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We study the asymptotic position distribution of general quantum walks on a lattice, including
walks with a random coin, which is chosen from step to step by a general Markov chain. In the
unitary (i.e., non-random) case, we allow any unitary operator, which commutes with translations,
and couples only sites at a finite distance from each other. For example, a single step of the
walk could be composed of any finite succession of different shift and coin operations in the usual
sense, with any lattice dimension and coin dimension. We find ballistic scaling, and establish a
direct method for computing the asymptotic distribution of position divided by time, namely as
the distribution of the discrete time analog of the group velocity. In the random case, we let a
Markov chain (control process) pick in each step one of finitely many unitary walks, in the sense
described above. In ballistic order we find a non-random drift, which depends only on the mean
of the control process and not on the initial state. In diffusive scaling the limiting distribution
is asymptotically Gaussian, with a covariance matrix (diffusion matrix) depending on momentum.
The diffusion matrix depends not only on the mean but also on the transition rates of the control
process. In the non-random limit, i.e., when the coins chosen are all very close, or the transition
rates of the control process are small, leading to long intervals of ballistic evolution, the diffusion
matrix diverges. Our method is based on spatial Fourier transforms, and the first and second order
perturbation theory of the eigenvalue 1 of the transition operator for each value of the momentum.
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I. INTRODUCTION

A quantum walk, the counterpart of a classical random walk, models a quantum particle moving randomly in
discrete time steps on a lattice, but contrary to the classical case one has to consider a quantum particle with an
internal degree of freedom, usually called the coin space, in order to get nondeterministic behavior [1, 2]. Frequently,
the dynamics of a quantum walk is decomposed into a unitary operation acting on the internal degree of freedom,
called the coin operation, followed by a state dependent spatial shift operation. This constructive definition
permits many interesting examples of quantum walks and moreover it yields a decomposition into experimentally
realizable operations, which already have been implemented [3]. However, in general there is no need to restrict
to dynamics that can be decomposed into coin operations and conditional shifts. Indeed, we will consider a more
general axiomatic definition of quantum walks without any intrinsic connection between the lattice dimension and
the number of internal states of the particle, which is suggested by the constructive approach to quantum walks.
Without adhering to such a connection, quantum walks with memory as introduced in [4] can easily be formulated
in our language and their analysis, in particular the calculation of their asymptotic behavior, is much simplified.
The definition of quantum walks we are going to incorporate imposes two axioms on the time evolution. The first
one is translation invariance, i.e. the time evolution is homogeneous in space, meaning it commutes with lattice
translations. The second axiom is a locality condition, we want to exclude infinite propagation speed of the particle
and therefore we assume that the maximal step size of the particle is bounded. Interestingly, it turns out that for one
dimensional lattices and unitary time evolution this axiomatic definition exactly matches the constructive approach
[5], whereas in higher dimensions this is not clear.

In this paper we consider quantum walks on lattices in any space dimension. Their internal degree of freedom is
described in any finite dimensional Hilbert space. According to our axiomatic definition the dynamical step will be
translation invariant and the step size can be many lattice constants long but finite. Another assumption we may
impose on the time evolution is unitarity. Although we also discuss general decoherent quantum walks compatible with
our definition, we will later consider a particular class of decoherent quantum walks emerging from a set of unitary
ones. What we want to study is disorder in time, rather than in space: We assume that there is some collection of
possible steps, from which a classical Markov process chooses one instance. Thus successive steps are not independent,
although steps separated by a long time will be practically independent.

For this class of models we aim to compute the asymptotic probability distribution for the position variable Q(t)
after t steps. Such analysis has been carried out before, but to the best of our knowledge not in full generality.
Most of the analysis so far is concerned with particular examples of unitary quantum walks [1, 6] or under certain
constraints, e.g. in one lattice dimension and with step size one [7–9]. Higher dimensional lattices were studied in
[10–13], where the references [10, 11] give numerical studies of certain examples of unitary quantum walks in two
lattice dimensions and the more recent works [12, 13] compute the limiting probability distributions for various one
and two dimensional unitary quantum walks. Also, the study of quantum walks subjected to decoherence is mostly
concerned with particular models or subclasses of quantum walks, see e.g. the review article [14] and references
therein for an overview on decoherent quantum walks on one dimensional lattices, cycles or hypercubes. The kinds
of decoherence considered can be roughly classified as measurement induced decoherence [15–17] and decoherence
caused by sloppy control of quantum operations [18–21]. A subclass of the second decoherence mechanism which we
are going to consider is the case when in each time step a unitary quantum walk is chosen from a given set with a
certain probability, for example the coin operation of a one dimensional quantum walk may be chosen from a fixed
set of unitaries at each time step [22–25]. A more general kind of decoherence compatible with our definition of a
quantum walk was introduced in [26, 27], and an analysis of the asymptotic behavior was performed based on the
calculation of the first and second moment of the distribution.

One key question is whether the spreading is ballistic, i.e. whether Q(t)/t converges in distribution, or whether
it is diffusive, i.e. Q(t)/

√
t has a meaningful limit as t → ∞. Now without randomness, i.e. when we use always

the same step, it is known that the spreading is ballistic. Since a classical random walk satisfies our description it is
also clear that for stringent randomness we expect diffusive scaling. In fact, diffusive behavior is a common feature
of decoherent quantum walks, e.g. for quantum walks with multiple coins [19, 22–24] or dynamic gaps in the lattice
[16, 18, 28] this has been observed. On the basis of computations of the second moments, it has been shown recently
[26] that diffusive scaling holds even for very low randomness, i.e. when either all the steps used are very nearly
the same, or if one step is chosen almost always. Our results support this conclusion. In addition, we compute the
asymptotic distribution of Q(t)/

√
t for every initial state. It is Gaussian in every momentum component (in a sense

specified below). As is to be expected, the diffusion constant (the limit of 〈Q2(t)〉/t) diverges at low randomness. In
such cases the system will initially evolve ballistically, and then exhibit a crossover to diffusive scaling.

The methods used so far to obtain the asymptotic position distribution can be summarized as Fourier methods, see
e.g. [1], and combinatorial calculations as used in [7]. Another approach, closely related to Fourier methods is the
generating function formalism [9]. Our method involves Fourier methods as a way of describing a translation invariant
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system and its time evolution. The second main ingredient of our formalism is perturbation theory. We phrase the
problem of finding the asymptotic distribution of the scaled random variables Q(t)/t and Q(t)/

√
t as the problem of

applying a perturbed operator infinitely many times to an eigenvector of the unperturbed operator in the limit of
vanishing perturbation. This becomes a nontrivial problem because both limits do not commute. The advantage of
our method is that it gives us full information about the limiting position distribution of a large class of quantum
walks, whereas other approaches often only give partial information, e.g. about the first two moments of the limiting
position distribution.

