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Nonlinear and Quantum Schrödinger Approaches

Vladimir G. Ivancevic

Defence Science & Technology Organisation, Australia

Abstract

Adaptive wave model for financial option pricing is proposed, as a high-complexity
alternative to the standard Black–Scholes model. The new option-pricing model, repre-
senting a controlled Brownian motion, includes two wave-type approaches: nonlinear and
quantum, both based on (adaptive form of) the Schrödinger equation. The nonlinear ap-
proach comes in two flavors: (i) for the case of constant volatility, it is defined by a single
adaptive nonlinear Schrödinger (NLS) equation, while for the case of stochastic volatil-
ity, it is defined by an adaptive Manakov system of two coupled NLS equations. The
linear quantum approach is defined in terms of de Broglie’s plane waves and free-particle
Schrödinger equation. In this approach, financial variables have quantum-mechanical
interpretation and satisfy the Heisenberg-type uncertainty relations. Both models are
capable of successful fitting of the Black–Scholes data, as well as defining Greeks.
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1 Introduction

Recall that the celebrated Black–Scholes partial differential equation (PDE) describes the
time–evolution of the market value of a stock option [1, 2]. Formally, for a function u = u(t, s)
defined on the domain 0 ≤ s < ∞, 0 ≤ t ≤ T and describing the market value of a stock
option with the stock (asset) price s, the Black–Scholes PDE can be written (using the
physicist notation: ∂zu = ∂u/∂z) as a diffusion–type equation:

∂tu = −1

2
(σs)2 ∂ssu− rs ∂su+ ru, (1)

where σ > 0 is the standard deviation, or volatility of s, r is the short–term prevailing
continuously–compounded risk–free interest rate, and T > 0 is the time to maturity of the
stock option. In this formulation it is assumed that the underlying (typically the stock)
follows a geometric Brownian motion with ‘drift’ µ and volatility σ, given by the stochastic
differential equation (SDE) [3]

ds(t) = µs(t)dt+ σs(t)dW (t), (2)

whereW is the standard Wiener process. The Black-Scholes PDE (1) is usually derived from
SDEs describing the geometric Brownian motion (2), with the stock-price solution given by:

s(t) = s(0) e(µ−
1
2
σ2)t+σW (t).

In mathematical finance, derivation is usually performed using Itô lemma [4] (assuming that
the underlying asset obeys the Itô SDE), while in physics it is performed using Stratonovich
interpretation [5, 6] (assuming that the underlying asset obeys the Stratonovich SDE [8]).

The Black-Sholes PDE (1) can be applied to a number of one-dimensional models of
interpretations of prices given to u, e.g., puts or calls, and to s, e.g., stocks or futures,
dividends, etc. The most important examples are European call and put options, defined by:

uCall(s, t) = sN (d1) e
−Tδ − kN (d2) e

−rT , (3)

uPut(s, t) = kN (−d2) e
−rT − sN (−d1) e

−Tδ, (4)

N (λ) =
1

2

(

1 + erf

(

λ√
2

))

,

d1 =
ln

(

s
k

)

+ T
(

r − δ + σ2

2

)

σ
√
T

, d2 =
ln

(

s
k

)

+ T
(

r − δ − σ2

2

)

σ
√
T

,

where erf(λ) is the (real-valued) error function, k denotes the strike price and δ represents the
dividend yield. In addition, for each of the call and put options, there are five Greeks (see,
e.g. [9, 10]), or sensitivities, which are partial derivatives of the option-price with respect
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Figure 1: Fitting the Black–Scholes call option with β(w)-adaptive PDF of the shock-wave
NLS-solution (10).

to stock price (Delta), interest rate (Rho), volatility (Vega), elapsed time since entering into
the option (Theta), and the second partial derivative of the option-price with respect to the
stock price (Gamma).

