at a time. The observables we
are usually using in physics have however n≪ N . A situation where n ≈ N
holds, is called by Ludwig in [24] a super-macro-cosmos.
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7 Conclusion

We have shown that one can rigorously construct a subalgebra of commut-
ing macro observables within the set of quantum observables of a generic
many-body system. The common (almost) eigen values of this set of macro
observables are then the macroscopic properties of the many-body system.
Furthermore, for the subalgebra of macro observables the basis ambiguity is
lost (no complementarity!) and there is hence no need for a (measurement-
like) decoherence-by-environment mechanism to fix the so-called pointer ba-
sis. The pointer basis is in our approach already apriori fixed by the design
of the measurement instrument.

References

[1] W.H.Zurek:“Decoherence, einselection, and the quantum origins of the classi-
cal”, RMP 75(2003)715

[2] W.H.Zurek: “Decoherence and the Transition from Quantum to Classical-
Revisited”, Los Alamos Science, Number 27 (2002)

[3] E.Joos,H.D.Zeh,C.Kiefer,D.Giulini,J.Kupsch,I.-O. Stamatescu: “Decoherence
and the Appearance of a Classical World in Quantum Theory”, sec.ed.,
Springer, Berlin 2003

[4] M.Schlosshauer: “Decoherence, the measurement problem, and interpreta-
tions of quantum mechanics”, RMP 76(2004)1267

[5] P.W.Anderson: “Science:‘Dappled World’ or a ‘Seamless Web’?”,
Stud.Hist.Phil.Mod.Phys. 32(2001)487

[6] S.L.Adler: “Why decoherence has not solved the measurement problem: a
response to P.W.Anderson”, Stud.Hist.Phil.Mod.Phys. 34(2003)135

[7] J.A.Wheeler,W.H.Zurek: “Quantum Theory and Measurement”,
Princt.Univ.Pr., Princeton 1983

[8] J.v.Neumann: “Beweis des Ergodensatzes und des H-Theorems in der Neuen
Mechanik”, Z.Phys. 57(1929)30

[9] N.G.v.Kampen: “Grundlagen der Statistischen Mechanik der Irreversiblen
Prozesse”, Fortschr.Phys. 4(1956)405

[10] M.Requardt: “The Quantum Mechanical Measurement Process as a Scat-
tering Phenomenon inducing a Collective Coherent Motion”, Z.Naturforsch.
39a(1984)1147

13



[11] M.Requardt: “Why there don’t exist Superposed Cricket balls. An Approach
to Quantum Decoherence within the Framework of the Statistical Mechanics
of Phase Transitions”, Preprint (unpublished), Goettingen 1993

[12] S.Goldstein,J.L.Lebowitz,R.Tumulka,N.Zhangi: “Commentary Accompany-
ing the English Translation of J.v.Neumanns’s 1929 Article”, arXiv:1003.2129

[13] K.Huang: “Statistical Mechanics”, Wiley, N.Y.1963

[14] W.H.Zurek: “Environment-induced superselection rules”, P.R. D26(1982)1862

[15] A.Elby,J.Bub: “Triorthogonal uniqueness theorems”, P.R. A(Brief Reports)
49(1994)4213

[16] A.Peres: “Higher order Schmidt Decompositions”, P.L. A202(1995)16

[17] M.Requardt: “Higher-Order-Schmidt-Representations and their Relevance for
the Basis-Ambiguity”, preprint, Goettingen 2010

[18] G.Ludwig: “Die Grundlagen der Quantenmechanik”, Springer, Berlin 1954

[19] P.Jordan: “On the Process of measurement in Quantum Mechanics”, Phil.Sci.
16(1949)269

[20] V.B.Braginsky,F.Ya.Khalili: “Quantum measurement”, Cambridge Univ.Pr.,
Cambridge 1992

[21] W.Heisenberg: “Der Teil und das Ganze”, Piper, Muenchen 1973

[22] W.Heisenberg: “The Development of the Interpretation of the Quan-
tum Theory”, in “Niels Bohr and the Development of Physics”, ed.
W.Pauli,L.Rosenfeld.V.Weisskopf, Pergamon Pr., London 1955

[23] G.Ludwig: “Der Messprozess”, Z.Phys. 135(1953)483

[24] G.Ludwig: “Geloeste und ungeloeste Probleme des Messprozesses in der Quan-
tenmechanik”, in “W.Heisenberg und die Physik unserer Zeit”, ed. F.Bopp,
Vieweg, Braunschweig 1961

[25] A.Danieri,A.Loinger,G.M.Prosperi: “Quantum Theory of Measurement and
Ergodic Condition”, Nucl.Phys. 32(1962)297

[26] A.J.Legett: “Macroscopic Quantum Systems and the Quantum Theory of
Measurement”, Suppl.Progr.Theor.Phys. 69(1980)80, “Testing the Limits of
Quantum Mechanics”, J.Phys.Cond.Matt. 14(2002)12415

14

http://arxiv.org/abs/1003.2129

	1 Introduction
	2 The Decoherence by Environment Concept
	3 Macro Observables from Quantum Theory
	4 The Quantum Mechanical Measurement Process in the Light of the preceeding Analysis
	5 The Analysis of a Concrete Measurement Situation
	6 Interference among Macro States
	7 Conclusion

