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Abstract

We propose a probabilistic framework for pricing
derivatives, which acknowledges that information and
beliefs are subjective. Market prices can be trans-
lated into implied probabilities. In particular, futures
imply returns for these implied probability distribu-
tions. We argue that volatility is not risk, but uncer-
tainty. Non-normal distributions combine the risk in
the left tail with the opportunities in the right tail —
unifying the “risk premium” with the possible loss.
Risk and reward must be part of the same picture and
expected returns must include possible losses due to
risks.
We reinterpret the Black-Scholes pricing formulas

as prices for maximum-entropy probability distribu-
tions, illuminating their importance from a new an-
gle.
Using these ideas we show how derivatives can be

priced under “uncertain uncertainty” and how this
creates a skew for the implied volatilities.
We argue that the current standard approach

based on stochastic modelling and risk-neutral pric-
ing fails to account for subjectivity in markets and
mistreats uncertainty as risk. Furthermore, it is
founded on a questionable argument — that uncer-
tainty is eliminated at all cost.

1 Introduction

There are two ways to justify the Black-Scholes equa-
tion. On the one hand there is the standard stochas-

tic approach with dynamic hedging. On the other
hand one can simply calculate the expected pay-off
for the log-normal probability distribution with an
expected return equal to the risk-free rate.
The second approach is considerably simpler,

neater, and a direct consequence of probabilistic rea-
soning. However, it cannot explain why the expected
return should be equal to the risk-free rate — and
presumably that is the reason why this derivation is
hardly ever presented.
We want to offer an alternative framework in-

spired by the second approach, which, in essence, ac-
cepts the subjectivity of information/beliefs with a
Bayesian interpretation of probabilities [1] and rein-
terprets the meaning of asset prices, futures, and
risk. It yields the Black-Scholes pricing equations
(but without the usual assumptions like no trading
costs) as maximum-entropy solutions for known first
two moments, but the concept extends beyond this
special case. We remove hedging arguments and re-
place them with probabilistic reasoning1.
One could best describe our approach as a proba-

bilistic one embracing subjectivity and Bayesian in-
ference, while the traditional approach is based on
statistical/stochastic ideas and methods. These su-
perficially appear as if they are objective in nature
as they do not use prior distributions and do not ex-
plicitly involve subjective information. This, how-
ever, hides the fact that particular priors (usually as-
sumptions about normality) are already assumed and

1Given the solution hedging prescriptions can then be re-
constructed.
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hence limit the applicability of many methods. Also,
one could argue that the neglect of available infor-
mation besides historic data is rather a short-coming
than an advantage. A good overview of these issues
is given in [1].
This paper is organized as follows. We start by ex-

posing short-comings of the traditional approach in
section 2. In section 3 we present our approach and
discuss the interpretation of futures and risk. In sec-
tion 4 we discuss the interpretation of Black-Scholes
pricing in our context. In section 5 we present ap-
plications of the probabilistic framework to pricing
under an uncertain second moment (uncertain uncer-
tainty), which naturally leads to an implied volatility
skew, derivative exposure and risk management.

2 The Traditional Approach

and its Problems

The standard approach to derivatives pricing based
on stochastic models and risk-neutral measures (see
appendix A for a short review) raises a number of
issues. Firstly, it does not allow for subjectivity as
it assumes the existence of an objective “real distri-
bution”, and hence does not take into account that
people have different information and believes2. This
effectively leads to the idea that there is a “correct”
value for a derivative, independently of its current
trading price — it would possibly be “mispriced”.
We think that this is misleading. Every market

participant will assign a different value according to
his state of knowledge and beliefs. If there are sell-
ers and buyers with different subjective valuations,
it might result in trades. These in turn might re-
sult in observed market prices. One should note that
the market price then does not necessarily represent
the subjective valuation of neither the buyer nor the
seller3.
Secondly, even if we assume this awkward “under-

lying real distribution”, we find it difficult to fol-
low the risk-neutral hedging argument, as the elim-
inated term does not only contain uncertainty and

2 A good pricing theory should be able to value an asset
even for an inside-trader.

3See appendix E.

