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The possibility of materials that are governed by a fixed point related to small world networks is discussed. In
particular, large-scale Monte Carlo simulations are performed on Ising ferromagnetic models on two different
small-world networks generated from a one-dimensional spin chain. One has the small-world bond strengths
independent of the length, and exhibits a finite-temperature phase transition. The other has small-world bonds
built from atoms, and although there is no finite-temperature phase transition the system shows a slow power-
law change of the effective critical temperature of a finite system as a function of the system size. An outline of
a possible synthesis route for quasi small-world nanomaterials is presented.

1 Introduction

Many materials have novel physical properties that are at-
tributed to the quasi-low-dimensional nature of their struc-
ture, as can be seen in recent research in a number of ar-
eas. Examples of quasi-one-dimensional materials include
conductors and superconductors [1]. Two-dimensional thin
films lead to novel effects, including the quantum Hall ef-
fect [2] and low-dimensional magnetism [3]. The change
from one effective dimension to another may lead to inter-
esting physical effects. For example, it may be responsi-
ble for the onset of high-temperature superconductivity [4].
This type of dimensional crossover can lead to effective
non-integer dimensional fixed points [5]. However, quasi-
low-dimensional materials have constraints due to their low-
dimensional behavior. These include the absence of a phase
transition both in one-dimensional systems and in some two-
dimensional systems where two is below the lower critical
dimension.

Recently there has been a great deal of interest in net-
works that are not regular lattices, such as small-world net-
works [6]. The study of these networks has been motivated
mainly by social organizations (such as six degrees of sep-
aration) and connectivities of computers (such as the scale-
free world-wide-web network) [6]. Such connectivities have
also been used, for example, in non-trivial parallelization
of short-ranged discrete event simulations [11, 8, 10, 9, 7].
Simulations of models such as Ising spin models on these
networks have been studied, but no attempt has been made
to ask whether these theoretical models could actually be de-
signed and built via various synthesis routes. This question
is addressed in this manuscript. There is a difference be-
tween the models studied to date and the question of whether
or not materials can be made that are governed by small-
world fixed-points. The difference is that materials must
be constructed from atoms and must be embedded in three-
dimensional space.

2 Model and Methods

The models studied here are Ising models with N0 spins on
a linear chain, with a nearest-neighbor ferromagnetic inter-
action constant J1.

In the first model, model 1, if there is a small-world con-
nection between spins i and j and i ≥ j +1 a ferromagnetic
interaction of strength J2(i, j) is added. The Hamiltonian is

H = −J1

∑

i

σiσi+1 −
∑

SW

J2(i, j)σiσj (1)

where periodic boundary conditions are used (spin N0 + 1
equals spin 1) and the Ising spins σ = ±1. Terms in the
second sum are only present if there exists a small world
connection between spins i and j. We construct a (random)
small-world network algorithmically by: i) start with spin 1,
and randomly connect it to any of the other N0 − 1 spins; ii)
if spin 2 is not connected to spin 1, then randomly connect it
to one of the N0−2 spins that are not already connected; iii)
continue for all N0 spins. Note that here N0 must be even.
This algorithm gives each spin i three connections, two of
strength J1 to spins i − 1 and i + 1 and one of strength J2

to the small-world connection between spin i and j. This
type of small-world connection has been used in the past to
obtain perfectly scalable parallel discrete-event simulations
[7]. A study of the Ising model on a similar small world
network with J2(i, j) = Jr−α

ij (i.e. having a power-law
dependence on distance) has recently been performed [12].
There they conclude that any non-zero value for α destroys
the finite-temperature phase transition in the thermodynamic
limit. This result differs from the case with J2(i, j) = J2

(independent of length), where a finite-temperature phase
transition has been observed [13, 14, 15, 16, 17]. Our first
model has all small-world bonds of strength J2, independent
of length.
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In our second model, model 2, we construct the small-
world connections from Ising spins. In particular, for each
small-world bond constructed as in our first model between
spins i and j, we add rij + 1 Ising spins and couple each
of them together with interactions of strength J2. These
additional Ising chains are coupled to the original Ising
spins i and j with interaction strength J2. Thus, the small-
world connections have been constructed using the same
lattice constant as the original lattice (but different nearest-
neighbor interactions).

