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Landauer’s erasure principle exposes an intrinsic relation between thermodynamics and informa-
tion theory: the erasure of information stored in a system, S, requires an amount of work propor-
tional to the entropy of that system. This entropy, H(S|O), depends on the information that a given
observer, O, has about S, and the work necessary to erase a system may therefore vary for different
observers. Here, we consider a general setting where the information held by the observer may be
quantum-mechanical, and show that an amount of work proportional to H(S|O) is still sufficient to
erase S. Since the entropy H(S|O) can now become negative, erasing a system can result in a net
gain of work (and a corresponding cooling of the environment).

I. PRELIMINARIES

Statistical mechanics and information theory have a
long standing and intricate relation. A famous exam-
ple of this connection is Landauer’s erasure principle [1],
used to exorcise Maxwell’s demon [2]. According to this
principle, in order to perform irreversible operations on a
system, like the erasure of a bit of information, we need
to perform work on the system, which is dissipated as
heat to the environment. The necessary amount of work
is determined by our uncertainty about the system — the
more we know about the system, the less it costs to ‘erase’
it. This result suggests that the seemingly elusive con-
cept of ‘information’ is directly linked to a very concrete
quantity, ‘work’. Here, we analyse the relation between
thermodynamics and information in a world that is fun-
damentally quantum mechanical.

Quantum information theory has peculiar properties
that cannot be found in its classical counterpart. One
example is that one’s uncertainty about a system, as mea-
sured by an entropy, can become negative [3]. This moti-
vates the following question: when our uncertainty about
a system is negative, can we gain work by erasing the in-
formation stored in that system? Our results show that
this is indeed possible; inherently non-classical aspects of
quantum information theory, like negative uncertainty,
are at a fundamental level part of thermodynamics.

A. Physics from an information-theoretic
viewpoint

Our knowledge about the state of physical systems is
usually limited, because the number of parameters that
we can measure and store, as well as our precision, are
finite. A typical example is a gas: we cannot keep track of
the state of each particle, but only of a few macroscopic
parameters, such as the volume or pressure of the gas.
Despite this restricted information, it is possible to make
accurate predictions about the behavior of systems using
tools of statistical mechanics [4–6].

Information constraints can also result in different ob-

servers having considerably different knowledge about
the same physical reality. To illustrate this subjectiv-
ity of information, consider an n-qubit system, S (e.g., n
spin-1/2 particles). An observer, Alice, prepares the sys-
tem in a known pure state. A second observer, Bob, does
not know which state that is, but applies an energy mea-
surement to the system. If S is degenerate, Bob remains
ignorant about the exact state of the system.

A natural way to quantify the knowledge of these ob-
servers is to use entropy measures. The entropy of a
system, S, given all the information available to a given
observer, O, denoted by H(S|O), increases with the un-
certainty of the observer about the exact state of the
system.1 In the case where S is fully degenerate, the
entropy of the system from the point of view of Alice is
zero, H(S|A) = 0, as she has complete knowledge of the
state of the system. On the other hand, Bob has maxi-
mal entropy, H(S|B) = n, because he does not know in
which of the 2n possible states the system is.2

This observer-dependence of entropy seems to contra-
dict the traditional thermodynamics view, where entropy
appears as a property of the system rather than of the
observer. However, the two views can be reconciled by
introducing a standard observer who has access to a well-
defined set of macroscopic parameters, but whose uncer-
tainty about the state of the system is otherwise max-
imal [4]. The idea is that the knowledge of this stan-
dard observer corresponds, to good approximation, to the

1 For concreteness, one may think of the von Neumann entropy,
which for a system, S, in state ρ, is defined by H(S)ρ :=
−Tr(ρ log2 ρ). However, most of this section is valid for any rea-
sonable entropy measure, and our technical statements will use
smooth min- and max-entropies [7]. These are generalizations of
the von Neumann entropy, and reduce to the latter for certain
‘nicely behaved’ distributions, e.g., in the thermodynamic limit
(see Appendix B for details). The subscript in H(S)ρ can be
dropped if the state is clear from the context.

2 The entropy of S conditioned on the classical memory O,
H(S|O), can be defined as the expectation, taken over all states
of the memory, mO, of the entropy of ρm, the state of S condi-
tioned on mO: H(S|O) := Em

[
H(S)ρm

]
.
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knowledge we typically have about large systems in real-
istic situations: in general, we do not know microscopic
details such as the spin direction of individual particles,
but only parameters like the energy of a system (in the
above example, it would make sense to take Bob as the
standard observer). One may nevertheless ask whether
the difference between the entropies H(S|A) and H(S|B)
has any physical significance. As we shall see, this is in-
deed the case.

B. Quantum knowledge

The observers we described require an internal mem-
ory to store the information they have about the system
S (for Alice this memory needs to be large enough to in-
clude a full description of the state of S, while Bob only
stores the value of the energy). It often is implicitly as-
sumed that this memory is classical. We go beyond this
classical scenario and consider observers who may have
access to information about S that is itself represented
as the state of a quantum system — a quantum memory.

To illustrate the effects of a quantum memory, let us
consider a third observer, Charlie, who has one. Char-
lie prepares each of the n particles of S such that it is
maximally entangled with a corresponding qubit of his
memory. Note that this quantum memory is at least as
useful as the classical data held by Alice. In fact, the
latter may be recovered by applying a measurement on
Charlie’s memory.

