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Abstract

It is shown, that Bose-Einstein condensation can occur not only in spatially extended
equilibrium systems, but also in the systems far from thermal equilibrium, which show
order-disorder phase transition. The investigation is performed by solving the Complex
Ginzburg-Landau equation, a universal model for nonequilibrium order-disorder phase
transitions.

Under Bose-Einstein Condensate (BEC) an equilibrium state of a quantum system is
usually understood, such that most of the particles of the system condense into one, the lowest
energy state of the system [1].

In the preceding paper [2] we showed, that Bose-Einstein condensation may occur not
only in quantum systems, but also in classical systems. Essential for the condensation is the
coherent behavior of the individual members (particles) in the spatial domain, which is
equivalent to autocatalytic behavior in momentum space. In the quantum case this
autocatalytic dynamics occurs through the indistinguishability of the individual particles
which reduces the probability of random scattering from occupied states. In classical systems
such autocatalytic dynamics may occur as well due to nonlinear interaction among the
particles.

The present paper deals with another aspect of Bose-Einstein condensation: It is shown
that the assumption of thermal equilibrium is not necessary in order to obtain statistical Bose-
Einstein distributions. Bose-Einstein distribution can be obtained far from thermal
equilibrium as well. One example is the laser. The photons in a laser resonator are far from a
thermal equilibrium and the distribution of mode occupations in lasers shows a sharp peak at
the lasing (transverse or longitudinal) mode: the photons of the laser radiation condense into
one lasing mode. The laser is indeed a system showing an order-disorder transition: below the
generation threshold a laser emits incoherent radiation, with exponential (thermal) intensity
distribution. Above the generation threshold laser emits a coherent radiation, which is of
poissonian intensity distribution.

Analogously to this example of the photon condensation in a laser we search for Bose-
Einstein condensation in general systems showing order-disorder phase transitions. Order -
disorder phase transitions in spatially extended nonlinear systems are universally described by
a complex Ginzburg - Landau equation (CGLE) with a stochastic term:
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where A t( , )r  is the order parameter defined in n-dimensional space r , and evolving in time
t. p is the control parameter (the order - disorder transition occurs at p = 0). The Laplacian



A2∇  represents the nonlocality in the system, and Γ ( , )r t  is the noise, δ - correlated in space

and time, of power (temperature) T: Γ Γ( , ) ( , ) ( ) ( )*r r r r1 1 2 2 1 2 1 22t t T t t⋅ = ⋅ − −δ δ
Below the transition threshold ( p < 0 ) CGLE (1) yields a disordered state: the

complex-valued order parameter A t( , )r  is essentially noise filtered in space and time, with
exponential (thermal) intensity distribution. Above the transition threshold ( p > 0 ) (1) yields
an ordered, or coherent state (or a condensate) in a modulationally stable case, with the order
parameter distributed near its mean value A p2 = .

CGLE (1), with complex-valued coefficients, has been derived systematically for many
systems showing second order phase transitions in the presence of noise, e.g.: for lasers with
spatial degrees of freedom [3], where A t( , )r  is proportional to the amplitude of the optical
field, and Γ ( , )r t  corresponds to the vacuum or thermal fluctuations; for finite temperature
superfluids [4]. The conservative limit of CGLE (the so called Gross-Pitaevskii equation) has
been derived for the finite temperature Bose-Einstein condensates [5], where A t( , )r  is the
wave-function of the condensate, and Γ ( , )r t  corresponds to the fluctuations of thermal bath.
The CGLE (1) can be also used to describe the atom laser. The CGLE with real-valued
coefficients b c= = 0, has been systematically derived as the amplitude equation for stripe
patterns in nonequilibrium dynamical systems [6], where the amplitude and phase of the order
parameter corresponds to the amplitude- and phase modulations of the roll patterns
respectively.