We have performed a standard importance-sampling
Monte Carlo simulation [18]. We measured the magneti-
zation m =

∑
i σi/Ntot, order parameter, susceptibility χ,

internal energy, specific heat, and the Binder 4th order cu-

mulant for the order parameter U = 1 − 〈m4〉
3〈m2〉2 . The code

was run using trivial parallelization on a cluster, using up
to 128 processing elements. The parallel random number
generator SPRNG 1.0 [19] was used. The spins to be up-
dated were chosen randomly, a Glauber spin-flip probabil-
ity was used. For each temperature T , 105 Monte Carlo
steps per spin (MCSS) were used for thermalization and
averages were taken over 106 MCSS (with measurements
taken every 10 MCSS). The energy units were chosen such
that J1/kB = 1, where kB is Boltzmann’s constant. In this
paper the choice J2 = 4J1 was made.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N0

10
−1

10
1

10
3

10
5

10
7

10
9

10
11

N
to

t

Ntot

std(Ntot)
0.127 N0

1.999

0.105 N0

1.497

Figure 1. The total number of Ising spins Ntot as a function of the
number of spins N0 in the one-dimensional chain is shown. The
solid line is a fit to the data for N0 ≥ 210. Also shown is the stan-
dard deviation of Ntot from the mean (squares), and a fit to those
data (dashed line).

3 Data and Analysis

In our second model, one question is the average number of
total Ising spins Ntot starting with a spin chain of length
N0. For a chain of length L and lattice constant a, one
has L = N0a. Here we take the lattice spacing a = 1,
so N0 = L. It is shown in Fig. 1 that Ntot ∝ Nx

0 with
exponent x ≈ 2. A fit to data (averaged over 103 differ-
ent small-world bond connections) for 210 ≤ N0 ≤ 220

gives Ntot = 0.127N1.999
0 . A fit with the same range of N0

for the standard deviation of the mean gives std(Ntot) =
0.105N1.497

0 .

The relationship Ntot ∝ N2
0 can be understood easily

in an approximate fashion, by ignoring correlations between
the small-world interconnections. Although the number of
spins scales as the square of the linear distance N0, the fixed
point governing the system is not expected to be the two-
dimensional fixed point since the bond connectivity is dif-
ferent from that of a two-dimensional lattice. The average
length of a connection is N0a/4. This is because the lengths
of the connections are chosen uniformly up to the maximum
possible distance of a connection, which is N0a/2 due to the
periodic boundary conditions. There are N0/2 such connec-
tions (the factor of 2 is to take into account double counting).
Ignoring factors in the number of spins that are proportional
to N0 thus gives Ntot ≈ 1

8N2
0 . As seen in the fit in Fig. 1,

both the fitted exponent and prefactor are in excellent agree-
ment with this argument for N0 ≥ 27. An extension of
this argument shows that if only a fraction pconnect of spins
were connected, then the total number of spins should scale
like Ntot ≈ pconnect

8 N2
0 for large N0. Simulations were per-

formed with values of N0 = 8 and for N0 up to N0 = 16384
for model 1 and N0 = 256 for model 2.

Figure 2 shows the average internal energy per Ising
spin, in units of J1, as a function of temperature. The in-
ternal energy is the expectation value of the Hamiltonian,
E = 〈H〉. Model 1, Fig. 2(a), has the low-energy value for
E/N independent of N , since in the ground state (all spins
the same direction) the energy is E/N = (2J1 + J2)/2
where the division by 2 takes into account double counting.
For model 1, J1 = 1 and J2 = 4, so E/N = −3 at low
temperatures. Note that model 1 has a singularity develop-
ing with large N near T = 2.5J1. Model 2, Fig. 2(b), looks
different. Note that for model 2, this energy is divided by the
total number of Ising spins, Ntot. The ground-state energy
per spin has the form E

Ntot
= N0(2J1+J2)+2J2(Ntot−N0)

2Ntot
,

which at low temperatures approaches −4 since Ntot 
 N0

for large N0.

Figure 3 shows the Binder 4th-order cumulant for the
magnetization as a function of the temperature for both mod-
els. The temperature where two of these curves for different
N0 cross is an estimate for the critical temperature. An al-
ternative estimate can be obtained by choosing a value such
as 0.5, and letting the estimate of the critical temperature be
where the cumulant crosses the value of 0.5. (Ideally, one
would like to use the value of the infinite-lattice cumulant,
but this is often unknown unless the universality class of the
model is known.) Model 1, Fig. 3(a), shows a very nice indi-
cation of a critical point near T ≈ 2.7J1. Model 2, Fig. 3(b),
shows no such estimate of the critical point. Only by choos-
ing the temperature where the cumulant crosses 0.5 can an
estimate of the finite-size critical point (if it exists)
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Figure 2. The internal energy per Ising spin for (a) model 1, and (b)
model 2. These are parameterized by the chain length, L = N0a,
where a is the lattice spacing and N0 is the number of spins in the
one-dimensional backbone.

be obtained. Note that for model 2 there are a number
of different quenched small-world bond configurations for
N0 = 8, 16, and 256.

