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Abstract

We study invariants of three-qubit states under local unitary trans-
formations, i.e. functions on the space of entanglement types, which
is known to have dimension 6. We show that there is no set of six al-
gebraically independent polynomial invariants of degree ≤ 6, and find
such a set with maximum degree 8. We describe an intrinsic definition
of a canonical state on each orbit, and discuss the (non-polynomial)
invariants associated with it.
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1 Introduction

The invariants of many-particle states under unitary transformations which
act on single particles separately (“local” transformations) are of interest
[3, 7, 9, 10, 12] because they give the finest discrimination between different
types of entanglement. They can be regarded as coordinates on the space
of entanglement types (equivalently, the space of orbits of the group of local
transformations). In this paper we study the case of pure states of three
spin-1

2
particles, or qubits. For mixed states of two qubits, it is possible

to give a complete set of invariants [11], describing the 9-dimensional space
of orbits in terms of 18 invariants, nine of which may be taken to have
only discrete values (for example, the signs of certain polynomials listed
in [11]). For pure three-qubit states, where the space of orbits is known
[3] to be 6-dimensional, we can at present do no more than find a set of
six algebraically independent invariants. We will show (Section 3) that in
order to do this with polynomials in the state coordinates it is necessary to
go to polynomials of order 8, and we will exhibit (Section 4) a set of six
independent invariants; their physical meaning is discussed in Section 5. We
will also discuss (Section 6) the possibility of finding a more convenient set
of non-polynomial invariants. Section 2 is an introductory discussion of the
invariants of pure n-qubit states.

2 Pure states: general considerations

A general theory of local invariants of mixed n-particle states has been given
by Rains and Grassl et al. [7, 12]. Here we review the part of that theory
that refers to pure states.

The most general system is that of n non-identical particles A,B, . . .
with one-particle state spaces of dimensions dA, dB, . . . . Let {|ψX

i 〉 : i =
1, . . . , dX} be an orthonormal basis of one-particle states of particle X; then
the general n-particle state can be written

|Ψ〉 =
∑

ijk···

tijk···|ψ
(A)
i 〉|ψ

(B)
j 〉|ψ

(C)
k 〉 · · ·

where the sum is over values of i from 1 to dA, values of j from 1 to dB, and
so on. By the First Fundamental Theorem of invariant theory [15] applied
to U(dA), U(dB), . . . , any polynomial in tijk··· which is invariant under the
action on |Ψ〉 of the local group U(dA)×U(dB)×· · · is a sum of homogeneous
polynomials of even degree (say 2r), of the form

Pστ ···(t) = ti1j1k1··· · · · tirjrkr···ti1jσ(1)kτ(1)···
· · · tirjσ(r)kτ(r)···

(2.1)
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where σ, τ, . . . are permutations of (1, . . . , r). Here tijk··· is the complex
conjugate of tijk···, and we adopt the usual summation convention on repeated
indices, one in the upper position and one in the lower. Note that Pστ ··· is
unchanged by simultaneous conjugation of the permutations σ, τ, . . . :

Pστ ···(t) = Pσ′τ ′
···(t) if σ′ = κσκ−1, τ ′ = κτκ−1, . . .

since such a conjugation merely expresses the effect of changing the order of
the factors in each summand in P .

For two particles A,B there is just one permutation σ, which we can
decompose into cycles κ1, . . . , κs of orders l1, . . . , ls with l1 + · · · + ls = r.
The polynomial Pσ(t) then splits into a product of polynomials Pκ1 · · ·Pκs

,
where Pκ depends only on the order of the cycle κ, which is equal to half the
degree of Pκ:

Pκ(t) = ti1j1ti1jκ(1)
tiκ(1)jκ(1)tiκ(1)jκ2(1)

· · ·

= ti1j1ti1j2t
i2j2ti2j3 · · · t

iljltilj1

(by renaming the dummy indices jκ(1), jκ2(1), . . . , jκl−1(1))

= tr(ρl
B)

where ρB = trA |Ψ〉〈Ψ| is the density matrix of particle B, with matrix
elements

(ρB)j
k = tijtik.

Thus the polynomial invariants of a two-particle pure state are the sums of
the powers of the eigenvalues of ρB. These can all be expressed in terms of the
first dB power-sums, which generate the algebra of invariant polynomials and
are algebraically independent if the eigenvalues are independent. However,
they are not independent if dA < dB, for in that case some of the eigenvalues
of ρ vanish. But clearly the same argument could be used to show that the
algebra of invariants is generated by the traces of the powers of ρA, which
is consistent because the non-zero eigenvalues of ρA are the same as those
of ρB. Thus the algebra of polynomial invariants of two-particle pure states
has a set of independent generators

tr(ρl
A) = tr(ρl

B), l = 1, . . . ,min(dA, dB).