The CGLE with real-valued coefficients b c= = 0, can be written phenomenologically
as a normal form, or minimal equation, describing universally nonequilibrium order - disorder
phase transitions in the presence of noise [7]: the first two terms ( )pA A A− 2  approximate in
the lowest order a supercritical Hopf bifurcation, and the diffusion term ∇ 2 A  describes the
simplest possible nonlocality. The complex-valued character of the order parameter A t( , )r  is
important: every ordered, or coherent state, both in classical physics or in quantum
mechanics, is characterized not only by the modulus of the order parameter, but also by its
phase. Then, as the real Ginzburg-Landau equation (that with the real-valued order parameter)
is the normal form for second order phase transitions between two arbitrary states [8], the
CGLE (1) can serve the as the normal form of second order phase transitions between ordered
and disordered states of the matter.

It is shown in this letter, that the spatial noise spectra of the CGLE with the real-valued
coefficients are of 1 2k - form, where k is the wavenumber of the transverse modes. (For
simplicity the case of real-valued coefficients b c= = 0 is considered in present paper,
however the main results are also valid for CGLE with complex-valued coefficients, as
commented below.) In this way the statistical distributions of excitations of transverse modes
are Bose-Einstein-like. In the long wavelength limit ( k → 0 ) the statistical distributions
coincide with the Bose-Einstein distribution [1] derived originally for systems in thermal
equilibrium.

For analytical treatment it is assumed that the system is sufficiently far away from the
order - disorder phase transition: p T>> . Then the homogeneous component A p0 =  is
dominating, and one can look for a solution of (1) in the form of a perturbed homogeneous
state: A t A a t( , ) ( , )r r= +0 . Linearizing (1) around the stationary homogeneous solution one
obtains:
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and its complex conjugate. Diagonalisation of (2): b a a+ = +( )* 2  and b a a− = −( )* 2 ,
yields:
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This shows that:
a) all amplitude fluctuations b+  decay above the phase-transition point with a decay rate

λ+ = − −2 2p k , where k is the spatial perturbation wavenumber. Asymptotically long-lived
amplitude perturbations are possible only at the phase transition point (in a critical state), but
never above it;

b) the phase fluctuations b−  decay with a rate λ− = −k 2 , which means that the long-
wavelength perturbations decay asymptotically slowly, with a decay rate approaching zero for
k → 0 .

From (3) one can calculate spatio-temporal noise spectra, by rewriting (3) in terms of
the spatial and temporal Fourier components � −= ±± kkrkr dditibtb ωωω )exp(),(),( : This
leads to:
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The spatio-temporal power spectra are:
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for the amplitude and phase fluctuations correspondingly. Assuming δ - correlated noise in
space and time, Γ± ( , )k ω

2
 are proportional to the temperature T of the random force.

The spatial spectra are obtained by integration (5) over all frequencies ω:
S S S S d S dtot amplitude phase( ) ( ) ( ) ( , ) ( , )k k k k k= + = ++ −� �ω ω ω ω. (The total power spectrum
here is the sum of amplitude and phase power spectra, since the spectral components b t± ( , )r
are mutually uncorrelated, as follows from (4)). The integration is performed for clarity
separately for amplitude and phase fluctuations, and yields:
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This means that the spectrum of phase fluctuations is of the form 1 2k  (6.b). The spatial
spectrum of amplitude fluctuations is Lorentzian: in the short wavelength limit, k p2 2>> ,
the amplitude spectrum is equal to the phase spectrum S k S k+ −=( ) ( ) , as follows from (6.a).



In the long wavelength limit k p2 2<< , the amplitude fluctuation power spectrum saturates
to: )2()0( pTkS π=≈+ , and is negligibly small compared to the phase fluctuation spectrum.

We note, that if (5) are integrated with respect to spatial wavenumbers k, then temporal
noise spectra are obtained. This integration was performed in [9], and leads to 1 f α  noises,
with � depending on the dimensionality of the space: α = 3 2  for 1D systems, α = 1 for 2D
systems, and α = 1 2  for 3D systems.