Using the standard Kolmogorov probability approach, instead of the market value of an
option given by the Black–Scholes equation (1), we could consider the corresponding prob-
ability density function (PDF) given by the backward Fokker–Planck equation (see [6, 7]).
Alternatively, we can obtain the same PDF (for the market value of a stock option), using the
quantum–probability formalism [11, 12], as a solution to a time–dependent linear or nonlinear
Schrödinger equation for the evolution of the complex–valued wave ψ−function for which the
absolute square, |ψ|2, is the PDF. The adaptive nonlinear Schrödinger (NLS) equation was
recently used in [10] as an approach to option price modelling, as briefly reviewed in this
section. The new model, philosophically founded on adaptive markets hypothesis [13, 14]
and Elliott wave market theory [15, 16], as well as my own recent work on quantum congition
[17, 18], describes adaptively controlled Brownian market behavior. This nonlinear approach
to option price modelling is reviewed in the next section. Its important limiting case with
low interest-rate reduces to the linear Schrödinger equation. This linear approach to option
price modelling is elaborated in the subsequent section.
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Figure 2: Fitting the Black–Scholes put option with β(w)–adaptive PDF of the shock-wave
NLS ψ2(s, t) solution (10). Notice the kink near s = 100.

2 Nonlinear adaptive wave model for general option pricing

2.1 Adaptive NLS model

The adaptive, wave–form, nonlinear and stochastic option–pricing model with stock price
s, volatility σ and interest rate r is formally defined as a complex-valued, focusing (1+1)–
NLS equation, defining the time-dependent option–price wave function ψ = ψ(s, t), whose
absolute square |ψ(s, t)|2 represents the probability density function (PDF) for the option
price in terms of the stock price and time. In natural quantum units, this NLS equation
reads:

i∂tψ = −1

2
σ∂ssψ − β|ψ|2ψ, (i =

√
−1), (5)

where β = β(r, w) denotes the adaptive market-heat potential (see [19]), so the term V (ψ) =
−β|ψ|2 represents the ψ−dependent potential field. In the simplest nonadaptive scenario β
is equal to the interest rate r, while in the adaptive case it depends on the set of adjustable
synaptic weights {wi

j} as:

β(r, w) = r

n
∑

i=1

wi
1 erf

(

wi
2s

wi
3

)

. (6)

Physically, the NLS equation (5) describes a nonlinear wave (e.g. in Bose-Einstein conden-
sates) defined by the complex-valued wave function ψ(s, t) of real space and time parameters.
In the present context, the space-like variable s denotes the stock (asset) price.
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The NLS equation (5) has been exactly solved using the power series expansion method
[20, 21] of Jacobi elliptic functions [22]. Consider the ψ−function describing a single plane
wave, with the wave number k and circular frequency ω:

ψ(s, t) = φ(ξ) ei(ks−ωt), with ξ = s− σkt and φ(ξ) ∈ R. (7)

Its substitution into the NLS equation (5) gives the nonlinear oscillator ODE:

φ′′(ξ) + [ω − 1

2
σk2]φ(ξ) + βφ3(ξ) = 0. (8)

We can seek a solution φ(ξ) for (8) as a linear function [21]

φ(ξ) = a0 + a1sn(ξ),

where sn(s) = sn(s,m) are Jacobi elliptic sine functions with elliptic modulus m ∈ [0, 1], such
that sn(s, 0) = sin(s) and sn(s, 1) = tanh(s). The solution of (8) was calculated in [10] to be

φ(ξ) = ±m
√−σ

β
sn(ξ), for m ∈ [0, 1]; and

φ(ξ) = ±
√−σ

β
tanh(ξ), for m = 1.

This gives the exact periodic solution of (5) as [10]

ψ1(s, t) = ±m
√ −σ
β(w)

sn(s− σkt) ei[ks−
1
2
σt(1+m2+k2)], for m ∈ [0, 1); (9)

ψ2(s, t) = ±
√ −σ
β(w)

tanh(s− σkt) ei[ks−
1
2
σt(2+k2)], for m = 1, (10)

where (9) defines the general solution, while (10) defines the envelope shock-wave1 (or, ‘dark
soliton’) solution of the NLS equation (5).

Alternatively, if we seek a solution φ(ξ) as a linear function of Jacobi elliptic cosine
functions, such that cn(s, 0) = cos(s) and cn(s, 1) = sech(s),2

φ(ξ) = a0 + a1cn(ξ),

1A shock wave is a type of fast-propagating nonlinear disturbance that carries energy and can propagate
through a medium (or, field). It is characterized by an abrupt, nearly discontinuous change in the character-
istics of the medium. The energy of a shock wave dissipates relatively quickly with distance and its entropy
increases. On the other hand, a soliton is a self-reinforcing nonlinear solitary wave packet that maintains its
shape while it travels at constant speed. It is caused by a cancelation of nonlinear and dispersive effects in
the medium (or, field).