Our paper is organized as follows: In the next section we will introduce notation and basic concepts. We close by
describing the most general translation invariant quantum evolution with strictly finite step sizes, extending a result
prematurely claimed to be exhaustive in [26]. The type we actually consider in most of the paper is a special case and
essentially the same as the one considered in [26]. We then briefly review the non-random case, which is a prerequisite
to understanding the general case. In Sect. V A, V B and V D we then state our result with all assumptions spelled
out, and with a description of the procedure to compute the limit distributions. In the final section we gather some
examples of quantum walks which violate our assumptions and analyze their asymptotic behavior.

II. THE SYSTEMS

The underlying lattice of the system will be denoted by X, and is a subset of Rs. We will always take X = Zs,
but we would like to stress that this covers also much more complex periodic structures, like triangular lattices,
honeycombs, Kagome lattices, and so on in higher dimensions. Indeed, for us the role of the lattice is mainly that of
the abstract symmetry group. For a general periodic pattern, the translation symmetries are by vectors of the form∑s
i=1 xi~ai for some basis of lattice vectors ~ai and integer coefficients xi. One can then choose a unit cell, so that

every point in Rs is uniquely obtained as a point in that cell plus a lattice vector. Then we consider all lattice points
inside the unit cell as one super-site with internal structure, and take the integer coefficients xi themselves to label
the lattice translations. This brings us back to the choice X = Zs. The position degree of freedom of the walking
quantum particle is thus described in the Hilbert space `2(X), the square-summable functions ψ : X → C.

The internal states of the walking particle are described by a finite dimensional Hilbert space K. In many papers
on quantum walks this is called the coin space. We will follow this terminology although the dynamics we consider
usually does not have a simple decomposition into coin operation and conditional shifts. The Hilbert space of the
system is thus `2(X) ⊗ K, and it will be convenient to identify this with `2(X,K), the set of functions ψ : X → K
such that ‖ψ‖2 =

∑
x∈X ‖ψ(x)‖2 <∞. Translations now act as shifts of the argument, i.e. (Uxψ)(y) = ψ(y − x).

Since we look at translation invariant systems, the analysis can be simplified considerably by taking Fourier trans-

forms. Let X̂ denote the dual group, in our case concretely parameterized as the space of momentum vectors
p ∈ (−π, π]s ⊂ Rs. The Fourier transform is then the unitary operator

(Fψ)(p) = (2π)−s/2
∑
x∈X

eip·xψ(x) . (1)

Thus F is a map from `2(X,K) to  L2(X̂,K). We can also think of this equation as the representation of a gen-
eral function on Rs, which is periodic with respect to the shifts in (2πZ)s. Of particular importance will be the
trigonometric polynomials given by such a series with just finitely many non-zero terms.

A unitary quantum walk is given by a unitary operator W , which commutes with translations and has the
property that (Wψ)(x) depends only on the values of ψ(y) such that x− y ∈ N , where N is a fixed finite set called
the neighborhood scheme of W . Because W commutes with translations it can be diagonalized jointly with the
translation operators, i.e. it becomes a multiplication operator in momentum space:

(FWψ)(p) = W (p)(Fψ)(p), (2)

where, for each p, W (p) is a unitary operator on K, and each matrix element of W (p) is according to the locality
condition a trigonometric polynomial. More precisely, the only monomials eix·p appearing with non-zero coefficients
are those with x ∈ N . In electrical engineering such operators are called para-unitaries. One can show [29–31] that,
at least for s = 1, every such operator can be decomposed into a finite product of p-independent unitaries (“coin
tosses”) and diagonal unitaries which only have elements of the form eix·p on the diagonal (“conditional shifts”).

In order to characterize unitary quantum walks it is useful to consider the determinant of the walk operator W (p),
which is also a trigonometric polynomial. Since 1/ detW (p) = det(W (p)∗) is also a polynomial, it must be a monomial
eix·p for some x ∈ X. We call this x the index [32] of W and by definition we have

detW (p) = detW (0) · eindW ·p . (3)
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Turning now to irreversible processes, let us first introduce the kind of randomness, which is analyzed in our main
result. We consider unitary walks, such that the particular unitary applied at time t is chosen randomly. In this
way we want to model experiments in which the randomness comes from fluctuations in some external parameters
controlling the quantum operations. If the time scale of these fluctuations covers several steps, it is unreasonable to
assume that the unitaries in successive time steps are independent. Therefore we allow the external parameters to
be given by a Markov process, which we call the control process. We fix some dependence γ 7→ Wγ of the walk
unitaries on the value γ of the control process. Then the following two steps are iterated: At time step t the walk
unitary Wγ(t) acts on the quantum system, where γ(t) is the current value of the control process. Then the next
value γ(t + 1) is drawn according to the transition probability law of the control process. Our aim is to derive the
long time behavior of this scheme, particularly the distribution of the particle’s position at large times.

Depending on the transition probabilities, we can describe systems in which the walk unitaries of successive steps are
either strongly correlated, or nearly independent. We assume that in the long run the process goes to an equilibrium
probability density. This stationary distribution will be taken as the initial distribution. In this way we express
the condition that there are no correlations between successive runs of the walk, as the statistical data are collected.
Otherwise, non-trivial correlations would exist between successive runs, and the experimental results would depend
on how quickly the next run is initiated. Of course, this kind of correlations is possible, and may actually occur
in experiments, but it would mean a deviation from the paradigm of statistical data collection. Theoretically the
appropriate response would be to describe not single runs, but batches of runs with controlled relative timing. This
is a complication we do not want to consider in this paper. So, as already stated, we will assume that the initial
distribution is the stationary one.

Of course, further generalizations are possible. Firstly, we may have decoherence in the individual steps, so that
the single step is not given by a random unitary, but by a completely positive map, whose Kraus operators are not
multiples of unitaries. We will analyze the general form of such processes in the next section. We will also point
out (Sect. V A) the asymptotic results which can be obtained for this more general class of decoherent walks using
the method of the main theorem together with an assumption concerning the general form of the Kraus operators.
However, in the whole paper we will keep translation invariance. When this is broken, perhaps randomly, a whole new
range of phenomena appears. The most interesting is the analogue of Anderson localization: Whereas the decoherence
studied in this paper slows the spreading of the walk from ballistic scaling (∼ t) to diffusive scaling (∼ t1/2), random
space dependent coins typically stop the spreading altogether (∼ t0) in the sense that an initially localized state will
remain finitely localized for all times with arbitrarily high probability. Here the localization region depends on the
initial state and the allowed error probability, but not on time. This has been demonstrated in [33] using methods
adapted from the much better studied case of continuous time Anderson localization. Eventually, it will be possible
to combine randomness in space and time, but this is definitely beyond the scope of the present work.