Next we checked the spatial spectra calculated analytically (6) by comparing them with
those obtained by numerical integration of CGLE (1). We integrate for this purpose
numerically the CGLE (with real valued coefficients) in 1, 2, and 3 dimensions, and average
in time the occupations of transverse modes. The main problem in the numerical integration
(especially in case of higher dimension of space) is that the numerical discretization restricts a
range of spatial wavenumbers. In the 2D case, where a grid of (64*64) was used, the range of
wavenumbers is less than two decades. For this reason we performed a series of calculations
with different sizes of the integration region, and combined the calculated averaged spatial
spectra into one plot. The calculations in Fig.1 (1D case) e.g. were performed on a spatial grid
of 64 points with five different sizes of the integrating region. (The calculating facilities
allowed to calculate on a larger grid than of 64 points in 1D, however we choose such a
coarse grid in 1D in order to compare with the results in 2D, and 3D, where grids larger than
(64*64) and (64*64*64) respectively, were hardly possible.) The integration region with the
size equal to l result in a set of transverse wavenumbers equal to 2πn l , where n is the index
of the discrete transverse wavenumber. (Discrete wavenumbers (modes) occur due to the
periodic boundary conditions used.) In this particular 1D case a discrete set of 64 modes with
wavenumbers ranging from a minimal value k lmin = 2π , to the maximal value
k lmax = ⋅2 64π  occurs. We performed separate calculations with the size of the integration
region l ln

n= = ⋅ −2 102 5 2π . /  ( n = 1 5,..., ). In this way we obtained the spectra combined from
partially overlapping pieces, extending in total over more than three decades.

Fig.1. The spatial spectrum as obtained by
numerical integration of CGLE (1), with
real valued coefficients, for 1D. The
averaging has been performed over the
time of 610=t . Each point corresponds to
averaged intensity of discrete spatial mode.
The calculations have been performed with
5 different values of the size of the
integration region with different temporal
steps:

2
1 102 ⋅= πl , 2

1 105 −⋅=∆t ;
5.1

2 102 ⋅= πl , 3
2 105 −⋅=∆t ;

1023 ⋅= πl , 4
3 105 −⋅=∆t ;

5.0
4 102 ⋅= πl , 5

3 105 −⋅=∆t ;
π25 =l , 6

3 105 −⋅=∆t .
These spectra were combined into one
plot. The dashed lines correspond to a

2/1 k  dependence and are for guiding the
eye.



The noise spatial power spectrum is shown in Fig.1 for 1D, and in Fig.2 for 2D. The
results for 3D show no principal differences with those in 1D and 2D and are not shown.

Fig.1.a and Fig 2.a show the spectra in a log-log scale, where the character of 1 2k  is
clearly seen. The dashed lines are the lines with 1 2k  slope to guide the eye. The 1 2k
dependence is good in the limits of long and short wavelengths, however, for the intermediate
values of k a discrepancy is observed. This discrepancy is most clearly seen from Fig.1.b and
Fig.2.b, where the normalized spectra k S k2 ( )  are plotted. The "kink" at intermediate values
of k joins the spectra in the limits of long and short wavelengths which are both of the same
slope, but of different intensities. As follows from (6) for long wavelengths ( k → 0 ) the
amplitude fluctuation spectrum is negligible compared to the phase fluctuation spectrum
S k S k+ −<<( ) ( ) , and the total spectrum is: S k S k( ) ( )= + . For short wavelengths ( k → ∞ )
the amplitude fluctuation spectrum is equal to the phase fluctuation spectrum S k S k+ −=( ) ( ) ,
and the total spectrum is: S k S k( ) ( )= +2 . The numerical results shown in Fig.1 and Fig.2.
confirm this result.