2A closely related solution of an anharmonic oscillator ODE:

φ′′(s) + φ(s) + φ3(s) = 0
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then we get [10]

ψ3(s, t) = ±m
√

σ

β(w)
cn(s− σkt) ei[ks−

1
2
σt(1−2m2+k2)], for m ∈ [0, 1); (11)

ψ4(s, t) = ±
√

σ

β(w)
sech(s− σkt) ei[ks−

1
2
σt(k2−1)], for m = 1, (12)

where (11) defines the general solution, while (12) defines the envelope solitary-wave (or,
‘bright soliton’) solution of the NLS equation (5).

In all four solution expressions (9), (10), (11) and (12), the adaptive potential β(w) is
yet to be calculated using either unsupervised Hebbian learning, or supervised Levenberg–
Marquardt algorithm (see, e.g. [23, 24]). In this way, the NLS equation (5) becomes the
quantum neural network (see [18]). Any kind of numerical analysis can be easily performed
using above closed-form solutions ψi(s, t) (i = 1, ..., 4) as initial conditions.

The adaptive NLS–PDFs of the shock-wave type (10) has been used in [10] to fit the
Black–Scholes call and put options (see Figures 1 and 2). Specifically, the adaptive heat
potential (6) was combined with the spatial part of (10)

φ(s) =

∣

∣

∣

∣

√

σ

β
tanh(s− ktσ)

∣

∣

∣

∣

2, (13)

while parameter estimates where obtained using 100 iterations of the Levenberg–Marquardt
algorithm.

As can be seen from Figure (2) there is a kink near s = 100. This kink, which is a natural
characteristic of the spatial shock-wave (13), can be smoothed out (Figure 3) by taking the
sum of the spatial parts of the shock-wave solution (10) and the soliton solution (12) as:

φ(s) =

∣

∣

∣

∣

√

σ

β
[d1 tanh(s− ktσ) + d2 sech(s − ktσ)]

∣

∣

∣

∣

2. (14)

The adaptive NLS–based Greeks (Delta, Rho, Vega, Theta and Gamma) have been defined
in [10], as partial derivatives of the shock-wave solution (10).

is given by

φ(s) =

√

2m

1− 2m
cn

(

√

1 +
2m

1− 2m
s, m

)

.
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Figure 3: Smoothing out the kink in the put option fit, by combining the shock-wave solution
with the soliton solution, as defined by (14).

2.2 Adaptive Manakov system

Next, for the purpose of including a controlled stochastic volatility3 into the adaptive–NLS
model (5), the full bidirectional quantum neural computation model [18] for option-price
forecasting has been formulated in [10] as a self-organized system of two coupled self-focusing
NLS equations: one defining the option–price wave function ψ = ψ(s, t) and the other defining
the volatility wave function σ = σ(s, t):

Volatility NLS : i∂tσ = −1

2
∂ssσ − β(r, w)

(

|σ|2 + |ψ|2
)

σ, (15)

Option price NLS : i∂tψ = −1

2
∂ssψ − β(r, w)

(

|σ|2 + |ψ|2
)

ψ. (16)

In this coupled model, the σ–NLS (15) governs the (s, t)−evolution of stochastic volatil-
ity, which plays the role of a nonlinear coefficient in (16); the ψ–NLS (16) defines the
(s, t)−evolution of option price, which plays the role of a nonlinear coefficient in (15). The
purpose of this coupling is to generate a leverage effect, i.e. stock volatility is (negatively)
correlated to stock returns4 (see, e.g. [27]). This bidirectional associative memory effectively
performs quantum neural computation [18], by giving a spatio-temporal and quantum gener-
alization of Kosko’s BAM family of neural networks [28, 29]. In addition, the shock-wave and
solitary-wave nature of the coupled NLS equations may describe brain-like effects frequently

3Controlled stochastic volatility here represents volatility evolving in a stochastic manner but within the
controlled boundaries.

4The hypothesis that financial leverage can explain the leverage effect was first discussed by F. Black [26].

7



occurring in financial markets: volatility/price propagation, reflection and collision of shock
and solitary waves (see [30]).