A. General form of decoherent, translation invariant quantum walks

Turning now to decoherent dynamics we will no longer consider pure quantum states ψ ∈ `2(X,K) but density
operators ρ ∈ B(`2(X,K)), i.e. bounded and positive operators with unit trace. Generically, a density operator ρ will
be non-translation invariant, e.g. ρ may be supported on finitely many sites of the underlying lattice. Hence, the
Fourier transform of ρ is not given by a multiplication operator as in (2), but an operator depending on two variables
p and p′. An example of such an operator is a state which is a mixture of finitely many pure states ψ that are all
supported on finitely many sites of the lattice:

ρ =
∑
i

λi|ψi〉〈ψi| ⇒ ρ(p, p′) = FρF∗ =
∑
i

λi|ψi(p)〉〈ψi(p′)|

If we consider ρ(p, p′) as a linear map its action and the trace are given by the formulas

(Fρψ)(p) =

∫
dp′ ρ(p, p′) · ψ(p′) and tr ρ =

∫
dp tr ρ(p, p) =

∫
dp tr ρ(p) ,

where we abbreviated ρ(p, p) = ρ(p). A general non-unitary time evolution of a quantum system is described by the
concept of a quantum channel W . In the following we will describe the dynamics in the Heisenberg picture, i.e. we
will evolve the observables of the system rather than the states. Hence, a quantum channel W : B(H2) → B(H1) is
formally given by a linear map which is completely positive and unital, i.e. for n ∈ N and A ∈ B(H2 ⊗ Cn)

A ≥ 0 ⇒ W ⊗ idCn(A) ≥ 0 and W (1IH2
) = 1IH1

.
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Here, H1 is the Hilbert space of the initial system, and H2 describes the system after the time evolution. The
representation theorem by Stinespring [34, 35] states that a completely positive and unital map W can be written
explicitly as

W (A) = V∗(A⊗ 1ID)V ,∀A ∈ B(H2) ,

where V : H1 → H2⊗D is an isometry, i.e. V∗V = 1IH1
, and D is called the dilation space. By choosing an orthonormal

basis |ei〉 in K and writing 1ID =
∑
i |ei〉〈ei| one obtains the Kraus representation [35, 36] of a quantum channel W

which reads

W (A) =
∑
i

K∗i AKi ∀A ∈ B(H2) .

The relation between the Ki and the isometry V is given by

〈φ|Kiψ〉 = 〈φ⊗ ei|Vψ〉 φ ∈ H2 , ψ ∈ H1 .

The question we are going to address now is which isometries V, respectively Kraus operators Ki, represent a trans-
lation invariant quantum walk. The finite range condition together with translation invariance gives the following
general form of a quantum walk.

Theorem 1 A general translation invariant quantum walk on H = `2(X)⊗K is given by an isometry

V|x, α〉 =
∑
a,β

|x+ a, β〉 ⊗ Ũxva(α, β)

and Kraus operators

Kj |x〉 =
∑
a,β

|x+ a, β〉〈ej |Ũxva(α, β)〉

with a position dependent phase Ũx =
∑
j e
iqj ·x|ej〉〈ej | ∈ B(D), va(α, β) ∈ D and the normalization condition∑

α,γ

〈Ũx−yva(α, γ)|va+x−y(β, γ)〉 = δxyδαβ .

Proof A general isometry V is given by the relation

|x, α〉−→
V

∑
a,β

|x+ a, β〉 ⊗ va(α, β, x) , va(α, β, x) ∈ D .

Invariance under translation by x ∈ Zs requires VUx = Ux ⊗ ŨxV, where Ux is the translation operator on H and the
Ũx form a representation of Zs on D. Since a quantum walk has to fulfill a finite range condition we can choose D such
that dimD < ∞. Hence, we can expand Ũx in a basis of D in order to get Ũx =

∑
j e
iqj ·x|ej〉〈ej |. The intertwining

relation of V leads to va(α, β, x) = Ũxva(α, β, 0) =: Ũxva(α, β). The normalization condition is a consequence of the
isometry condition δxyδαβ = 〈x, α|V∗Vy, β〉. �

Corollary 2 In momentum space the isometry V and the Kraus operators Ki are given by

(Vψ)(p) =
∑
j,a

e−ip·aCj,a · ψ(p− qj)⊗ |ej〉 and (Kjψ)(p) =
∑
a

e−ip·aCj,a · ψ(p− qj) .

where the matrix Cj,a is defined as

Cj,a =
∑
α,β

〈ej |va(α, β)〉|β〉〈α| .

Since general translation invariant quantum walks with momentum shifts are difficult to handle we will assume in the
following that there is no momentum transfer.

Assumption 1 There are no momentum shifts, i.e. qj = 0∀j and hence S̃x = 1I, ∀x ∈ Zs. The isometry V and
Kraus operators Kj are given by

(Vψ)(p) =
∑
j,a

e−ip·aCj,a · ψ(p)⊗ |ej〉 and (Kjψ)(p) =
∑
a

e−ip·aCj,aψ(p) .
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III. ASYMPTOTIC POSITION BY THE PERTURBATION METHOD

From the beginning of quantum walk theory the question of asymptotic behavior of the position Q(t) at large
times t has been one of the main themes. Early papers were to some extent misguided by the analogy with random
walks and long combinatorial computations of matrix elements were done to evaluate just the special case of a
Hadamard walk starting from the origin. The physicists in the community quickly brought to bear Fourier methods,
and these emphasized the analogy not with classical random walks, but with the free particle under a continuous time
Schrödinger time evolution. In particular, this brought in dispersion relations ω(p), and group velocities ∇ω(p) as the
relevant quantities in the unitary case. Thus, for a general unitary walk and arbitrary initial state, the computation
of the asymptotic distribution of Q(t)/t became a straightforward evaluation of expectation values (see below). Initial
studies on decoherent walks were often limited to a very special noise model, and have almost exclusively considered
the first and second moments of position. While this is already good enough to distinguish ballistic from diffusive
transport, it usually remained open how to compute the asymptotic distribution of Q(t)/

√
t or, indeed, how to decide

whether this quantity had a limit distribution.
We will therefore begin by showing how to focus on the entire distribution of Q from the outset. This will establish

the perturbation theory of the eigenvalue 1 of the transition operator as the key tool in the further analysis. In
that introductory section we ignore the control process in order to keep the notation simple. We then look at the
unitary case (Sect. IV A), where the first order perturbation theory of a degenerate eigenvalue determines the group
velocity operator and hence the ballistic scaling. This is then extended to more general processes, including externally
controlled ones (Sect. V A). We then come to our main result, the asymptotic formulas for Markov controlled coined
walks, in diffusive scaling (Sect. V B). Finally, we consider the simplified case where the Markov process is of Bernoulli
type (Sect. V D), i.e. its transition rates are independent of previous time steps, which means the quantum operations
are drawn independent and identically distributed in each time step.