risk. Consider for example the standard log-normal
case with

dS = µSdt+ σSdX, (1)

where X is a “normally distributed random vari-
able”4. It is clear that dS becomes ‘increasingly de-
terministic’ as σ goes to zero — for σ = 0 it just
expresses the deterministic drift. Hence we want to
argue that dS is really a mixture of a certain and
uncertain component. As one cannot eliminate the
dependence of the portfolio value change on the dif-
ferent components of dS separately, it is not possible
to follow a hedging strategy which keeps the drift,
but eliminates the randomness.
Now, by eliminating dS one also discards the non-

random drift term and the resulting hedging is gen-
erally (except for a drift equal to the risk free rate)
suboptimal. This is most easily illustrated in ex-
treme (hypothetical) cases with huge (compared to
the volatility) positive or negative drift.
It appears as if it is often not understood what it

really means to have a drift in the distribution. This
is not just something observed in historical data, but
something we claim to know about the possibilities in
the future. If we use a log-normal distribution with a
1000% drift rate and 10% volatility then we also say
that it is practically impossible to observe a draw-
down over the next year (and even to see a return of
less than 900%) — and we claim to know this.
Yet risk-neutral pricing tells us to ignore the knowl-

edge of the extreme drift and to hedge as if there is
a 50/50 chance of a draw-dawn (below the risk-free
rate). Having a short put-delta position will lead us
with near certainty to buy back the asset at higher
prices.
Figure 1 illustrates this. The x-axis shows the un-

derlying asset value, with x = 1 being the current
spot price. The solid line in the upper graph is a log-
normal distribution with an expected return equal
to the risk-free rate (here 10%). The lower graph
shows the corresponding Black-Scholes put-delta po-
sition for a 110% strike. For this case it makes sense

4It is questionable whether the concept of a random variable
can be consistently defined [1]. One can argue that “random-
ness” is a result of insufficient information about the state of
the system. A random variable results then from uncontrolled
(and hence unknown) initial conditions.
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Figure 1: Three log-normal probability distributions
(expressing our subjective state of knowledge) with
different drift rates and the corresponding Black-
Scholes delta for a put with strike at the risk-free
rate. Risk-neutral hedging suggests we use the same
delta independently of the drift, i.e.for all three cases.

as the partial short position corresponds reasonably
to the two possible outcomes.

The two coloured lines in the upper graph are
two other log-normal distributions of the same (log-
return) standard deviation, but with different ex-
pected returns (drift). The blue graph represents a
case for which we are practically certain that the as-
set price will have declined over the next year. For
such a case it is clear that one would hedge a 110%
put by immediately shorting the full amount, as we
know that the asset will decline in value.

Risk-neutral pricing would tell us though to price
and hedge the position as if the expected return was
actually the risk-free rate. If the blue graph repre-
sents our state of knowledge, then this does not look
like a good idea.

The case for the red line in figure 1 is similar. Here
it is known with almost certainty that the asset value
will rise above the strike level, and hence that we
should not have a short position at expiry. It is clear
that in such a case we would value the put worthless
and we would also not hold a short delta position.

Again, risk-neutral pricing gives us counter-intuitive
advise to ignore our knowledge of the expected return.
Note that the point is not whether we know the ex-

pected return or not. The expected return is part of
what we believe about the asset. If we are not certain
about its value we should incorporate this uncertainty
using probabilistic methods, instead of modelling our
knowledge and then throwing part of the model away.

3 An Alternative Approach

No “real” distribution In line with the Bayesian
interpretation of probabilities [1] we do not believe
that there is an objective “real” distribution. Historic
data tells us what materialized, not what we should
believe about the future, and arguably not even what
we should have believed (see appendix D). In fact,
due to selection effects historic data can be extremely
misleading — think of hedge-fund managers showing
“consistent alpha” until they blow up. It appears
to be a common mistake to interpret historic data
as representative of a “real distribution” for future
returns as suggested by statistics.

An objection often raised against the Bayesian ap-
proach is its reliance on subjective prior distributions.
We want to point out that even using historic data is
a subjective matter — we judge subjectively whether
the data can simply be extrapolated to the future.
This is fine if one is aware of above selection effects
and representativity issues and judges them to be in-
significant. If, however, this treatment is due to an in-
terpretation of the standard stochastic approach and
above issues are ignored, one makes dangerous im-

plicit assumptions about the connection of the past
and the future. The markets have enough examples
of these, like misjudged risks on mortgages, credit
default swaps, and Ponzi schemes. In this context
pricing derivatives off a “risk-neutral” distribution
appears like a safety precaution — too good things
(drift) should be balanced by bad things, which are
not included in the “real distribution” of the standard
approach.