The coupled NLS-system (15)–(16), without an embedded w−learning (i.e., for constant
β = r – the interest rate), actually defines the well-known Manakov system,5 proven by S.
Manakov in 1973 [31] to be completely integrable, by the existence of infinite number of
involutive integrals of motion. It admits ‘bright’ and ‘dark’ soliton solutions. The simplest
solution of (15)–(16), the so-called Manakov bright 2–soliton, has the form resembling that
of the sech-solution (12) (see [34, 35, 36, 37, 38, 39, 40]), and is formally defined by:

ψsol(s, t) = 2b c sech(2b(s + 4at)) e−2i(2a2t+as−2b2t), (17)

where ψsol(s, t) =

(

σ(s, t)
ψ(s, t)

)

, c = (c1, c2)
T is a unit vector such that |c1|2 + |c2|2 = 1. Real-

valued parameters a and b are some simple functions of (σ, β, k), which can be determined by
the Levenberg–Marquardt algorithm. I have argued in [10] that in some short-time financial
situations, the adaptation effect on β can be neglected, so our option-pricing model (15)–(16)
can be reduced to the Manakov 2–soliton model (17), as depicted and explained in Figure 4.

Figure 4: Hypothetical market scenario including sample PDFs for volatility |σ|2 and |ψ|2 of
the Manakov 2–soliton (17). On the left, we observe the (s, t)−evolution of stochastic volatil-
ity: we have a collision of two volatility component-solitons, S1(s, t) and S2(s, t), which join
together into the resulting soliton S2(s, t), annihilating the S1(s, t) component in the process.
On the right, we observe the (s, t)−evolution of option price: we have a collision of two op-
tion component-solitons, S1(s, t) and S2(s, t), which pass through each other without much
change, except at the collision point. Due to symmetry of the Manakov system, volatility
and option price can exchange their roles.

5Manakov system has been used to describe the interaction between wave packets in dispersive conservative
media, and also the interaction between orthogonally polarized components in nonlinear optical fibres (see,
e.g. [32, 33] and references therein).
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3 Quantum wave model for low interest-rate option pricing

In the case of a low interest-rate r ≪ 1, we have β(r) ≪ 1, so V (ψ) → 0, and therefore
equation (5) can be approximated by a quantum-like option wave packet. It is defined by
a continuous superposition of de Broglie’s plane waves, ‘physically’ associated with a free
quantum particle of unit mass. This linear wave packet, given by the time-dependent complex-
valued wave function ψ = ψ(s, t), is a solution of the linear Schrödinger equation with zero
potential energy, Hamiltonian operator Ĥ and volatility σ playing the role similar to the
Planck constant. This equation can be written as:

iσ∂tψ = Ĥψ, where Ĥ = −σ
2

2
∂ss. (18)

Thus, we consider the ψ−function describing a single de Broglie’s plane wave, with the
wave number k, linear momentum p = σk, wavelength λk = 2π/k, angular frequency ωk =
σk2/2, and oscillation period Tk = 2π/ωk = 4π/σk2. It is defined by (compare with [41, 42,
12])

ψk(s, t) = Aei(ks−ωkt) = Aei(ks−
σk2

2
t) = A cos(ks − σk2

2
t) +Ai sin(ks− σk2

2
t), (19)

where A is the amplitude of the wave, the angle (ks−ωkt) = (ks− σk2

2 t) represents the phase
of the wave ψk with the phase velocity: vk = ωk/k = σk/2.

The space-time wave function ψ(s, t) that satisfies the linear Schrödinger equation (18)
can be decomposed (using Fourier’s separation of variables) into the spatial part φ(s) and
the temporal part e−iωt as:

ψ(s, t) = φ(s) e−iωt = φ(s) e−
i
σ
Et.

The spatial part, representing stationary (or, amplitude) wave function, φ(s) = Aeiks, satisfies
the linear harmonic oscillator, which can be formulated in several equivalent forms:

φ′′ + k2φ = 0, φ′′ +
( p

σ

)2
φ = 0, φ′′ +

(

ωk

vk

)2

φ = 0, φ′′ +
2Ek

σ2
φ = 0. (20)

Planck’s energy quantum of the option wave ψk is given by: Ek = σωk = 1
2(σk)

2.

From the plane-wave expressions (19) we have: ψk(s, t) = Ae
i
σ
(ps−Ekt)− for the wave

going to the ‘right’ and ψk(s, t) = Ae−
i
σ
(ps+Ekt)− for the wave going to the ‘left’.