A compact way to characterize a probability distribution of a real vector valued random variable Q ∈ Rs is in terms
of its characteristic function

CQ(λ) =
〈
eiλ·Q

〉
. (4)

Here the bracket denotes expectation, λ is a real vector of the same dimension s as Q, and the product in the exponent
is the scalar product in Rs. When Q has a probability density, the characteristic function is just its Fourier transform.
The derivatives of C at the origin (if they happen to exist) are the moments of Q (if they happen to exist). Very
helpful for our purpose is that it is easy to express the characteristic function for a scaled variable, say µQ, with a
fixed factor µ. Then we just have CµQ(λ) = CQ(µλ). In our case Q = Q(t) will be the position after t time steps of
a quantum walk W, starting from some initial state ρ0, i.e.,

CQ(t)(λ) = tr ρ0W
t
(
eiλ·Q

)
. (5)

When the walk is controlled by an external Markov process, we also have to take the expectation of the right hand
side with respect to the stationary distribution of the control process. Now we want to look at a scaled position
distribution. For example, in ballistic scaling we get

CQ(t)/t(λ) = tr ρ0W
t
(
eiλ·Q/t

)
. (6)

In the limit t → ∞ the unitary operator exp(iλ · Q/t) approaches the identity, which is invariant under W. On
the other hand, we act on this nearly invariant element with a high power of W. The basic idea of our asymptotic

evaluation is to look instead at the high powers of a slightly modified operator W̃ε, defined by

W̃ε(X) = W
(
Xeiελ·Q

)
e−iελ·Q (7)

where ε = 1/t, or ε = 1/
√
t for diffusive scaling, is now a small parameter. W̃ε is similar to W via the invertible

linear (but quite non-positive) operator X 7→ exp(iελ ·Q). This means that

Wt(eiελ·Q) = W̃t
ε(1I)e

iελ·Q (8)

for all t. For initial states ρ0 supported on a finite region the exponential factor on the right hand side will be close
to the identity in the scalings we consider, hence can be neglected when substituting this expression into (6).

A crucial observation is that although exp(iελ ·Q) is not a translation invariant operator, W̃ε, like W commutes
with translations. This is because if we apply a translation by x ∈ Zs to (7), we get two phase factors exp(±iελ · x),
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which cancel. In particular, if we apply W̃ε to a translation invariant operator like 1I we again get a translation

invariant operator. However, we will consider W and W̃ε as maps on the space of translation invariant operators,
i.e. as multiplication operators in momentum space, and apply perturbation theory in those subspaces. Now, the

restriction of W̃ε to the translation invariant operators is not similar to the restriction of W. This is because the
similarity transform on the whole space, i.e. right multiplication by exp(±iελ · Q) does not respect translation

invariance. Hence, the eigenvalue of W̃ε which goes to 1 as ε→ 0 may differ from 1. Indeed, the perturbation theory
of this eigenvalue is the core of our method.

An operator A ∈ B(H) is translation invariant iff it is a function of momentum, i.e. (FAψ)(p) = A(p)(Fψ)(p).

Under the action of W or W̃ε such an A is transformed into a function A′(p). In general, A′(p) might depend on
values A(p′) at points p′ 6= p. This is where Assumption 1 comes into play: if there are no momentum transfers,
i.e. each Kraus operator is itself a function of p, then (WA)(p) = W(p)A(p) for a suitable operator W(p) on B(K)
depending on p. Indeed, from

(WA)(p) =
∑
α

Kα(p)∗A(p)Kα(p) (9)

and (7) we get

(W̃εA)(p) =
∑
α

Kα(p)∗A(p)Kα(p+ λε). (10)

The finite range condition makes each Kα a trigonometric polynomial, so this operator is an analytic function of ε and
we can apply perturbation theory [37]. Let us denote the Jordan decomposition of the above operator [37, Sect.I§5.4]
by

(W̃εA)(p) =
∑
i

(
µi(ε)Pi(ε) + Di(ε)

)
(A(p)), (11)

where PiPj = δijPi are the eigenprojections, and Di eigennilpotent operators with DiPj = PjDi = δijDi for the
eigenvalue µi(ε). Let us assume for the moment that the eigenvalue µ0(0) = 1 of the unperturbed operator is simple,
so that the unique eigenvector is 1I, and the other eigenvalues satisfy |µi(0)| < 1 for i 6= 0. (This will be the standing
assumption in Sect. V A but not in Sect. IV A). Then D0 = 0, and we get

W̃t
ε(1I) = µ0(ε)tP0(ε)(1I) + . . . , (12)

where the dots stand for terms with i 6= 0. Since 1I is in the eigenspace for µ0, and the ε-dependent operators can
be chosen analytic, all these contributions vanish as ε→ 0, and P0(ε)1I→ 1I. Note that the crucial point here is the
assumption |µi(0)| < 1 for i 6= 0, cf. the discussion in Sect. V C. So everything depends on the eigenvalue term µ0(ε)t.
For ballistic scaling, i.e. ε = 1/t and µ0(ε) = 1 + iv · λε+ O(ε2), for some vector v ∈ Rs, we find

µ0(ε)t =
(

1 +
iv · λ
t

+ O(t−2)
)t

−→ eiv·λ. (13)

Hence, the probability distribution of Q/t converges to a point measure at a deterministic (but possibly p-dependent)
velocity v. A more detailed study of this case is given in Sect. IV A and Sect. V A, where we also include an external
control process. Consider on the other hand the special case v = 0, then the leading order contribution to µ0 is of the
form µ0(ε) = 1− 1

2ε
2λ ·M · λ+ O(ε3) for some matrix M . Then, in diffusive scaling ε = t−1/2 we get

µ0(ε)t =
(

1− λ ·M · λ
2t

+ O(t−3/2)
)t

−→ e−
1
2λ·M ·λ. (14)

This is the characteristic function of a Gaussian with covariance matrix M . Hence, the asymptotic distribution of
Q/
√
t is Gaussian. A closer analysis of this case, again including control processes, will be given in Sect. V B.

IV. UNITARY QUANTUM WALKS

A. Ballistic order

The unitary case has been the subject of various papers [1, 6, 7, 9, 38, 39]. Here we allow a general walk, as given
by a unitary matrix W (p) (2). As described in the previous section, we need to study the perturbation theory of the
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eigenvalue 1 of the family of operators W̃ε:

W̃ε(A) = W (p)∗AW (p+ λε), (15)

where we treat p as a fixed parameter. Clearly, 1I is an eigenvector of eigenvalue 1 for this operator, but the eigenvalue
1 is actually quite degenerate: any operator X commuting with W (p) is also in this eigenspace. The eigenspace is
thus at least dimK-dimensional, but if some of the eigenvalues of W (p) are degenerate at p, the degeneracy can be
even higher. So let

W (p) =
∑
k

eiωk(p)Pk(p) (16)

be the spectral resolution of W (p). In the case of degeneracies, i.e. when several ωk(p) coincide, this is not unique.
But the perturbation theory of the one-parameter analytic family ε 7→ W (p + ελ) tells us that we can choose the
operators Pk(p+ελ) such that in the neighborhood of ε = 0 they and the corresponding eigenvalues ω(p+ελ) depend
analytically on ε. In the sequel we assume such a choice has been made in (16).