In order to quantify the uncertainty that Charlie has
about S, we need entropy measures that account for
the quantum-mechanical nature of the information he
holds. In the field of quantum information, such mea-
sures are known as conditional entropies and generalize
classical conditional entropies. The conditional von Neu-
mann entropy can be written as a difference, H(S|C) =
H(SC)−H(C).3 Here, H(SC) denotes the von Neumann
entropy of the joint state of the system, S, and the quan-
tum memory, C. Since this joint state is pure, its entropy
is zero. On the other hand, the reduced state of the mem-
ory, ρC , is fully mixed, which corresponds to the maximal
entropy H(C) = n. We therefore find that, for Charlie,
the conditional entropy is negative, H(S|C) = −n. Such
negative entropies cannot occur for purely classical ob-
servers like Alice and Bob.

This raises the question of whether these ‘negative un-
certainties’ have any operational meaning. The answer
is yes. They can be used to quantify, for instance, the
amount of entanglement needed to send a state to a re-
ceiver with side information, a task commonly referred
to as ‘state merging’ [3]. Another example where neg-
ative conditional entropies play a crucial role was given

3 If C was classical, this expression would be equivalent to
H(S|C) := Em

[
H(S)ρm

]
, as before.

recently in the context of Heisenberg’s uncertainty princi-
ple. The principle bounds the minimum uncertainty one
has about the outcome of a measurement on a system,
S, chosen from two complementary observables, e.g., a
spin measured in the X or Z basis.4 This bound is, how-
ever, violated if quantum information about the initial
state of S is available. It was shown that this violation
can be quantified by the negativity of the entropy of S
conditioned on the memory [10].5

In this work, we go one step further and establish a
relation between a physical quantity (namely the work
necessary to ‘erase’ the state of a system) and the condi-
tional entropy. Remarkably, the validity of this relation
extends to the quantum regime and, in particular, yields
a direct thermodynamical interpretation of negative con-
ditional entropies.

C. Information-work relation

In this section we illustrate Landauer’s erasure princi-
ple and express it in terms of conditional entropies. The
process of erasing a system is defined as taking the sys-
tem to a pre-defined pure state, |0〉. Note that while
erasing a system leads to the loss of information that
could be encoded there, it may also reduce our uncer-
tainty about the system (if we did not know the previous
state of the system, now we are sure that it is |0〉).

For a concrete example of how to erase a bit, consider
a spin-1/2 particle exposed to a tunable magnetic field
that can be adjusted to manipulate the energy of states

|↓〉 and |↑〉, according to a Hamiltonian like HB = j ~B ·~s.
Initially, the magnetic field is turned off, so the system
is degenerate. We define ‘erasing’ as taking the spin to
the pure state |0〉 := |↓〉. Let us see how two different
observers could do this.

Our first observer, Alice, knows that the particle is in
a pure state, for instance |↑〉. In order to take the particle
to |↓〉, she may apply a unitary operation, in this case a
not gate. This operation is reversible and has no energy
cost.

The second observer, Bob, has no information about
the initial state of the system, describing it as a fully
mixed state, 1

2 . One strategy he can follow to erase the
bit is to couple the particle to a heat bath and slowly
increase the magnetic field, raising the energy of state |↑〉
until its occupation decays, as shown in Fig. 1. This era-
sure process has an energy cost of kT ln 2, where T is the
temperature of the bath and k the Boltzman constant.

4 More precisely, in its formulation proposed by Deutsch [8] and
Maassen and Uffink [9], the principle asserts that H(X|O) +
H(Z|O) ≥ log2

1
c

, where O is any classical description of the

initial state of S, and where log2
1
c
≥ 0 is a measure for the

non-commutativity of the observables X and Z.
5 In the generalized form where O may be non-classical, the rela-

tion reads H(X|O) +H(Z|O) ≥ log2
1
c

+H(S|O).
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FIG. 1: Erasing a fully mixed qubit. a) We start from a fully mixed state in a degenerate system. The filling of each circle
represents the probability, 〈n↓/↑〉, that the system is in the respective state. b) We couple the system to a heat bath at
temperature T and slowly raise the energy of state |↑〉. Thermalized by the bath, the system equilibrates in a Gibbs state of

temperature T . As the energy of |↑〉 increases, it becomes less occupied, according to 〈n↑〉(E) = [1 + eE/kT ]−1. We continue
raising that level until it is empty. The total cost of this operation is

∫∞
0
〈n↑〉(E) dE = kT ln 2. c) Finally, we isolate the

system and lower the energy of state |↑〉. Since the state is empty, this operation is energy neutral.

More generally, in a hybrid setting where the sys-
tem, S, may be quantum mechanical but the information
about it is classical, the work, W (S), required to erase S
is given by [11]

W (S) = H(S) kT ln 2 . (1)

Crucially, Eq. 1 relates work to a quantity that is, accord-
ing to our discussion above, dependent on an observer.
This apparent contradiction is resolved by reconsidering
the meaning of W (S). Note that in order to erase a sys-
tem, we need to design an experimental setup that can,
and in general must, depend on the knowledge we have
about it. Hence, rather than describing W (S) simply as
the ‘amount of work one needs to perform to erase system
S’, one may interpret it as the ‘amount of work that an
observer with memory O needs to erase S’, and denote
it by W (S|O). For an observer with a classical memory,
OC ,6 we have in general

W (S|OC) = H(S|OC) kT ln 2 . (2)

We emphasize that this formula does not condradict
Eq. 1. Instead, it makes it explicit that the relevant quan-
tities may depend on the knowledge of the observer and,
in particular, may differ for different observers (in our ex-
ample, Alice had zero entropy and consequently erased

6 In the literature on Landauer’s erasure principle the system to
be erased is sometimes referred to as a ‘memory’. However, for
the sake of clarity we reserve the term ‘memory’ exclusively for
the observer’s memory resources.

the bit at zero cost, while Bob had H(S|B) = 1 and had
to perform work kT ln 2; see also [12] for a discussion).