Figure 4 shows the susceptibility χ per Ising spin times
the temperature T . For model 1, Fig. 4(a), shows a sharp-
ening maximum at T ≈ 2.7. Fig. 5, for model 1, shows
the maximum value for χT as a function of N0. There are
five different quenched small-world connections shown for
each value of N0. The slope of this log-log plot gives an es-
timate for the exponent ratio γ/ν, with γ the susceptibility
exponent and ν the correlation length exponent. The value
obtained for the slope is 0.73 using all lattice sizes, and it
is 0.65 using only the sizes 256 and 512. Although simula-
tions for larger N0 may give lower slopes yet, we estimate
that γ/ν = 0.6 ± 0.1.
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Figure 3. The Binder fourth-order cumulant for (a) model 1, and
(b) model 2.

The maxima of χT/Ntot for model 2, Fig. 4(b), de-
crease with temperature as N0 increases. This indicates that
there may be no finite-temperature phase transition in the
thermodynamic limit. This conclusion is further supported
in Fig. 6. There the location of both the crossing of the
Binder cumulant and 0.5 and the maximum of χT/Ntot is
shown. Both estimates for the ‘finite system-size’ critical
point agree. They both also have a reasonable fit, based on
N0 ≥ 32, of Tc = ANx

0 with x = −0.105 and A = 2.74.

4 Possibilities for Small World Mate-
rials

Model 2, with the small-world bonds built of atomic spins,
exhibits no finite temperature phase transition in the ther-
modynamic limit. Consequently, the outlook for small-
world materials is that they will not be easy to synthe-
size. Note that rigorously it has been shown that no
finite temperature phase transition can occur in one
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Figure 4. The susceptibility times temperature for (a) model 1, and
(b) model 2.
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Figure 5. The maximum of the susceptibility times the tempera-
ture for model 1. The slope of this gives an estimate for the ratio
of critical exponents γ/ν.
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Figure 6. The summary for model 2 of the various indicators of
critical behavior are shown as a function of the system size. Note
that this fit (dashed line) suggests that a finite-temperature phase
transition does not survive taking the thermodynamic limit.

dimension. Nevertheless, there are a large number of ef-
fective one-dimensional materials [1]. Small-world models
with fixed connection sizes, such as model 1, exhibit a finite
temperature critical point. Building these small-world con-
nections from atomic spins as in model 2 provides the small-
world bonds. However although the small-world fixed point
is unstable at finite temperatures, the flow from this unsta-
ble fixed point seems to be extremely slow. Consequently,
the outlook for quasi small-world materials is better than for
quasi-one-dimensional materials.

Table I shows the effective Tc,eff for a given size of ma-
terial for model 2. Also shown from ref. [12] are values
of Tc,eff for small-world connections with strengths that be-
have as J1r

−α
ij , for different values of α. All temperatures

are in units of J1. Due to the slow decrease in the critical
point with the system size, Table I shows that even for large
systems (of the size of meters) the system should exhibit an
effective critical temperature that can still occur at a reason-
ably high temperature.

One synthesis route for small-world nanomaterials is de-
scribed here. This is a theorist’s cartoon of the synthesis
route, and consequently is not meant to be detailed. First,
start by constructing a one-dimensional chain of atoms (or
molecules), most likely embedded on the surface of a sup-
port material. Prepare a solution of linear molecules of
all different lengths up to the maximum size of material
to be synthesized. This could be accomplished by starting
with linear molecules of the same length, and then having
a chemical process that breaks the linear chains at random
locations. Place a reactive agent at the ends of these linear
segments, this agent should be reactive with the constructed
one-dimensional chain of atoms on the surface of the ma-
terial. Bring this constructed chain of atoms into contact
with the solution of reactive linear molecules, forming the
small-world connections. A further synthesis step can be
performed to reduce the length of the linear molecules to the
minimum possible distance. This could be accomplished by
removing atomic segments. The material synthesized in this
way should mimic closely the small-world connections of
model 2.
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TABLE I: Extrapolated values for the finite-size effective critical temperature (for example Tp, the location of the maximum in χT ) for
various sizes corresponding to the given number of atoms in a one-dimensional chain material. See the text for the assumptions. The last
three columns represent the data of ref. [12], as explained in the text.