Not surprisingly, this leads to an analytic perturbation expression for W̃ε. Indeed, let {Pk}dk=1 and {R`}d`=1 be
families of orthogonal projections in a Hilbert space K. Then we can consider the operators Ek`(X) = PkXR` on B(K)
one easily checks that each Ek` is hermitian with respect to the Hilbert Schmidt scalar product 〈Y |X〉 = tr(Y ∗X),
and the Ek` are themselves a family of orthogonal projections. Now setting Pk = Pk(p) and Rk = Pk(p+ ελ) we find

W̃ε =
∑
k`

ei(ω`(p+ελ)−ωk(p))Ek`, (17)

which is clearly a spectral decomposition in terms of eigenvalues and eigenprojections, which are all analytic in ε.
Therefore, the expression

W̃t
ε(1I) =

∑
kl

eit(ω`(p+ελ)−ωk(p))Pk(p)P`(p+ ελ) (18)

is correct to all orders. As ε → 0, we have P`(p + ελ) → P`(p), and since Pk(p) and P`(p) are orthogonal, only the
terms with k = ` survive in the limit. Moreover, with ballistic scaling ε = 1/t the exponent converges to the derivative
of ω`, which exists even at degeneracy points, because we have chosen (16) analytically. Hence

lim
t→∞

W̃t
1/t(1I) =

∑
k

exp
(
i
dωk(p+ ελ)

dε

)∣∣∣∣
ε=0

Pk. (19)

Note, however, that the choice of projections Pk at a degenerate point may well depend on the direction λ, in which
p is varied. Moreover, the derivatives of W (p), compressed to the degenerate eigenspace need not commute, so there
is no analytic choice of branches ωk. We call a point p a regular momentum for W (p) if in (16) we can choose Pk
and ωk to be analytic functions of the vector near p. Of course, when the eigenvalues of W (p) are all non-degenerate,
p is regular, and this will almost always be the case.

For all regular p, we can write (19) as the exponential of the operator iλ · V (p), where V is the p-dependent vector
operator with components

Vα(p) =
∑
k

∂ωk(p)

∂pα
Pk. (20)

This is the operator of group velocity. Note that, for all regular p, all of its components commute with W (p), since
they are linear combinations of eigenprojections of W (p). Therefore, the components of V are jointly measurable in
the sense of standard quantum mechanics. In any initial state ρ this gives a probability measure on velocity space.
This measure is the asymptotic position distribution starting from ρ.

Theorem 3 Let p 7→W (p) be the defining unitary of a quantum walk on Rs. Let Q(t) denote the position observable,
evolved for t steps. Suppose that almost all p are regular, so the group velocity operator V (p) is defined almost
everywhere. Then

lim
t→∞

Q(t)

t
= V

in the sense that for all bounded continuous functions f : Rs → C going to zero at infinity we have the weak operator
limit of f(Q(t)/t, evaluated in the functional calculus, is f(V ). This means, for any initial state ρ the distribution of
Q(t)/t goes weakly (in the sense of probability measures) to the distribution of V in ρ.
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Let us conclude this section with two short examples of unitary quantum walks without temporal disorder. We
start with the generic one dimensional quantum walk with a two dimensional coin space, given by a shift operation S
that moves the walker left or right depending on the internal degree of freedom and some SU(2) coin operation. In
that case the walk operator in momentum space can be written in the familiar coin and shift decomposition

W (p) = C · S =

(
cos(α)eiβ sin(α)eiγ

− sin(α)e−iγ cos(α)e−iβ

)(
eip 0
0 e−ip

)
(21)

with some unitary matrix C. By diagonalizing this matrix we get the p dependent phases ω± of the eigenvalues of

the walk operator and the group velocities ∂ω±
∂p

w±(p) =± arccos(cos(p+ α) cos(β))

∂ω±
∂p

=± cos(β) sin(p+ α)√
1− cos(β)2 sin(p+ α)2

.

In the case of the well known Hadamard walk, where C is chosen to be the Hadamard matrix, the dispersion

relations are given by ω±(p) = π
2 ±arccos

(
sin p√

2

)
, where the π

2 compensates a factor of i due to our parametrization of

the 2×2 unitaries. In Fig. 1(a) a plot of the p dependence of both eigenvalue branches is shown. From these dispersion
relations we can compute the group velocities ∂pω±(p), which are given in Fig. 1(b). Looking at the asymptotic t−1

scaled position distribution P(x) of the initial state ψ(p) =
(

1
0

)
, we see that at the points ± 1√

2
the density diverges

(Fig. 1(c). Comparing this with the graph of the group velocities we find that this corresponds to points, where the
group velocity has an extremal point. We call these points caustics and they are precisely the points causing the
peaks in the asymptotic distributions.

(a)Dispersion relation (b)Velocities (c)Asymptotic distribution for initial state

ψ(p) =
(1
0

)
FIG. 1. For the quantum walk with Hadamard coin, the figures show (a) the dispersion relations ω±, (b) the velocities v±, and
(c) the asymptotic probability distribution. The initial state is chosen to be ψ(p) =

(
1
0

)
. The extremal points of the functions

v±(p), hence the inflection points of ω±, are responsible for the peaks in (c) at ±1/
√

2.

Such caustics are also a generic behavior of quantum walks on Z2. In accordance with the one dimensional case we
define a caustic a bit more formally as a point in momentum space where the Jacobi matrix of the group velocity or
equivalently the Hessian of ω(p1, p2) is singular. This in turn implies that the density of the t−1 scaled asymptotic
position distribution will diverge at such points, cf. Corollary 6.

As an example we will study a quantum walk on a Z2 with a two dimensional coin space. The shifting in the p1 and
p2 direction is done separately and in between two unitary coin operations are alternated. The overall walk operator
is therefore given by

W (p1, p2) = U2 · S2 · U1 · S1 = U2

(
eip2 0
0 e−ip2

)
· U1 ·

(
eip1 0
0 e−ip1

)
. (22)

The resulting dispersion relations are given by

ω±(p1, p2) = ± arccos(cos(p1 + p2 + θ1 + θ2) cos(φ1) cos(φ2)− cos(p1 − p2 − χ1 + χ2) sin(φ1) sin(φ2) , (23)
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where greek lower case letters correspond the parametrization of a 2 × 2 unitary matrix as given in (21) and the
subscripts refer to the unitaries Ui. From this relation we could also calculate the velocities and the points in the
asymptotic distribution where caustics can be observed. We will do this for an explicit example, where the parameters
of the two unitaries are chosen to be θ1 = −θ2 = π

3 , χ1 = −χ2 = π
4 , φ1 = π

4 and φ2 = π
3

The resulting band structure is depicted in Fig. 2(a). In principle, the bands could cross or intersect each other
at a line or a single point. In this example, however, we can observe the generic behavior of an avoided crossing of
the two branches of the dispersion relation. The red lines in the graph indicate momentum values for which we find
caustics, i.e. where the determinant of the Jacobi matrix of ω(p1, p2) vanishes. The second graph (Fig. 2(b)) shows