The non-zero eigenvalues of ρA (or ρB) are in fact the squares of the
coefficients in the Schmidt decomposition of |Ψ〉, so what we have here is the
well-known fact that the local invariants of a pure two-particle state are the
symmetric functions of the Schmidt coefficients.
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3 Polynomial invariants of three-qubit states

For the remainder of the paper we consider three spin-1
2

particles A,B,C.
The classification of pure states of this system has been discussed in [4, 14],
and their invariants in [5, 8]. It is known [9] that the dimension of the
space of orbits is 6; there are therefore six algebraically independent local
invariants. We will show that there are no more than five algebraically inde-
pendent invariants of degree less than 8, and exhibit a set of six algebraically
independent invariants with maximum degree 8.1

The vector space of homogeneous invariants of degree 2r is spanned by
functions Pστ labelled by pairs of elements of Sr, the group of permutations
of r things. Thus there is one independent invariant of degree 2,

I1 = Pee(t) = tijktijk = 〈Ψ|Ψ〉

where e is the identity permutation, so that S1 = {e}. If S2 = {e, σ}, the
four linearly independent quartic invariants are

Pee(t) = ti1j1k1ti1j1k1t
i2j2k2ti2j2k2 = 〈Ψ|Ψ〉2,

I2 = Peσ(t) = ti1j1k1ti1j1k2t
i2j2k2ti2j2k1 = tr(ρ2

C),

I3 = Pσe(t) = ti1j1k1ti1j2k1t
i2j2k2ti2j1k2 = tr(ρ2

B),

I4 = Pσσ(t) = ti1j1k1ti1j2k2t
i2j2k2ti2j1k1 = tr(ρ2

A)

where ρA, ρB, ρC are the one-particle density matrices:

ρX = trY Z |Ψ〉〈Ψ| where {X, Y, Z} = {A,B,C} in some order.

Thus there are at most four algebraically independent invariants of degree
≤ 4.

Higher-order invariants Pπσ(t) with π, σ ∈ S3 are functions of the four
quadratic and quartic invariants if π and σ are equal or if either of them is
the identity. To see this, note first that if π = σ,

Pσσ(t) = ti1j1k1 · · · tirjrkrti1jσ(1)kσ(1)
· · · tirjσ(r)kσ(r)

= (ρA)i1
iτ(1)

(ρA)i2
iτ(2)

· · · (ρA)ir
iτ(r)

where τ = σ−1. This is a product of traces of powers of ρA. But since ρA is a
2 × 2 matrix, the Cayley-Hamilton theorem enables us to express tr(ρr

A) for
r ≥ 3 as a function of tr ρA and tr ρ2

A.

1I understand that similar conclusions have been reached by Markus Grassl [6].
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Secondly, if π = e,

Peσ(t) = ti1j1k1 · · · tirjrkrti1j1kσ(1)
· · · tirjrkσ(r)

= (ρC)k1
kσ(1)

· · · (ρC)kr

kσ(r)

which is a product of traces of powers of ρC ; and similarly Pπe(t) is a product
of traces of powers of ρB.

Thus the only sextic invariants Pπσ which might be algebraically inde-
pendent of the quadratic and quartic invariants are those for which π and σ
are distinct 2-cycles, or distinct 3-cycles, or one is a 2-cycle and the other is a
3-cycle. Moreover, in each of these categories all the possible pairs (π, σ) are
related by simultaneous conjugation and therefore give the same invariant.
There are therefore three possible independent sextic invariants:

1. π, σ distinct 3-cycles, say π = (123), σ = (132). This gives

I5 = P(123)(132)(t) = ti1j1k1ti2j2k2ti3j3k3ti1j2k3ti2j3k1ti3j1k2

= (ρBC)j1k1

j2k3
(ρBC)j2k2

j3k1
(ρBC)j3k3

j1k2
(3.1)

where ρBC = trA |Ψ〉〈Ψ| is the density matrix of the two-particle system of
particles B and C. This invariant was identified by Kempe [8] as one which
distinguishes three-particle states which have identical density matrices for
every subsystem. It has exactly the same form when expressed as a function
of ρAB or of ρAC .