Not everything is, and can possibly be in the his-
toric data. This data is conditional on where we are
now and drawing assumptions about the future intro-

3



duces its own risks. This then has to be a subjective
process involving all information available5 and not
just historic data.

Subjective and Implied Probability Distribu-
tions We argue that every market-participant has
their own subjective probability distribution based
on the information available to him. Because peo-
ple have different information available (and differ-
ent levels of rationality when forming beliefs about
the future) the distributions and hence valuations are
subjective.

These differing valuations then lead to trading and
the observed market prices determine implied prob-
abilities — one can consider them the beliefs of the
market as an “organism”6. Futures imply expected
returns for these implied distributions, but more de-
tailed implied distribution features can be extracted
from option prices (volatility smiles) [2].

Hence we argue that there are only the beliefs of
each market participant (which do not have to be hu-
man, as computer trading illustrates) and an implied
probability distribution (or for sparse data rather im-
plied probabilities), which represents the “beliefs of
the market”.

Futures Futures are arguably the most simple con-
tracts and they tell us directly the implied expected
return.

In the traditional approach it is argued that this
is true, but it is the expected return of the “risk-
neutral” distribution (which obviously should be the
risk-free rate) and the “real” distribution could have a
different expected return, and in fact generally should
have to allow for a risk premium.

We disagree and argue that there is nothing like a
“real” distribution that exists objectively.

5 Interesting feedbacks arise as people use historic data as
information. If it is known how people use historic data this
influences the interpretation of the historic data itself. We just
want to mention here momentum effects.

6 In fact, the economy as a system seems to satisfy most
criteria for a living organism. Even Darwinian evolution can
be observed in the way business structures, political systems,
and commercial products change over time.

There is just an implied distribution, of which fu-
tures determine the expected return. This implied
expected return is not necessarily the risk-free rate,
but a return compatible with hedging expenses (and
feasibility) (this is a well-known fact for commodi-
ties with storage costs like oil, but also for perishable
agricultural products). By pricing options on such
assets off the futures value one implicitly uses the fu-
tures price as an expected return — now different to
the risk-free rate.

Interaction of Spot and Future Markets We
first observe here that a future arbitrage trade does
not only move the futures price, but also the spot
price as assets will have to be bought or shorted. The
net effect is a move towards equilibrium of both mar-
kets. The less liquid market will adjust more than
the liquid one7.

Hence it is misleading to say that arbitrage does
imply futures prices. Arbitrage trades move spot and
futures markets to be compatible with hedging costs.
(See figure 2 for an analogy from physics.) In effect
this enforces an implied expected return compatible
with the hedging cost. For assets with no storage
and transaction costs and available funding at the
risk-free rate, this is the risk-free rate. But if the
implied expected return is the risk-free rate, where is
the risk premium?

3.1 Risk and Risk Premium

Part of the confusions seems to originate from the
mislabelling of uncertainty as risk. It is clear that
there are situations where we are not certain about
the precise outcome, yet we are certain that we will
not have an adverse outcome. Such a situation is rep-
resented by the green line in figure 1 — here we are
almost certain not to lose money (with a long posi-
tion), but there is a significant uncertainty (standard
deviation) about the precise outcome.

Should uncertainty then attract a risk-premium as
is for example assumed in Modern Portfolio Theory?

7 Note that the spot market is not always the more liquid
one. One example are illiquid grain markets.
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closed

closed

Figure 2: An example from physics illustrating how
a common equilibrium is established due to interac-
tion. Under the influence of gravity two columns of
liquids interact. The flow of liquids is the analogue
to the flow of assets through time (e.g.being removed
from the spot market and stored for later disposal)
between the future and spot markets. A “flow against
time” corresponds to short positions flowing forward
in time (like the travelling of ‘holes’ in semiconduc-
tors). If, for example, the left side corresponds to
the spot market and the boundary between the liq-
uids represents the asset price, then the arrow on
top represents assets being carried to the future, and
the arrow at the bottom represents borrowed cash
positions to fund the arbitrage. The analogy could
be taken further with friction and viscosity allowing
slightly different levels on each side.
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Figure 3: A distribution, appearing close to normal,
as one might estimate from historic returns. There
appears to be a mean above the risk-free rate (10%),
which would traditionally be interpreted as a risk-
premium for the uncertainty (variance or volatility).