The general solution to (18) is formulated as a linear combination of de Broglie’s option
waves (19), comprising the option wave-packet:

ψ(s, t) =

n
∑

i=0

ciψki(s, t), (with n ∈ N). (21)
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Its absolute square, |ψ(s, t)|2, represents the probability density function at a time t.
The group velocity of an option wave-packet is given by: vg = dωk/dk. It is related to

the phase velocity vk of a plane wave as: vg = vk − λkdvk/dλk. Closely related is the center

of the option wave-packet (the point of maximum amplitude), given by: s = tdωk/dk.

The following quantum-motivated assertions can be stated:

1. Volatility σ has dimension of financial action, or energy × time.

2. The total energy E of an option wave-packet is (in the case of similar plane waves) given
by Planck’s superposition of the energies Ek of n individual waves: E = nσωk = n

2 (σk)
2,

where L = nσ denotes the angular momentum of the option wave-packet, representing
the shift between its growth and decay, and vice versa.

3. The average energy 〈E〉 of an option wave-packet is given by Boltzmann’s partition
function:

〈E〉 =
∑∞

n=0 nEke
−

nEk
bT

∑∞
n=0 e

−
nEk
bT

=
Ek

e
Ek
bT − 1

,

where b is the Boltzmann-like kinetic constant and T is the market temperature.

4. The energy form of the Schrödinger equation (18) reads: Eψ = iσ∂tψ.

5. The eigenvalue equation for the Hamiltonian operator Ĥ is the stationary Schrödinger

equation:

Ĥφ(s) = Eφ(s), or Eφ(s) = −σ
2

2
∂ssφ(s),

which is just another form of the harmonic oscillator (20). It has oscillatory solutions
of the form:

φE(s) = c1e
i
σ

√
2Ek s + c2e

− i
σ

√
2Ek s ,

called energy eigen-states with energies Ek and denoted by: ĤφE(s) = EkφE(s).

The Black–Scholes put and call options have been fitted with the quantum PDFs (see
Figures 5 and 6) given by the absolute square of (21) with n = 7 and n = 3, respectively.
Using supervised Levenberg–Marquardt algorithm and Mathematica 7, the following coeffi-
cients were obtained for the Black–Scholes put option:

σ∗ = −0.0031891, t∗ = −0.0031891, k1 = 2.62771, k2 = 2.62777, k3 = 2.65402,
k4 = 2.61118, k5 = 2.64104, k6 = 2.54737, k7 = 2.62778, c1 = 1.26632, c2 = 1.26517,
c3 = 2.74379, c4 = 1.35495, c5 = 1.59586, c6 = 0.263832, c7 = 1.26779,
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Figure 5: Fitting the Black–Scholes put option with the quantum PDF given by the absolute
square of (21) with n = 7.

with σBS = −94.0705σ∗ , tBS = −31.3568t∗.

Using the same algorithm, the following coefficients were obtained for the Black–Scholes call
option:

σ∗ = −11.9245, t∗ = −11.9245, k1 = 0.851858, k2 = 0.832409,
k3 = 0.872061, c1 = 2.9004, c2 = 2.72592, c3 = 2.93291,
with σBS − 0.0251583σ∗ , t = −0.00838609t∗ .

Now, given some initial option wave function, ψ(s, 0) = ψ0(s), a solution to the initial-
value problem for the linear Schrödinger equation (18) is, in terms of the pair of Fourier
transforms (F ,F−1), given by (see [42])

ψ(s, t) = F−1
[

e−iωtF(ψ0)
]

= F−1

[

e−iσk2

2
tF(ψ0)

]

. (22)

For example (see [42]), suppose we have an initial option wave-function at time t = 0
given by the complex-valued Gaussian function:

ψ(s, 0) = e−as2/2eiσks,

where a is the width of the Gaussian, while p is the average momentum of the wave. Its

11



Figure 6: Fitting the Black–Scholes call option with the quantum PDF given by the absolute
square of (21) with n = 3. Note that fit is good in the realistic stock region: s ∈ [75, 140].

Fourier transform, ψ̂0(k) = F [ψ(s, 0)], is given by

ψ̂0(k) =
e−

(k−p)2

2a√
a

.