2. π, σ distinct 2-cycles, say π = (12), σ = (23). This gives

I ′5 = P(12)(23)(t) = ti1j1k1ti2j2k2ti3j3k3ti1j2k1ti2j1k3ti3j3k2

= (ρB)j1
j2

(ρC)k3
k2

(ρBC)j2k2

j1k3

= tr[(ρB ⊗ ρC)ρBC ]. (3.2)

3. π a 2-cycle, say (12), and σ a 3-cycle, say (123), or vice versa. These
give

I ′′5 = P(12)(123)(t) = ti1j1k1ti2j2k2ti3j3k3ti1j2k2ti2j1k3ti3j3k1

= (ρAC)i1k1
i2k3

(ρA)i2
i1
(ρC)k3

k1

= tr[(ρA ⊗ ρC)ρAC ] (3.3)

and

I ′′′5 = P(123)(12)(t) = ti1j1k1ti2j2k2ti3j3k3ti1j2k2ti2j3k1ti3j1k3

= tr[(ρA ⊗ ρB)ρAB]. (3.4)

5



Primes have been placed on the symbols for these last three invariants
because they will not feature in our final list of independent invariants, each
of them being expressible in terms of I5 and the quadratic and quartic in-
variants. To show this, we write I5 in terms of 2× 2 matrices by considering
the 4×4 matrix ρBC as a set of four 2×2 matrices Xj1

j2
: the matrix elements

of Xj1
j2

, labelled by (k1, k2), are

(Xj1
j2

)k1
k2

= (ρBC)j1k1

j2k2
.

Then

I5 = tr(Xj1
j2
Xj3

j1
Xj2

j3
).

Now we use the 2 × 2 matrix identity

tr(XY Z) + tr(XZY ) = trX tr(Y Z) + trY tr(ZX) + trZ tr(XY )

− trX tr Y trZ
(3.5)

which holds for any 2×2 matrices X, Y, Z, and can be obtained by trilinearis-
ing (or “polarising” [15] — replace X first by X+Y and then by X+Y +Z)
the cubic identity

trX3 = 3
2
trX trX2 − 1

2
(trX)3

which in turn is obtained by taking the trace of the Cayley-Hamilton theorem.
Apply (3.5) to the matrices Xj1

j2
, Xj3

j1
, Xj2

j3
occurring in the expression for I5.

The first term on the left-hand side is I5; the second is

tr(Xj1
j2
Xj2

j3
Xj3

j1
) = tr(ρ3

BC) = tr(ρ3
A)

since the non-zero eigenvalues of ρBC are the same as those of ρA (both being
the squares of the coefficients in a Schmidt decomposition of |Ψ〉). The first
term on the right-hand side is

tr(Xj1
j2

) tr(Xj3
j1
Xj2

j3
) = (ρB)j1

j2
(ρBC)j3k1

j1k2
(ρBC)j2k2

j3k1

= (ρB)j1
j2
ti1j3k1ti1j1k2t

i2j2k2ti2j3k1

= (ρB)j1
j2

(ρA)i1
i2
(ρAB)i2j2

i1j1

= tr[(ρA ⊗ ρB)ρAB];

the second and third terms differ from the first only by permuting the indices
j1, j2, j3 and therefore (after summing) are equal to it; and the last term is

tr(Xj1
j2

) tr(Xj2
j3

) tr(Xj3
j1

) = tr(ρ3
B).
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Thus (3.5) gives

I5 = 3 tr[(ρA ⊗ ρB)ρAB] − tr(ρ3
A) − tr(ρ3

B). (3.6)

Similarly, using the alternative expressions for I5 in terms of ρAB and ρAC

gives

I5 = 3 tr[(ρB ⊗ ρC)ρBC ] − tr(ρ3
B) − tr(ρ3

C) (3.7)

= 3 tr[(ρA ⊗ ρC)ρAC ] − tr(ρ3
A) − tr(ρ3

C). (3.8)

So there are at most five independent invariants of degree 6 or less. Since
six invariants are needed to parametrise the orbits [9], we must use at least
one invariant of degree 8 or more. A convenient, and physically significant,
choice is the 3-tangle identified by Coffman, Kundu and Wootters [5]:

I6 = 1
4
τ 2
123 =

∣

∣ǫi1i2ǫi3i4ǫj1j2ǫj3j4ǫk1k3ǫk2k4t
i1j1k1ti2j2k2ti3j3k3ti4j4k4

∣

∣

2
(3.9)

where ǫij is the antisymmetric tensor in two dimensions (ǫ12 = −ǫ21 = 1,
ǫ11 = ǫ22 = 0). The expression between the modulus signs is an SU(2)3

invariant (though not a U(2)3 invariant — its phase is not invariant under
local transformations), so its modulus is a local invariant. The invariant I6
can be put into our standard form of a sum of terms like (2.1) by multiplying
the SU(2)3 invariant by its complex conjugate

ǫi5i6ǫi7i8ǫj5j6ǫj7j8ǫk5k7ǫk6k8ti5j5k5ti6j6k6ti7j7k7ti8j8k8

(where the contravariant tensor ǫij is numerically the same as ǫij), and using
the identity

ǫabǫcd = δa
c δ

b
d − δa

dδ
b
c.

To show that the invariants I1, . . . , I6 are independent it is sufficient to
show that their gradients are linearly independent at some point. To calculate
these gradients in the 16-(real)dimensional space of pure states, we can treat
tijk and tijk formally as independent coordinates; the fact that our invariants
are real means that the 16 componentsof the gradient of Ia are the real and
imaginary parts of the partial derivatives with respect to tijk. The results of
calculating ∂Ia/∂t

ijk and putting

t000 = t010 = t110 = 0, t011 = t100 = t101 = t111 = 1, t001 = i,

t
ijk

= complex conjugate of tijk

7



(where 0 and 1 are the two possible values of i, j, k) are as follows:

∂tI1 = (0,−i, 0, 1, 1, 1, 0, 1)

∂tI2 = (−2i,−8i, 2, 8, 4, 10, 2, 8)

∂tI3 = (0, 2 − 8i, 0, 6 − 2i, 6, 8 − 2i, 2 + 2i, 6 + 2i)

∂tI4 = (2 − 2i, 2 − 6i, 0, 6 − 2i, 6, 8 − 2i, 0, 8 + 2i)

∂tI5 = (6 − 9i, 12 − 36i, 6, 30 − 12i, 21, 45− 12i, 9 + 6i, 36 + 12i)

∂tI6 = (−8, 0,−8 + 16i, 8, 8, 0,−8i, 0)

These six vectors are indeed linearly independent over R.

4 Physical significance of the invariants

The invariant I1 is just the norm of the three-party state and therefore has no
physical significance; we will normally set it equal to 1. The three invariants
I1, I2, I3 are one-particle quantities, giving the eigenvalues of the one-particle
density matrices; they are equivalent to the one-particle entropies, which
measure how entangled each particle is with the other two together. The
entanglement in each pair of particles and the three-way entanglement of the
whole system are all given by the last invariant I6, as follows. A good measure
of the entanglement of two qubits A,B in a mixed state is the 2-tangle τAB

[5], which is a monotonic function of the entanglement of formation [16]. The
three-way entanglement of three qubits A,B,C in a pure state is measured
by the 3-tangle

τABC = τA(BC) − τAB − τAC

where τA(BC) = 4 det ρA = 2(I2
1 − I2) is another measure (equivalent to the

entropy of A) of how entangled A is with the pair (BC). It can be shown [5]
that τABC is invariant under permutations of A, B and C; in fact it is equal
to our invariant I6. By solving the equations expressing the permutation
invariance of τABC , we can now give formulae for all three 2-tangles and the
3-tangles in terms of our invariants:

τAB = 1 − I2 − I3 + I4 −
1
2
I6,

τAC = 1 − I2 + I3 − I4 −
1
2
I6,

τBC = 1 + I2 − I3 − I4 −
1
2
I6,

τABC = I6.

The 3-tangle I6 is maximal for the GHZ state |000〉+ |111〉, whose 2-tangles
vanish; on the other hand, I6 vanishes at the states p|100〉+ q|010〉+ r|001〉.
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The remaining invariant, I5, is a different and independent measure of the
entanglement of each pair of qubits. Its existence shows that the 2-tangles
and 3-tangle are not sufficient to determine a pure 3-qubit state up to local
equivalence. As is shown by eqs. (3.6)–(3.8), this invariant is equivalent to
any one of the two-qubit quantities κAB = tr[(ρA ⊗ ρB)ρAB] (together with
one-qubit quantities), and it relates these three 2-qubit quantities to each
other. If we regard the hermitian operators ρA and ρB as observables, then
κAB is the expectation value of ρAρB, so κAB−I2I3 is the correlation between
the eigenvalues of ρA and ρB. It is related to the relative entropy of the two-
qubit state ρAB relative to the product state ρA⊗ρB , and is a second measure
of the entanglement of the pair (A,B), independent of the 2-tangle τAB.