We would argue in two ways: Firstly, uncertainty
is not what warrants a premium as it is an insufficient
description of risk. And secondly, the risk-premium is
a misleading concept as it suggests that the premium
is part of the distribution, but not the risk we receive
it for.

We believe risk is best defined as the probability
of an adverse outcome as suitably defined for a cer-
tain situation8. Hence the risk should be part of the
distribution describing our beliefs about all possible
outcomes. If we are aware of possible negative out-
comes we will demand compensating possible positive
outcomes.

Figure 3 shows a partial probability distribution
which seems to have a significant “risk-premium” of
about 15% above the risk-free rate of 10% (all log
returns). Traditionally that would be seen as a com-
pensation for the uncertainty (standard deviation)
present.

Figure 4 then shows the full distribution, which is
actually a maximum-entropy distribution for a mean

8 Or through a probability distribution for adverse out-
comes.
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Figure 4: The full distribution contains the risk
in the left tail. This balances with the peak above
the risk-free rate to give an expected return closer or
equal to the risk-free rate.

equal to the risk-free rate and given values for the
second, third, and fourth moment. Here we see that
the “risk-premium” is really compensated by a fat
left-hand tail. The expected value contains both —
the risk-reward, if risks do not materialize, and the
risk-penalty, if risks do materialize.
Hence we argue that “real distributions” (in partic-

ular log-normal with a drift higher than the risk-free
rate) are the wrong way to incorporate risk-reward,
as they incorporate a risk premium but do not ac-
count sufficiently for the downside-risk.

4 Connection to Classical Pric-

ing Ideas

So given these concerns, why is Black-Scholes doing a
reasonable9 job? To answer this question let us first
note a number of facts.
Firstly, one can argue that due to scale-invariance

(as the actual value of a share is meaning less — it

9 And reasonable does not mean great. The observed skew
shows that the Black-Scholes pricing equations are insufficient.
See section 5.1, which addresses these issues. See [3] for inter-
esting comments on the history and relevance of Black-Scholes.

scales with the shares in issue) one should look at
distributions over log-prices and hence log-returns.

Secondly, the log-normal probability distribution
is a normal distribution for log-prices, and hence it
is the maximum-entropy distribution for known vari-
ance and mean. This means the distribution makes
the “least assumptions” besides what is known (the
first two moments). So whether the actual log-
returns “are normal” or not is not the question —
if we have only given the first two moments as a de-
scription of our beliefs then the normal distribution
will be the right choice.

Thirdly, if we have no unique extra information
(and historic data is available to everyone) then we
might want to go with the “markets belief” of an
expected return as priced in by the futures.

Given above, the Black-Scholes pricing formulas
can easily be derived as the present value of the ex-
pected pay-off under a log-normal probability distri-
bution with a mean value of the risk-free rate (see
appendix B). This derivation is in fact considerably
simpler than the stochastic differential equation ap-
proach10 — for example there is no need to invoke
Itô’s lemma11.

Of course, that is not to say that we couldn’t do
better. Firstly, we might not be certain of the stan-
dard deviation, in which case our result incorporates
a wrong sense of certainty in a parameter — see sec-
tion 5.1 below, where we show that an uncertain sec-
ond moment leads to a skew. Secondly, we might have
more information about the probability distribution,
e.g., higher moments. Not using such information
will of course be suboptimal.

10It is interesting though that the Greens-function to the
Black-Scholes partial differential equation is nothing else but
the log-normal distribution with the risk-free rate as mean.
So the whole effect of the detour over the stochastic pde is to
eliminate the drift.

11 The equivalent of Itô’s lemma in a probabilistic treatment
is trivial: If the probability distribution for ln(x) is a Gaussian
with mean ν and standard deviation σ then the expected value

of x is eν+σ2/2. If the expected value of x is known to be er

then we have to set ν = r − σ2/2.
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5 Applications

5.1 Unknown Variance

Let us assume we accept the risk-free rate of return as
our expected future asset return, but we are not cer-
tain about the second moment (variance) for a certain
date. How can we value an European option under
such circumstances?
In a probabilistic framework this can be dealt with

easily by marginalizing over the second moment pa-
rameter (Black-Scholes ‘volatility’). Starting with
the definition of the derivatives value as the present
value of the expected cash-flows12 we find