The solution at time t of the initial value problem is given by

ψ(s, t) =
1√
2πa

∫ +∞

−∞
ei(ks−

σk2

2
t) e−

a(k−p)2

2a dk,

which, after some algebra becomes

ψ(s, t) =
exp(−as2−2isp+ip2t

2(1+iat) )
√
1 + iat

, (with p = σk).

As a simpler example,6 if we have an initial option wave-function given by the real-valued

6An example of a more general Gaussian wave-packet solution of (18) is given by:

ψ(s, t) =

√

√

a/π

1 + iat
exp

(

−

1
2
a(s− s0)

2
−

i
2
p20t+ ip0(s− s0)

1 + iat

)

,

where s0, p0 are initial stock-price and average momentum, while a is the width of the Gaussian. At time t = 0
the ‘particle’ is at rest around s = 0, its average momentum p0 = 0. The wave function spreads with time
while its maximum decreases and stays put at the origin. At time −t the wave packet is the complex-conjugate
of the wave-packet at time t.
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Gaussian function,

ψ(s, 0) =
e−s2/2

4
√
π
,

the solution of (18) is given by the complex-valued ψ−function,

ψ(s, t) =
exp(− s2

2(1+it))

4
√
π
√
1 + it

.

From (22) it follows that a stationary option wave-packet is given by:

φ(s) =
1√
2π

∫ +∞

−∞
e

i
σ
ks ψ̂(k) dk, where ψ̂(k) = F [φ(s)].

As |φ(s)|2 is the stationary stock PDF, we can calculate the expectation values of the stock
and the wave number of the whole option wave-packet, consisting of n measured plane waves,
as:

〈s〉 =
∫ +∞

−∞
s|φ(s)|2ds and 〈k〉 =

∫ +∞

−∞
k|ψ̂(k)|2dk. (23)

The recordings of n individual option plane waves (19) will be scattered around the mean
values (23). The width of the distribution of the recorded s− and k−values are uncertainties
∆s and ∆k, respectively. They satisfy the Heisenberg-type uncertainty relation:

∆s∆k ≥ n

2
,

which imply the similar relation for the total option energy and time:

∆E∆t ≥ n

2
.

Finally, Greeks for both put and call options are defined as the following partial deriva-
tives of the option ψ−function PDF:

Delta = ∂s|ψ(s, t)|2 =

2i
∑n

j=1 cjkj e
kj(is− 1

2
iσkjt)Abs

[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]

Abs′
[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]

Vega = ∂σ|ψ(s, t)|2 =

−it
∑n

j=1 cjkj
2 ekj(is−

1
2
iσkjt)Abs

[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]

Abs′
[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]

Theta = ∂t|ψ(s, t)|2 =

−iσ
∑n

j=1 cjkj
2 ekj(is−

1
2
iσkjt)Abs

[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]

Abs′
[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]
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Gamma = ∂ss|ψ(s, t)|2 =

−2
∑n

j=1 cjkj
2 ekj(is−

1
2
iσkjt)Abs

[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]

Abs′
[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]

−
(

∑n
j=1 cjkj e

kj(is− 1
2
iσkjt)

)

2Abs′
[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]

2−
(

∑n
j=1 cjkj e

kj(is− 1
2
iσkjt)

)

2Abs
[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]

Abs′′
[

∑n
j=1 cj e

kj(is− 1
2
iσkjt)

]

,

where Abs denotes the absolute value, while Abs′ and Abs′′ denote its first and second
derivatives.

4 Conclusion

I have proposed an adaptive–wave alternative to the standard Black-Scholes option pricing
model. The new model, philosophically founded on adaptive markets hypothesis [13, 14]
and Elliott wave market theory [15, 16], describes adaptively controlled Brownian market
behavior. Two approaches have been proposed: (i) a nonlinear one based on the adaptive
NLS (solved by means of Jacobi elliptic functions) and the adaptive Manakov system (of
two coupled NLS equations); (ii) a linear quantum-mechanical one based on the free-particle
Schrödinger equation and de Broglie’s plane waves. For the purpose of fitting the Black-
Scholes data, the Levenberg-Marquardt algorithm was used.

The presented adaptive and quantum wave models are spatio-temporal dynamical systems
of much higher complexity [25] then the Black-Scholes model. This makes the new wave
models harder to analyze, but at the same time, their immense variety is potentially much
closer to the real financial market complexity, especially at the time of financial crisis.
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