Finally, we give the values of these invariants for some special states (all
of which are taken to be normalised).

For a factorised state a|111〉 + b|100〉,

I2 = 1, I3 = I4 = a4 + b4, I5 = a6 + b6, I6 = 0.

For a generalised GHZ state p|000〉 + q|111〉,

I2 = I3 = I4 = p4 + q4, I5 = p6 + q6, I6 = 4p2q2.

For the minimally 3-tangled [5] state p|100〉 + q|010〉+ r|001〉,

I2 = p4 + (q2 + r2)2, I3 = q4 + (r2 + p2)2, I4 = r4 + (p2 + q2)2,

I5 = p6 + q6 + r6 + 3p2q2r2, I6 = 0.

5 Canonical coordinates

An alternative type of invariant, not necessarily a polynomial in the coor-
dinates of the state vector, is obtained by specifying a canonical point on
each orbit. The values of the invariant functions at any point are then the
coordinates of the canonical point on its orbit. The canonical points lie on a
manifold corresponding to the space of orbits, and their coordinates can (at
least locally) be expressed in terms of an appropriate number of parameters.

One form of canonical state was suggested independently by Linden and
Popescu [9] and by Schlienz [13], who pointed out that any pure state of
three qubits can be written as

|Ψ〉 =cos θ|0〉 (cos φ|0〉|0〉+ sinφ|1〉|1〉)

+ sin θ|1〉
(

r(− sinφ|0〉|0〉+ cosφ|1〉|1〉) + s|0〉|1〉+ teiω|1〉|0〉
) (5.1)

9



where 0 ≤ θ, φ ≤ π/4, 0 ≤ ω < 2π, and r, s, t are non-negative real numbers
satisfying r2 + s2 + t2 = 1. Simpler canonical forms, in which the number of
non-zero coefficients is reduced to five, have since been proposed by Acin et
al [1] and Carteret et al [2]; the latter form is

p|100〉 + q|010〉 + r|001〉+ s|111〉 + teiθ|000〉

where p, q, r, s, t and θ are real parameters. It is straightforward to calculate
the invariants I1, . . . , I6 in terms of either of the above sets of parameters;
the results are not enlightening.

We will now describe another, more intrinsically defined, form of canonical
point whose coordinates are more simply related to I1, . . . , I6.

The three-particle state |Ψ〉 has three Schmidt decompositions:

|Ψ〉 =
∑

i

αi|φi〉A|Φi〉BC

=
∑

i

βi|θi〉B|Θi〉AC

=
∑

i

γi|χi〉C |Xi〉AB

(5.2)

where {|φi〉}, {|θi〉} and {|χi〉} (i = 0, 1) are orthonormal pairs of one-particle
states, {|Φi〉}, {|Θi〉} and {|Xi〉} are orthonormal pairs of two-particle states,
the suffices indicate which of the three particles A,B,C are in which state,
and {αi}, {βi} and {γi} are pairs of non-negative real numbers satisfying

α2
1 + α2

2 = β2
1 + β2

2 = γ2
1 + γ2

2 = 〈Ψ|Ψ〉 = I1. (5.3)

These Schmidt coefficients, being the positive square roots of the eigenvalues
of the one-particle density matrices ρA, ρB, ρC , are related to the quartic
invariants by

α4
1 + α4

2 = tr(ρ2
A) = I2,

β4
1 + β4

2 = tr(ρ2
B) = I3,

γ4
1 + γ4

2 = tr(ρ2
C) = I4.

(5.4)

These equations have unique real non-negative solutions for αi, βi, γi provided
the invariants I1, . . . , I4 satisfy

I1 > 0, 1
2
I2
1 ≤ I2, I3, I4 ≤ I2

1 .

Now consider the coordinates cijk of |Ψ〉 with respect to the canonical basis
|φi〉A|θj〉B|χk〉C . If the states |φi〉, |θj〉, |χk〉 were uniquely determined by |Ψ〉
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— and they almost are — then the coordinates cijk would be local invariants.
However, the Schmidt decompositions do not determine the phases of |φi〉,
|θj〉 and |χk〉. We can fix these by requiring that four of the cijk should be
real: for example, we can change the phases of |φ0〉 and |φ1〉 to make c000 and
c100 real, then change the phases of |θ0〉 and |θ1〉 to make c001 and c011 real,
simultaneously changing the phase of |χ0〉 to keep c000 and c100 real. (It is easy
to show that under the six-dimensional group of phase changes of the basis
vectors, the generic set of coordinates has two-dimensional stabiliser, so that
the orbits are four-dimensional and therefore four phases can be removed.)