Our contribution is to generalize this relation to the
fully quantum case. We will be able to analyse what ob-
servers with quantum memories can do to erase a system,
and how much that costs them.

II. THE GENERAL RELATION BETWEEN
INFORMATION AND WORK

In this section we state and explain our main result,
a general relation between the work necessary to erase a
system and the information one has about this system.

Several approaches have been proposed in the past to
formalize the idea of a thermal process and to study era-
sure, work extraction and their relation to Maxwell’s de-
mon [1, 12–21]. This has spurred a rather extensive liter-
ature (for overviews see [22–25]) as well as debates (see,
e.g., [11, 26–28]). Correlations and entanglement can af-
fect erasure and work extraction, as has been noted by
several authors. For instance, in [29] the system to be
erased is bipartite and the observer is restricted to lo-
cal operations and classical communication (LOCC); the
difference between quantum and classical ‘demons’ is ad-
dressed in [30]; see also [31] for a discussion on ‘local’ and
‘global’ demons in the context of the thermodynamic ar-
row of time.

Here, we consider a setting as depicted in Fig. 2, where
an observer, who has a quantum memory, O, tries to
erase a system, S, using a heat bath at temperature T
and performing operations on S and O (which are not
restricted to LOCC). We assume that the inital Hamil-
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FIG. 2: Our setting: an observer, here represented by a machine with a quantum memory (O), will erase a system, S, using a
heat bath at temperature T . The observer can store and withdraw energy from a battery. The rest of the universe is represented
by the reference system.

tonian of S and O is fully degenerate. Details on the
setting can be found in Appendix A.

Since the memoryO is quantum mechanical, accessing
it may in general change its content. Also, there is no
reason why the memory would only contain information
about S; it could also carry information about other sys-
tems. Here we take a cautious position and require that
those memory contents are kept intact in the erasure pro-
cess. Note that this requirement is crucial, since the con-
tents may generally be needed for other purposes, e.g., if
the erasure of S is part of a larger procedure. As a simple
example, suppose we erase system S, and later possibly
would like to erase another system Z. If the erasure of
S removed the information about Z, the subsequent era-
sure of Z could become unnecessarily costly.

In order to specify this memory preservation condition
on a formal level, it is convenient to introduce a ‘reference
system’ R, which models all systems other than S that
the memory can have information about. To guarantee
that the information about R is unaltered, we assume
that the joint state of the memory and the reference,
ρOR, is preserved by the erasure process and that system
R is not touched.

A. A special case

The general idea of what an observer with a quantum
memory can do to erase a system and gain work in the
process can be illustrated with a simple example. Con-
sider a single qubit system S, and an observer, Charlie,
who has a memory formed by two qubits, C = C1 ⊗ C2.
The first qubit is maximally entangled with S, in state
|C1S〉, while the second is maximally entangled with a
qubit of the reference system, R, in state |C2R〉. Charlie
will try to erase S but keep his memory about R intact,

preserving the joint state ρCR =
1C1

2 ⊗ |C2R〉〈C2R|.7

In a first step, Charlie uses the two-qubit pure state
|C1S〉 and a heat bath at temperature T to extract work
2kT ln 2, as described in Fig. 3. The system formed by
C1 and S is left in a fully mixed state. In particular, the
reduced state of C1 is fully mixed, which implies that
the joint state of the memory and the reference is still
ρCR. Charlie then erases the fully mixed qubit S, like
Bob did in Section I C, performing work kT ln 2. The net
work gain of the whole procedure is kT ln 2. Note that if
Charlie had not preserved his memory and later wanted
to erase R, he would have to perform unecessary work.

This case illustrates how the relation between entropy
and the work necessary to erase a system applies in a
quantum scenario: Charlie had negative conditional en-
tropy about S, H(S|C) = −1, which resulted in negative
work cost for erasure, W (S|C) = −kT ln 2.

Naturally, the energy ‘gained’ in this process comes
from the heat bath. As Charlie not only extracted work
but also took S to a pure state, while leaving ρCR intact,
one may at first sight fear that he has violated the second
law of thermodynamics. This is, however, not the case,
since those gains are balanced by the reduction in correla-
tions between S and C. In fact, the entropy of the global
state, H(CSR), increased, and erasing S made Charlie
lose all the entanglement between his memory and S. His
knowledge about the final state of S is only classical — it
can be expressed by a non-negative conditional entropy,
H(S|C) = 0. This prevents him from gaining more work
if he erases S again, using this process in a perpetual
motion scheme. The same observation also explains why
a negative cost of erasure would not enable Maxwell’s
demon to violate the second law.

7 The reduced state of C1 is fully mixed, because |C1S〉 is maxi-
mally entangled.
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FIG. 3: Extracting work from a `-qubit system in a pure state. This process can be seen as the reverse of erasure (Fig. 1).
a) Only one state is occupied, at energy E0; the energy of the empty levels is raised to a very high value at zero cost. b) We
couple the system to the bath and slowly decrease the energy of the empty states. These will become gradually populated
according to the Gibbs distribution. Lowering the partially occupied states results in energy gain of ` kT ln 2 in total. This
energy is stored in the battery. c) In the end of the procedure, the system is degenerate and fully mixed.