One more reasons why we combined the spectra from pieces calculated separately was
the finite size of the temporal step used in our split-step numerical technique. Indeed, in order
to obtain the correct spectra in the long wavelength limit the integration is time-consuming.
The long waves are very slow, and the characteristic build-up time for long waves is of order
of τ build k≈ 1 2 , as seen from (4,5), and diverges for k → 0 . One has to average for very long
time to obtain the correct statistics for the long waves. On the other hand, the characteristic
build-up times for short wavelengths become very small, since the same relation τ build k≈ 1 2

holds. Here, in order to obtain a correct statistics of mode occupation one has to

Fig.2. The spatial spectrum as obtained by
numerical integration of CGLE (1) for 2D.
The averaging has been performed over
the time of 410=t . Everything else as in
Fig.1.



correspondingly decrease the size of the temporal step for k → ∞ . We thus come to the
conclusion, that one can never obtain the analytically predicted (correct) 1 2k  statistical
distribution in a single numerical run, with finite temporal steps (with limited time
resolution). The spectrum calculated with a fixed temporal step is shown in Fig.3. In log-log
representation (Fig.3.a) a sharp decrease of occupation of the large wavenumbers occurs. In
representation of logarithm of spectral density vs. k 2  (Fig.3.b) a straight line indicating an
exponential decrease is obtained for large wavenumbers. The spectrum shown in Fig.3,
curiously enough, is thus precisely a Bose-Einstein distribution, decaying with the power law
for long wavelengths: 2)0( −∝→ kkS , and exponentially for short wavelengths:

)exp()( 2kkS −∝∞→ .

We note, that the linear stability analysis does not lead to the exact Bose-Einstein
distribution found numerically with finite temporal steps. The finite temporal step t∆  is
equivalent to a particular cut-off frequency maxω  of the temporal spectrum: t∆= πω 2max . In
order to account for this finite temporal resolution the integration of (6) should be performed
not over the all frequencies, but over [ ]maxmax , ωω +− . This integration, however, leads to a
power law decay 4)( −∝∞→ kkS  for short wavenumbers, and not to the expected
exponential decay. We have no explanation for this discrepancy between the analytical and
numerical results.

We performed a series of numerical calculations varying the size of the temporal step,
in order to interpolate the spectra in the total range of the spatial frequencies. The result is:
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Here C is a constant of order one. (7) reproduces correctly the numerically obtained
spectra in both asymptotics of 0→k  and ∞→k . For the intermediate values of the
wavelengths 1max

2 ≈ωk  a transition between power law and exponential decay is predicted
by (7) exactly as it found in the numerical calculations. In this way numerical results show

Fig.3. The spatial spectrum as obtained
by numerical integration of CGLE (1)
for 1D for fixed temporal step of

2105 −⋅=∆t , but combined from four
calculations with different size of
integration region. The averaging has
been performed over the time of

610=t .
a) shows the spectrum in log-log
representation and the dashed line
corresponds to 2/1 k  dependence.
b) shows spectrum in single log
representation and the dashed line
corresponds to )exp( 2k− dependence.



that the spatial spectrum in the case of limited temporal resolution of the system showing an
order-disorder transitions (modeled by CGLE) coincide precisely with the Bose-Einstein
distribution, whereas the spectrum in the case of unlimited temporal resolution follows the
power law.

The spatial fluctuation spectra were calculated for the CGLE with real-valued
coefficients b c= = 0. However the results can be directly extended to the case of a CGLE
with complex-valued coefficients, at least the in modulationally stable range: 1 0+ >bc . The
eigenvalues for the linearized equation (the analog of (2)) are: λ+ = − − −2 12p k bc( )  and
λ− = − +k bc2 1( )  for amplitude and phase perturbations, in the long wave limit k 2 1<< . This
generates linear Langevin equations similar to (3), and eventually leads to the same 1 2k
spatial spectra. This allows to obtain the Bose-Einstein distributions not only in
predominantly dissipative systems b c, <<1, but to the generalize our result to general case of
spatially extended systems showing order-disorder phase transitions.

In the accompanying paper [10] we show, that Bose-Einstein-like distributions in
nonequilibrium spatially extended systems may occur not only into the lowest state of the
system (k = 0), but also into higher, excited modes ( k ≠ 0 ).

We acknowledge discussions with C.O.Weiss, A.Berzanskis and M.Lewenstein. This
work has been supported by Sonderforschungs Bereich 407.
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