From the Schmidt decompositions we obtain the one-particle density ma-
trices

ρA =
∑

i

α2
i |φi〉〈φi|,

ρB =
∑

i

β2
i |θi〉〈θi|,

ρC =
∑

i

γ2
i |χi〉〈χi|.

(5.5)

Hence the coordinates cijk satisfy

∑

jk

cijkcljk = α2
i δ

i
l ,

∑

ik

cijkcimk = β2
j δ

j
m,

∑

ij

cijkcijn = γ2
kδ

k
n.

(5.6)

To obtain a relation between the cijk and Kempe’s invariant I5, we cal-
culate

tr[(ρA ⊗ ρB)ρAB]

= tr

[(

∑

i

α2
i |φi〉A〈φi|A

)(

∑

j

β2
j |θj〉B〈θj |B

)(

∑

k

γ2
k|Xk〉AB〈Xk|AB

)]

=
∑

ijk

α2
iβ

2
j γ

2
k|〈φi|θj |Xk〉|

2.

But

cijk = 〈φi|A〈θj |B〈χk|C|Ψ〉 = γk〈φi|A〈θj |B|Xk〉AB.
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Hence

tr(ρAρBρAB) =
∑

ijk

α2
iβ

2
j |c

ijk|2

and so, using (3.6),

I5 = 3
∑

ijk

α2
iβ

2
j |c

ijk|2 −
∑

i

α6
i −

∑

j

β6
j . (5.7)

Finally, the relation between the cijk and the 3-tangle I6 needs a longer
argument which we will not give here. The result is

I6 = detR (5.8)

where

Ri
j = (α4

i + α2
i )δ

i
j −

∑

kl

(β2
k + γ2

l )c
iklcjkl

In order to determine how many states have the same values of the invari-
ants I1, . . . , I6, and therefore how many further discrete-valued invariants are
needed to specify uniquely a pure state of three qubits up to local transforma-
tions, one would need to find the number of different sets of coordinates cijk

satisfying the reality conditions given above and the equations (5.6), (5.7)
and (5.8), where αi, βi and γi are determined by (5.3) and (5.4).
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[7] M. Grassl, M. Rötteler, and T. Beth. Computing local invariants of
qubit systems. Phys. Rev. A, 58:1853, 1998. quant-ph/9712040.

[8] J. Kempe. Multi-particle entanglement and its applications to cryptog-
raphy. Phys. Rev. A, 60:910, 1999. quant-ph/9902036.

[9] N. Linden and S. Popescu. On multi-particle entanglement. Fortschr.

Phys., 46:567, 1998. quant-ph/9711016.

[10] N. Linden, S. Popescu, and A. Sudbery. Non-local parameters for
multi-particle density matrices. Phys. Rev. Lett., 83:243, 1999. quant-
ph/9801076.

[11] Y. Makhlin. Nonlocal properties of two-qubit gates and mixed states
and optimization of quantum computations. 1999. quant-ph/0002045.

[12] E. M. Rains. Polynomial invariants of quantum codes. IEEE Trans.

Information Theory, 46:54, 2000. quant-ph/9704042.

[13] J. Schlienz. PhD thesis.

[14] J. Schlienz and G. Mahler. The maximal entangled three-particle state
is unique. Phys. Lett. A, 224:39, 1996.

[15] H. Weyl. The Classical Groups. Princeton, 1946.

[16] W. K. Wootters. Entanglement of formation of an arbitrary state of two
qubits. Phys. Rev. Lett., 80:2245, 1998. quant-ph/9709029.

13

http://arXiv.org/abs/quant-ph/0001091
http://arXiv.org/abs/quant-ph/9907047
http://arXiv.org/abs/quant-ph/9712040
http://arXiv.org/abs/quant-ph/9902036
http://arXiv.org/abs/quant-ph/9711016
http://arXiv.org/abs/quant-ph/9801076
http://arXiv.org/abs/quant-ph/9801076
http://arXiv.org/abs/quant-ph/0002045
http://arXiv.org/abs/quant-ph/9704042
http://arXiv.org/abs/quant-ph/9709029