(a)Dispersion relation

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(b)Probability density of v+ (c)Probability density of v+

FIG. 2. For the two-dimensional walk (22) the plots show (a) the dispersion relation ω±, (b) a contour plot, and (c) a 3D plot
of the contribution of the ω+-branch to the asymptotic position density, for a particle starting at the origin. The red lines in (a)
are curves of vanishing curvature. At these points the velocity density (i.e., the inverse of the Jacobian of the transformation
p 7→ v+(p)) diverges. This produces the enclosing red line in (b), and infinitely high values in (c). For more complicated walks
such lines also appear in the interior of the velocity region.

a contour plot of the possible pairs of velocities (∂p1ω, ∂p2ω) in the upper branch of the dispersion relation ω+. The
red line at the border of the possible velocities, where the value of the determinant drops to zero, corresponds to the
red lines in the p1, p2-dependent graph in Fig. 2(a) of the dispersion relations. As in the one dimensional case, these
are the points where the probability density of the asymptotic position in ballistic scaling will exhibit peaks. In the
last graph (Fig. 2(c)) the value of |det(∂2

pω+)|−1 is plotted dependent on the velocities.

B. Higher orders

We have evaluated asymptotic characteristic functions by employing a perturbation series. It is therefore natural
to ask, whether one cannot use the higher terms in the series to get better approximations to the position density
for large but not infinite t. Of course, this is possible, but one has to be careful in the interpretation of the results.
The main problem is that the partial sums of an expansion of the characteristic function in powers of 1/t is not a
characteristic function of any probability measure. Indeed, in the expansion we use we typically get combinations of
λ/t, so the higher orders of the expansion will be polynomials in λ times an oscillating factor. This is clearly not
integrable, so the inverse Fourier transform to get the probability density is ill-defined, and gives, at best, a rather
singular distribution. However, if we only look for the expectations of sufficiently smooth functions of velocity, say
f(Q(t)/t), we get the integral of the characteristic function with the Fourier transform of f which decays rapidly
enough to absorb all polynomial factors. Thus for a fixed smooth test function the expansion makes sense. Another
way to look at this is to multiply the expanded characteristic function with a suitable cutoff-function (enforcing
sufficient decay in λ) before transforming back to velocity space, resulting in a smoothed out probability density.
Then “removing the cutoff” and the series expansion do not commute, and the choice of cutoff is effectively the choice
of a smooth family of test functions.

We can go back directly to Eq. (18), which is correct to all orders. That is, the characteristic function of the position
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distribution in ballistic scaling at time t is

Ct(λ) = tr ρW̃t
1/t(1I)e

iλ·Q/t

=

∫
dp
∑
k`

eit(ω`(p+ λ/t)− ωk(p)) tr
(
ρ(p+ λ/t, p)Pk(p)P`(p+ λ/t)

)
(24)

Here, as in the previous subsection ρ(p1, p2) denotes the integral kernel of the initial density, and the trace is over the
internal degrees of freedom. In leading order we could neglect the shift by λ/t in P`, so only terms with k = ` remain.
Looking now at the first order term resulting from the expansion of P`(p + λ/t) and k 6= ` we find an oscillatory
integral with a regular integrand and rapidly oscillating exponential exp it(ω`(p)− iωk(p)). Assuming that this phase
is not constant on sets of positive measure (as a function of p), we conclude that the integral goes to zero, so that
with the factor 1/t from the expansion of P` such terms are o(t−1) and can be neglected. Of course, in higher order
corrections one will have to extract the leading orders of the oscillatory integral by a stationary phase analysis.

For the expansion to first order we need the expansion of the dispersion relation to second order:

ωk(p+ λ/t) = ωk(p) +
λ

t
· vk(p) +

1

2t2
ω′′(p, λ) + o(t−2), (25)

where ω′′ is a quadratic from in λ containing the Hessian of the branch ωk of the dispersion relation. This approx-
imation eliminates one of the most prominent features of the finite t probability distributions, namely their rapid
oscillations. Indeed, from inspecting such distributions it is clear that these oscillations have a frequency of order 1/t
in ballistic scaling, i.e., they are really at the scale of the underlying lattice. This is reflected in the exact formula
(24) by the fact that all expressions are 2π-periodic in λ/t. So the Fourier transform of Ct is a sum of δ-functions
at the lattice points. The approximation (25) destroys this feature, resulting in a rather smooth function inside the
allowed region of velocities. The Hessian can be determined from standard second order perturbation theory of W (p),
but we found it convenient to eliminate it by partial integration of the 1/t-term containing ω′′. Since the integrand is
periodic in p, this gives no boundary terms, and the resulting differentiations of the trace can be combined with the
other Taylor expansions to give the first order term

Ct(λ) = C∞(λ) +
1

2t

∫
dp
∑
k

eiλ·vk(p) tr
(

(Q · λ)ρ+ ρ(Q · λ))(p, p) + i[Pk(p), λ · P ′k(p)]
)

+ o(t−1). (26)

In the example of a Hadamard walk one can substitute the variable v(p) and find a Bessel function for the first order
term. However, due to the factor λ this is not integrable, and the inverse Fourier transform has to be taken in the
distributional sense, more specifically under the integration with smooth test functions whose support in velocity
space stays away from the caustics. This results in the expression

ρt(u) =
1

π(1− u)
√

1− 2u2
+

1

t

u

π
√

1− 2u2
3 + o(t−1) for |u| < 1√

2
(27)

for the Hadamard walk starting at the origin in state ψ0 = (1, 0). This is shown for t = 10 in Fig. 3.

V. TIME DECOHERENT WALKS

A. Ballistic determinism for decoherent processes

We now extend the analysis to decoherent models, as described in Sect. II A. We will continue to work under
Assumption 1, i.e. excluding momentum transfer. We can thus still apply the theory outlined in Sect. III, and find
that the asymptotic distribution of position is given, as in (10) by an operator depending on momentum. This is
also true if we include a control space with a Markov chain dynamics. The observable space we work on is hence the
tensor product of  L∞(Γ), i.e. the control space variables with the quantum observables B(K). We will fix the value
of p, and everything will depend on this parameter, but this dependence will, for the moment be the only thing left
of the translation degree of freedom.

As before, we will consider the observables on A ∈  L∞⊗B(K) as measurable functions γ 7→ A(γ) ∈ B(K). The two
ingredients of each time step will then be on the one hand the γ-dependent quantum operation

(VA)(γ) = Vγ(A(γ)) =
∑
α

K∗γ,α(p)A(γ)Kγ,α(p), (28)
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1
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PHxL

FIG. 3. Correction of order 1/t to the asymptotic position distribution for the Hadamard walk from the initial state ψ0 = (1, 0)
located at the origin. The polygon connects the exact values for n = 10. The asymptotic distribution (red/dashed) overestimates
the left peak and underestimates the right peak. The correction after (27) for the same t is shown by the green line.

where the Kraus operators are normalized such that the sum over α with A(γ) = 1I gives 1I. The second step is the
update of the control parameters by the Markovian evolution M, i.e.