Material Natom Tc Tp Tp Tp

Size added atoms α = 0.1 α = 0.2 α = 0.3

base 1 2.74 1.62 1.67 1.69

µm 5 × 103 1.12 1.48 1.31 1.69

mm 5 × 106 0.54 1.37 1.02 0.70

m 5 × 109 0.26 1.26 0.73 0.26

There are several factors that may make quasi small-
world nanomaterials easier to synthesis than the synthesis
route outlined above. It has been shown that not all origi-
nal atoms (ones that are not in the small-world connections)
need to be connected with small-world bonds for the sys-
tem to be controlled by the small-world fixed point [7, 12].
Rather, what is required is just a finite density of small-
world bonds. Hence, the prefactor in front of the power
law for the number of total atoms per original atom may
be made arbitrarily small. It is also possible to consider
starting with a two-dimensional thin film, and synthesiz-
ing small-world connections on the film in a fashion similar
to the one-dimensional route outlined above. Some studies
of crossover from two- and three-dimensional fixed points
to small-world fixed points have been performed [20, 21].
However, it is anticipated that for any finite density of small-
world connections the dominant fixed point should be the
small-world fixed point. Furthermore, since these original
one and two-dimensional systems are embedded in three di-
mensions, it is possible to make some of the longer-distance
small-world connections very short-ranged by bending or
folding the original lattice to minimize the total length of
all small-world bond connections. Finally, just as in quasi-
one-dimensional materials there is the possibility of allow-
ing weak interactions in three dimensional crystals to stabi-
lize the fixed point in different dimensions before the system
exhibits a cross-over to the three-dimensional fixed point.

5 Discussion and Conclusions

The ferromagnetic Ising model on two small-world net-
works has been studied. One model, related to models pre-
viously studied by others [13-17], has only fixed-strength
interactions for the small-world connections. This model
exhibits a finite-temperature second-order phase transition.
We have determined from finite-size scaling of the maxi-
mum of the susceptibility the exponent ratio γ/ν = 0.6(1)
for the system sizes simulated. A study by other researchers
with small-world connections that fall off as a power-law
with actual distance shows no finite-temperature phase tran-
sition, but a logarithmic decrease with N0 of an effective
finite system size critical temperature Tc,eff[12].

The second Ising model studied here is more realistic
for the possibilities of quasi small-world materials. The
small-world connections have been constrained to be built
from spins using the same lattice spacing. This models what
would have to be accomplished in actual quasi small-world

materials, since atoms are the fundamental building blocks.
For this model, no finite-temperature phase transition was
found to survive the thermodynamic limit. In particular, in
terms of the number of linear spins N0, an effective crit-
ical temperature Tc,eff was found to behave as Nx

0 with
x ≈ −0.105. Furthermore, on general grounds the total
number of spins scales as Ntot ∼ N2

0 for a one-dimensional
system with N0 spins.

From these studies a theoretical picture emerges about
the difficulty in synthesizing quasi small-world materials.
The number of atoms needed to connect small-world bonds
may be large, and is expected to scale as a power law of
the number of atoms in the none small-world system. How-
ever, it has been shown that not all none small-world atoms
need to be connected with small-world bonds for the sys-
tem to be controlled by the small-world fixed point [7, 12].
Consequently, the prefactor in front of the power law for the
number of small-world atoms may be made arbitrarily small
in principle. For strengths of small-world connections that
decrease as a power law [12], a logarithmic fall-off of the ef-
fective critical temperature with system size has been found.
Using some order-of-magnitude assumptions and the differ-
ent power law results from this work and ref. [12], one finds
that a reasonable value of Tc,eff is possible for systems in
the size ranges of microns, millimeters, or even meters. For
the model studied here, where the small-world connections
were built from atomic spins, a small power-law fall-off of
the effective critical temperature was found. Thus nanoscale
and mesoscale materials should exhibit an effective critical
behavior related to the small-world bonds. A possible syn-
thesis route to materials effectively governed by small-world
fixed points was outlined.
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