B. Single-shot erasure

In general, the work required to erase a system is a
random variable, i.e., the cost of erasure may fluctuate
each time it is performed. Here we characterize a single
instance of erasure with a probabilistic statement, and
in Section II C we will consider the average work cost of
erasure in a thermodynamic limit.

Theorem 1 guarantees that the cost of erasing a system
does not exceed a bound given in terms of the entropy of
S conditioned on O, except with a small probability.

Theorem 1. There exists a process to erase a system S,
conditioned on a memory, O, and acting at temperature
T , whose work cost satisfies

W (S|O) ≤ [Hε
max(S|O) + ∆] k T ln 2, (3)

except with probability less than δ =
√

2−
∆
2 + 12ε,

∀δ, ε > 0.

The quantity Hε
max(S|O) denotes the ε-smooth max-

entropy of system S conditioned on the quantum mem-
ory O, a single-shot generalization of the von Neumann
entropy [7]. In particular, as we shall see, this quantity
reduces to the von Neumann entropy in a thermodynamic
limit (we refer to Appendix B for definition and proper-
ties of smooth entropies).

The term ∆ can be chosen to be small, and in the
limit of large systems could be negleted. For instance,
to allow a maximum probability of failure of only δ =
3%, one pays a price of approximately 20 kT ln 2 in the
work consumption of the process (in addiction to the one
dictated by the entropy).

Theorem 1 implies that an observer with a quantum
memory entangled with S (i.e., with Hε

max(S|O) < 0) can
erase the system with negative work cost, actually ex-
tracting work in the process. Note that this is more gen-
eral than the example of Section II A, where S was, conve-
niently, maximally entangled with a part of the memory:
Theorem 1 implies that observers can make full use of
the correlations between S and O, even if those are not
present in the neat form of maximally entangled qubits.

As a byproduct of the proof of Theorem 1 we find an
analogous result for work extraction. The goal of this
process is to extract work from a system, S, under the
assumption that the memory is kept intact(while the final
state of S is arbitrary).

Corollary 1. Given an n-qubit system S and a mem-
ory O, there exists a work extraction process acting at
temperature T , such that the extracted work satisfies

We(S|O) ≥ [n−Hε
max(S|O)−∆] k T ln 2,

except with a probability of at most δ =
√

2−
∆
2 + 12ε,

∀δ, ε > 0.

C. Thermodynamic limit

We typically expect thermal fluctuations to disappear
in macroscopic systems. Theoretically, this is usually
handled by taking a thermodynamic limit, where we in
some sense increase the size of the system such that fluc-
tuations are averaged away. In order to define a thermo-
dynamic limit in our scenario, we imagine to perform the
erasure on a large collection of independent systems.
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FIG. 4: Information compression, as used in the first step of our proof: a subsystem S1 is decoupled from Γ. The size of S1

decreases with the strength of the correlations between S and Γ, and therefore increases with correlations between S and the
memory, O (see Appendix B). Since the global state is pure, S1 is purified by a system P of equal size that belongs to the
remaining systems, S and O. The state of S1 ⊗ P is fully entangled. The arrows symbolize correlations between the different
systems.

We define the work cost rate of an erasure process as
the average work cost of the process in this limit,

w̄(S|O) = lim
n→∞

1

n
W (S⊗n|O⊗n).

This quantity can be evaluated if we perform the erasure
of many copies of a system. To understand the impli-
cations of our claim in such a situation, we use a well-
known statement from information theory, the Asymp-
totic Equipartition Property (AEP) [32]. The quan-
tum version of this result essentially asserts that, for n-
partite states that consitst of many identical copies of the
same single subsystem state, the smooth max-entropy
converges towards the von Neumann entropy (see Ap-
pendix B).

The work cost rate can now be evaluated using Theo-
rem 1 combined with AEP, leading to the following result.

Corollary 2. There exists a process to erase a system S,
conditioned on a memory, O, and acting at temperature
T , with work cost rate

w̄(S|O) ≤ H(S|O) kT ln 2.

III. OUTLINE OF THE PROOF

We prove our result by providing an explicit process
that satisfies the bound of Theorem 1. We assume (with-
out loss of generality) that S is an n-qubit system. The
erasure process consists of three main steps:

1. We manipulate S in order to compress the correla-
tions between the memory and S into a pure state
of a subsystem of S ⊗ O that has approximately
n−Hmax(S|O) qubits. This state is maximally en-
tangled between two subsystems of S⊗O, like in the
case of Charlie, from the example of Section II A.

2. We use that pure state to extract roughly
[n − Hmax(S|O)] kT ln 2 work (kT ln 2 per qubit).

3. Finally, we erase system S, performing work
n kT ln 2 (again, kT ln 2 per qubit).

We now describe these three steps in more detail, re-
ferring to technical proofs that can be found in the ap-
pendices when necessary.

In the first step, we show, using decoupling results [3,
33] that, after an appropriate transformation, the first
`/2 qubits of S are almost (up to a probability deter-
mined by δ) uncorrelated to the collection, Γ, of systems
outside S and O (see Appendix C 1 for details), with

` ≥ n−Hε
max(S|O) + 2 log2(δ2 − 12ε). (4)

These `/2 qubits form the subsystem S1. As illustrated
in Fig. 4, the fact that S1 is decoupled from Γ implies that
there is an (`/2)-qubit subsystem, P , of S ⊗O such that
the state of S1 ⊗ P is δ-close to a pure, fully entangled
state (details in Appendix C 2).