(MA)(γ) =

∫
mγ(dη)A(η). (29)

The full evolution is then given by W = VM or, written out more explicitly:

(WA)(γ) =

∫
mγ(dη)Vγ(A(η)), (30)

with the momentum dependence implicit in the dependence of Vγ according to (28).
Obviously, this form contains the unitary case, e.g., when Vγ is the same walk unitary for all γ, and the control

process is irrelevant for the walking particle. We are now interested in the opposite end, i.e. the case of generic
randomness. Therefore we will assume the following

Assumption 2 For almost all p, the eigenvalue µ0 = 1 of W as an operator on  L∞(Γ)⊗B(K) is simple and isolated
and for i 6= 0 the eigenvalues satisfy |µi| < 1. Moreover, there exists an invariant faithful state for W, i.e. a density
operator ρ with nonzero eigenvalues on K such that tr ρVγ(A) = tr ρA for all γ and all A.

To see that this assumption is not overly restrictive we consider the following scenario.

Proposition 4 Assumption 2 is valid if the quantum walk W has the following properties

1. Γ is finite, so the transition probabilities can be written as a matrix mγ(η). For some power of this matrix all
entries are strictly positive.

2. There is a density operator ρ with nonzero eigenvalues on K such that tr ρVγ(A) = tr ρA for all γ and all A.

3. For almost all p, and some r ∈ N the set of operators Kγ1α1
(p) · · ·Kγrαr (p) is irreducible, i.e. only multiples of

1I commute with all of them, and its linear span contains the identity.

The last condition seems tricky to check, but it is generically satisfied. In fact, the operator products usually span
the whole space of matrices for relatively small r.

Proof Since  L∞(Γ) ⊗ B(K) is now finite dimensional, any simple eigenvalue is isolated, so we only have to prove
that 1 is a simple eigenvalue, and the only one on the unit circle. The transitivity assumption on the transition
probabilities guarantees that there is a unique, strictly positive, invariant probability distribution m on Γ. Hence we
have an invariant state for W, namely m⊗ ρ, written out as

(m⊗ ρ)(A) =
∑
γ

mγ ρ
(
A(γ)

)
.
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We first show the simplicity of 1, and since linearly independent eigenvectors of W will be independent eigenvectors
of Wn we may do this for some power of W. We choose some multiple of r, say rn, chosen sufficiently large so
that all entries of the nr-step transition matrix are positive. Then condition 3 in the Proposition is also satisfied for
rn, because the identity lies in the span of the Kraus operators for Wr. Hence, for this step we can simplify the
assumptions to mγ(η) > 0 for all γ, η and the irreducibility of {Kγα}.

The basic technique for the proof is the decomposition

W(A∗A)−W(A)∗W(A) = V
(
M(A∗A)−M(A)∗M(A)

)
+ V(B∗B)−V(B)∗V(B), (31)

where B = M(A). Both terms are positive by the “2-positivity inequality” [35] for channels. But when we evaluate
for W(A) = A in an invariant state of W the left hand side becomes zero. This will provide a lot of information from
the vanishing of sums of positive terms on the right. Explicitly, we get(

M(A∗A)−M(A)∗M(A)
)

(γ) =
1

2

∑
η,χ

mγ(η)mγ(χ)
(
A(η)−A(χ)

)∗(
A(η)−A(χ)

)
,

where we used that
∑
ηmγ(η) = 1 for all γ. Applying the invariant state m⊗ ρ , and using the invariance condition

for each Vγ , we find ∑
γ,η,χ

mγmγ(η)mγ(χ) tr ρ
(
A(η)−A(χ)

)∗(
A(η)−A(χ)

)
= 0.

Since the probabilities m and m are all strictly positive, we find that each summand vanishes. Because ρ has no zero
eigenvalue, this also implies that

(
A(η) − A(χ)

)∗(
A(η) − A(χ)

)
= 0, and hence A(η) = A(χ) for all η, χ. Hence we

can set A(γ) = A for all γ. This makes the first term in (31) vanish for every A, and leads to B = M(A) = A in the
second term. Moreover, from (30) we see that W(A) = A just means that Vγ(A) = A for all γ.

Now consider, for each one of the operators Vγ , which has Kraus operators Kγα, the expression∑
α

[A,Kγα]∗[A,Kγα] = Vγ

(
A∗A

)
−Vγ(A)∗A−A∗Vγ(A) +A∗A (32)

If A is invariant, this reduces to Vγ

(
A∗A

)
− A∗A, which is clearly zero under the common invariant state ρ . Hence

the expectation of the positive terms on the left hand side must vanish also, and since ρ has no zero eigenvalues each
[A,Kγα] = 0 for all α and γ. By assumption this implies that A is a multiple of the identity.

It remains to be shown that there are no further eigenvalues on the unit circle. Suppose to the contrary that
W(X) = ωX 6= 0 for some ω 6= 1 with |ω| = 1. Then the operator W(X∗X) −W(X)∗W(X) = W(X∗X) −X∗X,
which is positive by the 2-positivity, has vanishing expectation in the faithful invariant state, which implies that it is
zero. But then X∗X is a fixed point of W, and we have already seen that this implies that X∗X is a multiple of the
identity. Since it cannot be zero, we can normalize X so that it becomes unitary. But 2-positivity also implies that if
W(X∗X)−W(X)∗W(X) = 0 we must also have W(Y ∗X)−W(Y )∗W(X) = 0, for all Y . Otherwise, the inequality
could not be valid for linear combinations of Y and X. But then, by induction on n, we find that W(Xn) = ωnXn.
In other words, all powers of ω are eigenvalues. Since the dimension of the space is finite, this means that ω must be
a root of unity, say ωn = 1. But then X is also an eigenvector of Wn with eigenvalue 1. Since our arguments for the
simplicity of 1 also apply to powers of W, this implies X = 1I, and a contradiction to ω 6= 1. �

Now we can apply the ideas of Sect. IV A to extract the ballistic spreading of the position distribution. The only
difference is that we can now use non-degenerate perturbation theory, so everything is much simpler. Consider again

some parameter λ as the argument in the characteristic function, and the operator W̃ε, acting on A ∈  L∞(Γ)⊗B(H).