V = e−rt

∫

∞

0

dx f(x) p(x|I)

= e−rt

∫

∞

0

dσ p(σ|I)
∫

∞

0

dx f(x)p(x|σI)

=

∫

∞

0

dσ p(σ|I) V bs(r, σ), (2)

where f(x) is the pay-off function, V bs(r, σ) is the
Black-Scholes price for given risk-free rate and second
moment σ2 (‘variance’), and p(σ|I) is expressing our
beliefs about the possible values of the (square-root
of the) second moment.
Figures 5, 6, and 7 give a graphical example of

above relationship. Figure 5 shows a probability dis-
tribution describing our beliefs about what the stan-
dard deviation (Black-Scholes ‘volatility’) could be.
As the standard deviation is a positive quantity we
consider the log-standard deviation motivated by the
scale-invariance argument [1]. The second order max-
imum entropy distribution for the standard deviation
is then, just as for the price in the Black-Scholes case,
a log-normal distribution. The resulting put option
valuations and the implied volatility skew are pre-
sented in figures 6 and 7.
One could now consider introducing additional

“Greeks” for the parameters of the distribution of
the standard deviation. If, as in the example, a
log-normal distribution was used then the resulting
Greeks follow directly from differentiating (2).

12 We assume here that there are no dividends and all other
parameters are known, i.e.expected return, time to expiry, and
risk-free rate.
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standard deviation (Black-Scholes volatility).
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Figure 7: The resulting implied probability skew
given the probability distribution of figure 5 for the
second moment.

5.2 Exposure Management

Let us assume we have a set of derivatives (on the
same underlying) we can invest in. Prices of these
are determined by the market, and hence are compat-
ible with the implied probability distribution pm(x).
Our valuations and associated risks though are de-
termined by our subjective probability distribution
p(x|I).
Consider a portfolio consisting of ni contracts of

instrument i. The current portfolio market value is

Πm =
N
∑

i=1

niV
m
i , (3)

where V m
i is the current market value of instrument

i. The value of the portfolio to us is13

Π =
N
∑

i=1

niVi, (4)

13 Here we make the simplifying assumption that Vi does
not depend on the nj . This is true for most investments, but
not in general. Consider the value of bottled water to you in
the desert, where you are dehydrated. The first bottle will be
considerably more worth to you then the 1,000’s bottle.

where Vi is the value based on our subjective proba-
bility distribution.
We suggest to maximize the objective function

ξ(n1, . . . , nN ) = Π − Πm subject to constraints on
selected risk and possibly exposure measures (e.g.no
short positions). Two examples of possible risk con-
straints are

• the probability of a loss (including initial costs)
must be smaller than y (this measure is only de-
pendent on the relative number of contracts)

• if there is a negative final portfolio value, its ex-
pected absolute value is less than z (expected
value conditional on that there is a loss).

In two dimensions this optimization can easily be
done graphically.

6 Conclusion

We criticised the stochastic risk-neutral pricing ap-
proach for its lack of subjectivity and its mistreat-
ment of uncertainty as risk. In particular, risk-
neutral pricing is founded on the questionable argu-
ment that any drift is worth sacrificing to eliminate
whatever uncertainty there is.
In this paper an alternative approach was pre-

sented which acknowledges that information and ex-
pectations are subjective. Market participants should
use Bayesian probabilistic reasoning to rationally ex-
press their beliefs in terms of probabilities.
Observed market prices can be translated into im-

plied probability distributions, for which futures im-
ply expected returns.
Given no significant extra information it is reason-

able for market participants to adopt this expecta-
tion. We showed that if a market participant is ad-
ditionally sure about the standard deviation then he
could rationally (due to a maximum entropy argu-
ment) use Black-Scholes pricing to subjectively value
his position. If he is not sure about the standard
deviation he would value his position according to a
skew.
We commented on possible applications to deriva-

tives exposure and risk management. Furthermore,

8



we considered the case of uncertain standard devia-
tion. For a log-normal probability distribution for the
standard deviation we illustrated how a “volatility-
smile” was implied.
While based on simple probabilistic principles, our

approach is quite a deviation from what are current
standard methods in finance (and particularly in fi-
nancial mathematics) and we believe that it offers an
interesting different perspective on financial markets.