In a second step, the observer extract work ` kT ln 2
from the state of S1⊗P using a heat bath at temperature
T , as described in Fig. 3 and Appendix D. The system
S1 ⊗ P is left in a fully mixed state. Note that the state
used was maximally entangled, so the reduced states of
S1 and P were already fully mixed before this step. In
particular, the part of the memory involved in work ex-
traction is not changed. The observer did not touch the
memory before this second step and will not use it again,
which implies that the reduced state of memory and ref-
erence, ρOR, is preserved by the erasure process. It is
shown in Appendix D that the probability of failure of
work extraction is upper bounded by δ. The work ex-
traction process of Corollary 1 ends here.

In the last step of the erasure process, the observer uses
energy from the battery to erase system S, as described
in Fig. 1, performing work n kT ln 2. The work balance
of whole process is (`−n) kT ln 2. The logarithmic term
in Eq. 4 is usually negative, because we choose δ and ε
to be small, so we can write the work consumption of the
process as W (S|O) ≤ [Hε

max(S|O) + ∆]kT ln 2.

IV. CONCLUSIONS

We have shown that conditional entropies, as mea-
sures of the uncertainty that an observer has about a
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system, have a direct physical significance in statistical
mechanics. These results complement previous findings
that conditional entropies have an operational meaning
within information theory [3, 10]. More specifically, we
have introduced an erasure process that uses the quan-
tum information that an observer has about a system to
erase the latter. The work cost of this erasure process
depends on conditional entropies, and a curious implica-
tion of our findings is that negative entropies correspond
to a negative work cost of erasure. We have also seen
that an observer with a quantum memory can extract
twice as much work from a system as one with a classical
memory.

The strengthened connection between information the-
ory and statistical mechanics may allow us to interchange
concepts between the two areas. An example is the proof
of our results, as an essential part is played by decou-
pling, which has shown to be a very powerful informa-
tion theoretic primitive [33, 34]. The following obser-
vation suggests that we may also transfer ideas in the
other direction. Intuitively, it appears rather clear that
observers cannot extract more work by locally process-
ing data in their memory. Combined with our bounds
for work extraction, this gives an alternative ‘thermody-
namic’ derivation, as well as interpretation, of the data
processing inequality (also known as strong subadditiv-
ity) which, in information theory, is a crucial and non-
trivial result.

Our work can be related to discord, a quantity orig-
inally introduced in the context of open systems the-
ory and decoherence [35, 36], and also intensively stud-
ied in quantum information theory [37]. Discord quan-
tifies the difference between the uncertainty about a
system, S, for an observer that possesses a quantum
memory, OQ, and one that has only a classical mem-
ory, OC , obtained by performing a measurement on OQ,
δ(S|O) = H(S|OQ)−H(S|OC). Similarly to [30], our re-
sults suggest that δ(S|O)kT ln 2 can be interpreted as the
difference between the work cost of an erasure procedure
that makes full use of the quantum nature of the memory
and a process that is restricted to the classical properties
of that memory. In fact, since our relation between work
and entropy is valid for a single instance of an erasure
process, one may consider a generalized definition of dis-
cord based on the smooth max-entropy, which retains its
operational meaning in the single-shot case.

A. Applications

Our result can also have implications on the funda-
mental limits of computation. Today, one of the major
challenges to the miniaturization of circuitry for high-
performance computing lies in the heat generation. With
the increased compactification, the heat generated per
square unit of circuitry is rapidly becoming difficult to
handle. Although our investigation certainly cannot help
with the practical issues, it might nevertheless be ex-

tended to a theory that provides the ultimate bounds on
dissipation. As is well known, computation per se can
be made reversible [38, 39]. However, this comes at the
expense of keeping extra information about the compu-
tation in a memory. Whenever we wish to erase a part of
this memory, Landauer’s erasure principle dictates that
this unavoidably comes at the cost of generationg heat.

A very common scenario in a computation is that we
wish to erase a part of a memory, but keep the rest of the
memory intact. How much work do we need to dissipate
in order to do this? The naive answer would be that
the cost is given by the entropy solely of the part of the
memory to be erased. However, our analysis shows that
one can do better, namely that the required work is upper
bounded by a condicional entropy, which in general can
be much smaller.

Note that our result requires almost perfect control of
the quantum systems involved, and one may wonder why
we should consider such a theoretical idealization. As an
analogue one can think of the Carnot cycle. Although the
ideal performance of the Carnot engine in many cases can
be a practically unattainable ideal limit, it nevertheless
provides the theoretical foundation in terms of which the
performance of heat engines can be gauged. Reversible
computation together with the erasure principle provides
a similar ideal limit for minimally heat generating com-
putation.
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Appendix A: Formal setting

In this appendix we formalize the setting and the con-
ditions for an erasure process that we use to derive The-
orem 1.

Setting: our setting consists of a system S, a quantum
memory, O, a heat bath at temperature T , a battery and
a reference system, R (Fig. 2), so that the initial global
state is pure, and the composed system S ⊗ O is fully
degenerate.

Allowed actions: the following physical processes on
any subsystem, X, of S ⊗ O are allowed: unitary trans-
formations on X; manipulation of the energy levels of X;
coupling between X and the heat bath or battery. One
may not perform any operations on the reference system.

Erasure process: in the setting described, a successful
erasure process is one that erases system S and preserves
the joint state of the memory and the reference, ρOR. A
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system is said to be erased when it is in a pre-defined
pure state. The work cost of the process is defined as
the difference between the initial and final charge of the
battery.