A Origins of risk-neutral Pric-

ing

All well known textbooks present the standard ap-
proach based on stochastic differential equations, for
example [4, 5].
Risk-neutral pricing has its origins in the stochastic

approach to derivatives. Hence it is based on the
idea that there is a “real” distribution describing the
underlying return process (the “random variable”).
In the Black-Scholes framework the “random pro-

cess” of the underlying asset price is described by the
infinitesimal log-normal random price movements

dS = µSdt+ σSdX, (5)

where S is the asset price, µ is the drift, σ is the
volatility, and dX is a normally distributed random
variable. This is the only uncertain/random contri-
bution to the price evolution. Hence it is argued
that a portfolio is “risk-free” if this term is elimi-
nated through a suitable (dynamic) hedging strategy,
in which case the portfolio should earn cash returns.
Assuming this is done one arrives at the risk-neutral
pricing formulas, which do not depend on the drift
rate µ.
This concept is extended to other distributions, for

which the risk-neutral measure is linked to the “real-
world” measure through a measure transformation,
which sets the expected return to the risk-free rate.
This then leads to the notion that there are two dis-

tributions — the “real” distribution underlying the
process and the “risk-neutral” distribution according
to which derivatives should be priced. It is important
to understand that the “real” distribution is thought

to be necessary, because otherwise there would be no
risk-premium. Hence the dogma that futures tell us
nothing about the “real” distribution.

B Deriving Black-Scholes from

the log-normal Distribution

Let ν and σ̂2 be the first moment and second central
moment of the log-price probability distribution for
some time t from now, i.e.the distribution expressing
our beliefs about future market levels. Having given
no other information our best guess is the maximum-
entropy distribution for the log-price given the first
two moments as constraints. This is a Gaussian dis-
tribution for the log-price, or the log-normal distri-
bution for the price, which is given by

p(x) =
1

xσ̂
√
2π

{

exp− [ln(x)− ν]
2

2σ̂2

}

. (6)

Substituting z = ln(x)−ν
σ̂ we find

∫ K

0

p(x)dx =
1√
2π

∫ z(K)

−∞

e−z2/2 dz

= N([ln(K)− ν]/σ̂), (7)

where N(K) is the cumulative normal distribution
function

N(x)
def
=

1

2π

∫ x

−∞

dz e−
z
2

2 . (8)

Similarly one finds with z as above and the inverse
x = exp(σ̂z + ν) (note the usual completing of the
square in the exponent)

∫ K

0

xp(x)dx =

∫ z(K)

−∞

exp(σ̂z + ν)√
2π

e−z2/2dz

= e
ν+σ̂

2

2
1√
2π

∫ z(K)

−∞

e
−(z−σ̂)2

2 dz

= e
ν+σ̂

2

2 N

(

ln(K)− ν

σ̂
− σ̂

)

. (9)

As K → ∞ this gives the first moment m1 of x (ex-
pected value) as

m1 = eν+σ̂2/2. (10)
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Let us assume now that the first moment m1 is
known to be equal to the present value x0 times the
risk-free growth factor, i.e.

m1 = x0e
rt. (11)

Substituting from above and solving for ν (the first
moment of the log-price) gives

ν = ln(x0) + rt− σ̂2/2. (12)

For this value of ν let us define

− d2
def
= [ln(K)− ν]/σ̂ =

ln
(

K
x0

)

− rt + σ̂2/2

σ̂
(13)

and d1
def
= d2 + σ̂.

The value of an European put with strike K is the
present value of the expected cash-flow. Hence

Vp = e−rt

∫ K

0

dx (K − x)p(x)

= e−rt
(

KN(−d2)− eν+σ̂2/2N(−d1)
)

= e−rtKN(−d2)− x0N(−d1), (14)

where we used (7) and (9) to evaluate the integral.
Given the second moment as an annualized variance
σ̂2 = σ2t this agrees with the Black-Scholes pricing
formula (for no dividends).
The calculation for European call and binary

put/call are very similar.