Altering the energy of a state from E0 to E0 + ∆E
has an average energy cost of 〈n〉∆E, where 〈n〉 is the
probability that the system is in that state. This energy
can be withdrawn from a battery, modeled as follows.

Battery. A battery is a system characterized by an
energy value, E, called charge, and the following opera-
tions:

• Withdrawing energy (performing work). If perform-
ing an operation on a system requires energy ∆E,
coupling between the system and the battery is
modeled by performing that operation and decreas-
ing the charge of the battery by ∆E.

• Storing energy (extracting work). Conversely, if an
operation on a system has a negative energy cost
∆E, coupling the battery to the system and per-
forming the operation results in an increment of
∆E of the charge of the battery.

Heat bath. We assume that the heat bath is large
enough to thermalize a system like S without altering its
own temperature. We model contact between a system
and the heat bath by replacing the state of the system
with a thermal Gibbs state of temperature T . Physically,
this corresponds to letting the system be in contact with
heat bath for long enough to thermalize. This condition
does not imply that the state of the heat bath does not
change — it does, losing or gaining the energy required
to thermalize the system, but not enough to affect the
temperature of the bath.

Appendix B: Smooth entropies

The main result, Theorem 1, relies on the smooth max-
entropy, Hε

max, as a measure to quantify uncertainty [7].
Smooth entropies have, so far, mainly been used in in-
formation theory, where they proved to be the relevant
quantities to characterize information-processing tasks
such as randomness or entanglement distillation, chan-
nel coding, data compression, or key distribution.

The formulation of the entropy-work relation in terms
of the smooth max-entropy — rather than the more stan-
dard von Neumann entropy — has the advantage that the
relation is valid independently of the structure of the un-
derlying quantum states. A work-entropy relation involv-
ing the von Neumann entropy (Corollary 2) is obtained
from this general result by introducing appropriate as-
sumptions, as explained below.

In the following, we briefly review the definition of
smooth entropies and show how they are related to the
von Neumann entropy. For a more detailed discussion of
smooth entropies, their properties, and their information-
theoretic significance, we refer to [7, 40–42].

1. Definition and properties

Let ρ = ρSO be the state of a bipartite system, consist-
ing of subsystems S and O. The ε-smooth max-entropy
of S conditioned on O can be expressed in terms of the
fidelity,8 F , as

Hε
max(S|O)ρ := inf

ρ′SO

sup
σO

log2 F (ρ′SO,1S ⊗ σO)2 .

The supremum ranges over all density operators σO on
O. The infimum is taken over all (subnormalized) density
operators ρ′SO that are ε-close9 to ρSO, where ε ≥ 0 is
the smoothness parameter, which is usually chosen to be
small but nonzero.

The proof of Theorem 1 also involves the smooth min-
entropy, which can be seen as the dual of the smooth
max-entropy, in the following sense. Consider a purifi-
cation ρSOΓ of the given bipartite state ρSO, with a pu-
rifying system Γ. The ε-smooth min-entropy of S con-
ditioned on Γ then corresponds to the negative smooth
max-entropy conditioned on O [41, 43],

Hε
min(S|Γ)ρ = −Hε

max(S|O)ρ . (B1)

Smooth entropies have properties analogous to those
of the von Neumann entropy. For example, for ε → 0,
both Hε

min(S|O)ρ and Hε
min(S|O)ρ are 0 if the reduced

state on S is pure, 1 for a qubit S that is fully mixed
and uncorrelated to O, and −1 for a qubit S that is
maximally entangled with O. Furthermore, they satisfy
a data-processing inequality. It asserts that the entropy
of S conditioned on O can only increase if information is
processed locally at O. Formally,

Hε
max(S|O′)ρ̄ ≥ Hε

max(S|O)ρ,

where ρ̄ = ρ̄SO′ is the state obtained from ρSO when a
completely positive map M is applied on system O.

2. Specialization to the von Neumann entropy

For a bipartite quantum state ρSO, the von Neumann
entropy of S conditioned on O is defined by H(S|O)ρ =
H(ρSO) − H(ρO), where H(σ) denotes the usual (non-
conditional) von Neumann entropy of σ, i.e., H(σ) =
−Tr(σ log2 σ). The conditional von Neumann entropy is
always bounded by the smooth min- and max-entropies,

lim
ε→0

Hε
min(S|O)ρ ≤ H(S|O)ρ (B2)

≤ lim
ε→0

Hε
max(S|O)ρ .

8 Note that the fidelity can be defined for arbitrary (not neces-
sarily normalized) positive operators, R and S, by F (R,S) :=
‖
√
R
√
S‖1, where ‖ · ‖1 is the L1-norm.

9 Closeness is measured in terms of the purified distance [43].
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In particular, if the smooth min- and max-entropies co-
incide, they are automatically equal to the von Neumann
entropy. Hence, under this condition, the smooth max-
entropy occurring in Theorem 1 can be replaced by the
von Neumann entropy.

A typical situation where Eq. B2 holds (approxi-
mately) with equality is that of a large n-partite sys-
tem with weakly correlated parts. In the limit when the
correlations disappear, the state of the system is indepen-
dent and identically distributed (i.i.d.), i.e., of the form
σ⊗n. Such states are common in information theory and
physics — they arise, for instance, naturally for systems
with sufficiently high symmetries (e.g., when a system is
invariant under permutations of its n parts [44]). One
can show that the smooth min- and max-entropies con-
verge for states of the form ρSnOn = σSO

⊗n [32]. Hence,
by virtue of Eq. B2, and using the fact that the von Neu-
mann entropy is additive, one has, for any ε > 0,

lim
n→∞

1

n
Hε

max(Sn|On)σ⊗n

= lim
n→∞

1

n
Hε

min(Sn|On)σ⊗n

= H(S|O)σ . (B3)

In other words, for i.i.d. states, the work-entropy rela-
tion of Theorem 1 asymptotically also holds for the von
Neumann entropy.