C Reconstructing Hedging

Prescriptions

In this paper we emphasized that risk is not uncer-
tainty. However, if one wants to eliminate uncer-
tainty one can derive a “classic hedging prescription”
from a given pricing equation. This is very similar to
the usual procedure, except that the pricing has been
found independently.
Let us assume we want to create a portfolio of a

derivative and its underlying asset such as to have
it momentarily invariant under asset price changes.
Let V (S) be our subjective value of the derivative

and ∆ the number of units of the underlying asset.
The portfolio value is then given by

Π = V +∆S. (15)

Differentiating with respect to the underlying asset
value S and demanding that the portfolio value is
invariant gives

0 =
∂Π

∂S
=

∂V

∂S
+∆, (16)

and hence

∆ = −∂V

∂S
. (17)

For example, for the unknown variance case of section
5.1 this gives (assuming that p(σ|I) is independent of
the spot level)

∆ = −
∫

∞

0

dσ p(σ|I) ∆bs(r, σ), (18)

where p(σ|I) is the probability distribution for the
standard deviation and ∆bs(r, σ) is the Black-Scholes
delta for given standard deviation and risk-free rate.

D Real Uncertainties

One might believe that generally probabilities are
about inferring a correct, but unknown value. For
example, people might ask themselves where the mar-
ket will be on a certain date, and then see whether
they guessed the “correct” value.
The problem here arises as it is implicitly assumed

that the “correct value” exists objectively without
being dependent on the actual betting game and our
associated behaviour.
Lets consider a specific example. Apparently there

was a lottery system in Ireland where the “lucky num-
bers” were assigned by a machine at the till. It so
happened that the later winner was allowed by some-
one else to go ahead and get his numbers first. Hence
the winner claimed later that if that other person
would have not let him go first, he would have not
received the winning numbers.
This certainly would be true if the numbers would

have been drawn already at that point in time (and
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assuming nothing else, like a time dependent random
number generator, could have affected the order of
assigned numbers here). However, what if the actual
drawing process is influenced by your selection14?

In such a case the outcome is conditional on your
choice. Knowing that you were right/wrong with
one choice does then not mean that you would have
not been right/wrong with another choice. In other
words, the lottery winner could still have been win-
ning (though probably with a low chance) if he would
not have swapped. More importantly, the other per-
son who would have gotten the numbers now first
probably would have not won as the outcome was
conditional on them swapping.

To extract the essence consider the following: a
game master preselects (lets say by some “random
method” like throwing a dice) two possible outcomes
(0 or 1) for A and B separately. You are now asked
to guess an answer (0 or 1). If you say 0 the game
master reveals to you the outcome drawn for A, while
if you say 1 he will reveal outcome B.

Hence, having been right with your guess does not
tell you whether you would have been right or wrong
would you have chosen the other answer.15

These situations arise if the observer is embed-
ded in the system he is analysing and his interac-
tions cause a meaningful disturbance in the system.
Chaotic systems are extremely sensitive to variations
in initial conditions and hence one can imagine that
even just the presence of an observer (gravitational
interaction) can change an outcome.

We believe that such issues are closely related to
the concept of Free-Will. Knowing that your ‘act of

14 We argue that due to the chaotic nature of our world this
is a lot more likely than the reader may think. Some contem-
plation shows that there are many instances in life where a
tiny change in initial conditions has unpredictable effects. Let
us only mention conception here, where the smallest change
would lead to a different genetic make-up of a living being (de-
termining gender etc.) — a huge factor in the parents further
life.

15 A variation on this theme is a game where a game master
choses an answer based on a probability distribution depen-
dent on your choice. For example you choose between yes and
no, and he selects the answer to be (a) 50% yes/50% no if you
selected yes and (b) 20% yes/80% no if you selected no. Play-
ing the game repeatedly you will now find that the distribution
of outcomes depends on your bets.

prediction’ is influencing the future itself makes it im-
possible for you to predict the future. Hence even
a deterministic system will be unpredictable from

within if the act of prediction cannot be performed
without interfering with the system.
Hence for an observer inside the chaotic system the

system is unpredictable and dependent on his deci-
sions — he perceives Free-Will.

E Segmented Markets and

Phase Transition

Interesting phenomena should arise if there are dis-
tinct groups of market participants, which assign very
different valuations to an asset. As long as there are
enough buyers and sellers in the group attaching the
highest valuation, the situation can be stable. How-
ever, as the size of this group shrinks (for instance due
to new information) sellers might not find buyers in
this group and the price can collapse. One could see
this as a kind of “phase-transition” from one stable
state into another.
As people usually subscribe to certain scenarios

(“I’m a bull” or “I’m a bear”) and do not allow for
probabilistic weightings, such situations appear real-
istic.
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