We note that Eq. B3 can be seen as a reformulation
of the Asymptotic Equipartition Property, which plays a
crucial role in the area of information theory. There, op-
erational quantities (such as the compression rate of a
random source or the amount of randomness that can be
distilled from a given source) are usually related to ei-
ther the smooth min- or the smooth max-entropy. The
widespread use of the von Neumann entropy in (text-
book) information theory is therefore mainly a conse-
quence of the fact that one typically considers i.i.d. situ-
ations, such that Eq. B2 holds with equality.

Appendix C: Information Compression

Here we address information compression, used in the
first step of the erasure process; in particular, we prove
the bound of Eq. 4, of Section III.

Information compression uses correlations between two
systems, S and O, as measured by an entropy measure,
to create a pure state in a subsystem of S⊗O, using only
local reversible transformations on S. In this result, we
consider a global system S ⊗ O ⊗ Γ. In the context of
our work, S is the system the observer is trying to erase,
O the memory of the observer, and Γ is formed by the
battery, the heat bath and the reference system.

Theorem 2. Given a system Ω = S ⊗ O ⊗ Γ in a pure
state, where S is an n-qubit system, it is possible to create
an `-qubit state of a subsystem of S ⊗O, with

` ≥ n−Hε
max(S|O) + 2 log2(δ2 − 12ε),

that is δ-close to a pure state, applying a local unitary
transformation on S.

The last term is usually small. For instance, for
δ = 0.003 and ε = 10−6, we have 2 log2(δ2− 12ε) ≈ −20.
If the system S is large (say ≈ 1000 qubits), this loga-
rithmic term can be negleted.

We will see later that the erasure process fails with
maximum probability δ. This means that allowing a
probability of failure of 3% has a cost of 10 qubits in
the size of S1, and results in an increase of 20kT ln 2 in
the work consumption of the erasure process (see Sec-
tion III).

The proof of Theorem 2 consists of two steps: first we
will decouple a subsystem S1 ⊆ S, of `/2-qubits, from Γ.
Then we will see that, since the global state is pure, S1 is
purified by a subsystem of S⊗O of the same dimension.
The pure state created has a total of ` qubits.

1. Decoupling

In this first step, we show that it is in general possible
to identify a subsystem of S that can be decoupled from
Γ, according to the following definition.

Definition 1 (Decoupling). A system, X, is δ′-
decoupled from another system, Y , if their joint state
is δ′-close to a product state,

δ

(
ρXY ,

1X

|X|
⊗ ρY

)
≤ δ

where δ(ρ, σ) = 1
2‖ρ− σ‖1 is the trace distance between

two states.

Lemma 1 will show that the size of the decoupled sys-
tem depends on the correlations between S and O, as
measured by an entropy measure, the smooth conditional
max-entropy, Hε

max(S|O). This result uses the procedure
of decoupling, first introduced by [3] and generalized by
[33].

Lemma 1. Given a system Ω = S ⊗ O ⊗ Γ in a pure
state, where S is an n-qubit system, it is possible to δ′-
decouple an m-qubit subsystem of S, S1, from Γ. The
maximum size of S1 is given by

m ≥ n−Hε
max(S|O)

2
+ log2(2δ′ − 12ε).

Proof. The decoupling results [33, Cor. 6.2, p. 57] 10 im-
plies that the average distance between the state actually
obtained after applying a unitary on S and the desired,

10 Here formulated in terms of the smooth min-entropy.
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decoupled state, is given by∫
US

δ

(
TrS2

(
[US ⊗ 1Γ]ρ0

SΓ

)
,
1S1

2m
⊗ ρ0

Γ

)
dUS

≤ 2−
1
2 (n−2m+2)2−

1
2H

ε
min(S|Γ)ρ0 + 6ε. (C1)

Here, the integral is taken over all unitary operations
on system S, and Hε

min(S|Γ)ρ0 is the smooth conditional
min-entropy of S, given the information that Γ may pro-
vide about that system, before applying US . Since the
bound of Eq. C1 applies to the average over all unitaries,
there is at least one fixed unitary, US , that respects it.
For an upper bound of δ′ on the distance between the
desired and the obtained states, we have

m =
n+Hε

min(S|Γ)

2
+ log2(2δ′ − 12ε). (C2)

The global state is pure, so one may use the duality re-
lation between entropy measures, introduced in Eq. B1 of
Appendix B, Hε

min(S|Γ)ρ0 = −Hε
max(S|O)ρ0 , where the

latter is the smooth conditional max-entropy of system
S given the memory. Inserting this to Eq. C2, we obtain

m =
n−Hε

max(S|O)

2
+ log2(2δ′ − 12ε).

It can be proved that the bound of Lemma 1 is optimal,
i.e., that there is no unitary US that allows us to decouple
a system with more than m qubits from Γ [45].

2. Purification

To complete the proof of Theorem 2, it remains to show
that, given an `

2 -qubit system S1 decoupled from Γ, it is
possible to find an `-qubit pure state in a subsystem of
S ⊗ O. Note that the global state of S ⊗ O ⊗ Γ is still
in a pure state, for we have only applied a local unitary
transformation on S.

Lemma 2. Consider a system Ω = (S1 ⊗ S2) ⊗ O ⊗ Γ
in a pure state, such that the m-qubit system S1 is δ′-
decoupled from Γ, in a fully mixed state.

It is possible to find an m-qubit subsystem P of S2⊗O
that purifies the state of S1 such that the joint state of
S1 ⊗ P is

√
2δ-close to a fully entangled state.

Proof. In a first step we assume that the state of S1 and
Γ if fully decoupled. We can expand it as

1S1

2m
⊗ ρΓ = 2−m

∑
k

|k〉〈k|S1
⊗
∑
i

λi |i〉〈i|Γ.

We can find systems A1 and A2 that purify ρS1 and ρΓ.
The composite system A1 ⊗A2 purifies ρS1 ⊗ ρΓ,

|φ〉 = |φ′〉S1A1
⊗ |φ′′〉ΓA2

= 2−
m
2

∑
k

|k〉S1
|k〉A1

⊗
∑
i

√
λi |i〉Γ|i〉A2

.

The statement for δ′ = 0 follows now from the fact
that any two purifications of the same state are related
by a unitary transformation on the purifying system. In
particular, P is given as the image of A1 under this uni-
tary. The claim for strictly positive δ′ follows similarly,
using Uhlmann’s theorem and properties of the trace dis-
tance [43, Lem. 6].

Appendix D: Work extraction

In this appendix we introduce in detail a process that
allows us to extract energy from a heat bath and store
it in a battery, using a pure state of a system X, as
introduced in Fig. 3.

Theorem 3. Given an `-qubit subsystem of S⊗O, X, in
a pure state, a heat bath at temperature T , and a battery,
it is possible to extract exactly `kT ln 2 work. The system
is left in a fully mixed state.

Proof. Let E0 be the energy of the inital state of X, |φ0〉,
for a basis {|φi〉}i , i = 0, 1, . . . , N . We start by lifting
the energy of all unoccupied states {|φ1〉, . . . , |φN 〉} to a
high value, E1. This can be done with no energy cost,
because those states are empty (Fig. 3 a)).

Now we couple X to the heat bath and let it ther-
malize; X is taken to a Gibbs state of temperature
T . The probability that X is in each of the states

{|φ1〉, . . . , |φN 〉} is given by 〈n〉 =
[
N + eβ(E1−E0)

]−1
,

where β = (kT )−1. In total, the probability that the
system is in one of the levels raised is N〈n〉 =

[
1 +

eβ(E1−E0)/N
]−1

.
We then couple X to the battery and lower the energy

of levels {|φ1〉, . . . , |φN 〉} by a small amount ∆. Since
those states were partially occupied, this operation gives
us a small amount of energy, N〈n〉∆, that is stored in
the battery (Fig. 3 b)).

We wait for the system to thermalize again. Because
levels {|φ1〉, . . . , |φN 〉} have slightly lower energy than be-
fore, they will become a little more populated, so the ma-
chine can extract a little more energy when it decreases
the energy of the levels by another ∆. The proccess is
repeated until the energy of states {|φ1〉, . . . , |φN 〉} is low-
ered to E0. At this point all {|φi〉}i are degenerate again
and the state of X is fully mixed (Fig. 3 c).

In the quasistatic limit of ∆ → 0 and E1 → ∞, this
proccess allows us to extract a total amount of work of

lim
E1→∞

∫ E1

E0

1

1 + β(E−E0)
N

dE

=
ln(N + 1)

β
= log |X| kT ln 2. (D1)

The process described in Theorem 3 takes a system
from a pure to a fully mixed state, extracting some work
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in the process. By inverting the process (Fig. 1), one can
bring a system from a fully mixed to a pure state — in
other words, erase the system.

Corollary 3. To erase an `-qubit system initially in a
fully mixed state, using a heat bath at temperature T , it
is sufficient to perform work `kT ln 2.

When compressing information between the system
and the memory, we allowed the state created to be at
most δ-distant from a pure state (Appendix C). The fol-
lowing lemma shows how that affects the probability of
failure of the work extraction procedure.

Lemma 3. If the process described in Theorem 3 is ap-
plied to a state δ-close to a pure state, it succeeds with
probability at least 1− δ.

Proof. The probability that two states, ρ and σ, of the
same system can be distinguished in a one-shot approach
using a physical process, such as a measurement after
a reversible evolution, is given by Prmax(ρ, σ) = 1

2 [1 +
δ(ρ, σ)], where δ(ρ, σ) is the trace distance between those
states.

An example of a process to distinguish two states is
the work extraction process described in Theorem 3. If
the process is applied to the expected pure state, σ, the
probability of error is zero and the quantity of work ex-
tracted is ` kT ln 2. We denote the probability of failure
of the work extraction process for an arbitrary state, ρ,
by pρ.

If we are given one of the two states, σ and ρ, at ran-
dom, apply the work extraction process and obtain less
than ` kT ln 2, we know that the state was ρ. This hap-
pens with probability pρ/2. In (1 − pρ)/2 of the cases,
we are given ρ and extract exactly ` kT ln 2, and with
probability 1/2 we had σ, extracting the same work, so
our best guess if we obtain work ` kT ln 2 is to say we
had state σ. In total, we will be right with probability
1
2 [1 + pρ].

This guessing probability is upper bounded by
Prmax(ρ, σ), so pρ ≤ δ(σ, ρ). Since we imposed a max-
imum distance δ between the pure state σ and ρ, the
probability of failure of the process is at most δ.
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