We define operators Ṽγ,ε via

(W̃εA)(γ) =

∫
mγ(dη)

∑
α

Kγα(p)∗A(η)Kγα(p+ ελ) =

∫
mγ(dη) Ṽγ,ε(A(η)) . (33)

Let W̃εAε = µεAε denote the branch of eigenvectors and eigenvalues with µ0 = 1. Since the eigenvector is only
determined up to a factor we are free to choose a normalization so that

m⊗ ρ (Aε) = 1. (34)
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Expanding these objects to second order, we get

Ṽγ,ε = Vγ + εṼ′γ +
ε2

2
Ṽ′′γ + O(ε3)

µε = 1 + εµ′ +
ε2

2
µ′′ + O(ε3) (35)

Aε = 1I + εA′ +
ε2

2
A′′ + O(ε3) .

For now we will only use the first order, in which the eigenvalue equation reads

W(A′)(γ)−A′(γ) = µ′1I−
∫

mγ(dη) Ṽ′γ(1I) = µ′1I− Ṽ′γ(1I)

= µ′1I−
∑
α

Kγα(p)∗
d

dε
Kγα(p+ ελ)

∣∣∣∣
ε=0

, (36)

Where we evaluated the sum over η, on which the integrand does not depend. Taking the expectation with respect
to the invariant state m⊗ ρ makes the left hand side zero, and leaves an explicit equation for µ′, namely

µ′ = iλ·v(p) with the vector

v(p) = −i
∫

m(dγ)
∑
α

tr ρKγα(p)∗∇Kγα(p). (37)

This expression is real, because for all γ and all X ∈ B(K), the function p 7→
∑
α tr ρKγα(p)∗XKγα(p) = tr ρX is

constant, and hence has zero gradient. Summarizing we get the following result.

Proposition 5 Given Assumption 1 and Assumption 2, the asymptotic distribution of Q(t)/t is determined by the
distribution of v(p) as defined in (37).

Proof According to the preceding reasoning the characteristic function of the random variable Q(t)/t converges for
t → ∞ to

∫
dp eiλ·v(p) tr ρ(p) and the asymptotic distribution of Q(t)/t is given by inverse Fourier transform of this

function. �

Two features of this formula are remarkable. Firstly, v(p) is a scalar, i.e. a multiple of the identity with respect to the
internal degrees of freedom from K. Therefore, in contrast to the unitary case discussed in Sect. IV A, the asymptotic
distribution is independent of the initial state of the coin. Secondly, the transition probabilities of the control process
only enter through the invariant probability distribution m. This means that we get the same result for a Bernoulli
process, in which we take independent coins in successive steps with probability distribution m. The control space
therefore just contributes another index to the Kraus decomposition of a one-step channel, cf. Sect. V D. We will see,
however, that the transition probabilities are not irrelevant for next order, see Sect. VI A.

The following corollary gives a closed formula for the asymptotic distribution of Q(t)/t if the function v(p) is such
that there is a decomposition of momentum space into a finite number of open sets on which the function v(p) is
invertible and a boundary which coincides with the set of caustic points of the quantum walk.

Corollary 6 Let the characteristic function of the asymptotic distribution of Q(t)/t be given by

lim
t→∞

CQ(t)/t(λ) =

∫
(−π,π]s

dp eiλ·v(p)ρ(p)

and suppose there exist finitely many disjoint open sets Rj, j ∈ J on which v(p) is invertible and R = ∪̇Rj is the set
of all points such that the determinant of the Jacobi matrix ∂v(p)/∂p is non-zero. Then, the asymptotic probability
distribution of Q(t)/t is given by

P(x) =
∑
j∈J

∣∣∣∣det

(
∂vj
∂p

)∣∣∣∣−1

(x) ρ(vj
−1(x)) , x ∈ Rs , (38)

with vj the restriction of v to Rj and the set of caustic point coincides with the complement of R in (−π, π]s.
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Proof The asymptotic position distribution P(x) can be obtained from the characteristic function C(λ) by applying
the inverse Fourier transform

P(x) =
1

(2π)s

∫
Rs

dλ

∫
(−π,π]s

dp eiλ·(v(p)−x)ρ(p) .

Using the integral representation of the Dirac distribution δ(x) = 1
(2π)s

∫
Rs dλ e

iλ·x we get

P(x) =
∑
j∈J

∫
Rj

dp δ(v(p)− x)ρ(p) .

Now, formula (38) follows from the fact that v(p) is invertible on the Rj and a substitution of the integration variable p
by v. The complement of R in (−π, π]s is given by the set of points where the Jacobi matrix ∂v(p)/∂p, i.e. the Hessian
of the dispersion relation, is singular. This is the set of caustic points, and the asymptotic probability distribution
diverges at the corresponding points. �

B. Markov controlled walks in diffusive scaling

We now go on to study the asymptotic position distribution on the
√
t scale. If Q(t)/t → v goes to a sharp value

the quantity of interest will be (Q(t) − vt)/
√
t, and we can hope that this has a well-defined limiting distribution.

Indeed for this to make sense we need that the velocity is sharply defined. Otherwise, we would just see the limiting
distribution of v scaled to larger and larger variance. Therefore, we need to restrict to a setting, in which v(p) is
automatically constant. So from now on we assume that we have a Markov controlled random coin as described in
the introduction:

Assumption 3 For every γ, the operation Vγ is unitarily implemented. That is, for each γ there is only one Kraus
operator Kγ = Kγ1, which is a unitary walk operator, so that Vγ(A) = K∗γAKγ .

The following proposition says that this indeed implies the required constancy of the ballistic velocity.

Proposition 7 Assumption 2 and Assumption 3 together imply that the function v(p), defined in (37), is independent
of p. Moreover,

ρ =
1

dimK
1I and (39)

v =

∫
m(dγ)

indKγ

dimK
. (40)

Proof Obviously, the density operator ρ ∝ 1I is an invariant state for each Vγ . By definition of the index, detKγ(p) =
c exp(ip · indKγ). Hence

iλ · indKγ =
1

detKγ(p)

d

dε
detKγ(p+ ελ)

∣∣∣∣
ε=0

=
d

dε
det
(
Kγ(p)∗Kγ(p+ ελ)

)∣∣∣∣
ε=0

= tr
(
Kγ(p)∗

d

dε
Kγ(p+ ελ)

)
= dimK tr ρ Ṽ′γ(1I),

and the formula follows by dividing this equation by dimK and summing with respect to m. �

Note that for unitary quantum walks W the index indW is given by the trace of the group velocity operator V ,
see Sect. IV A. Therefore, if we naively apply (40) to the unitary case, although Assumption 2 is violated, we find
v(p) = trV (p). Of course, the asymptotic distribution of a unitary quantum walk W is not determined by v(p) but
by the whole operator V (p).

When the ballistic order is completely defined by a deterministic velocity, i.e. Q(t)/t → v1I, then we can subtract
the ballistic motion and look at how the probability distribution develops around it. In other words, we look at the
deviation operator

D(t) =
1√
t

(
Q(t)− vt

)
. (41)
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We will compute the limit of the characteristic function of D, i.e.

lim
t→∞

CD(t)(λ) = lim
t→∞

e−iλ·v
√
tCQ(t)

(
λ√
t

)
= lim
t→∞

e−iλ·v
√
t

∫
dp

∫
m(dγ) tr

(
ρ(p)W̃t

1/
√
t
(1I)(p, γ)

)
=

∫
dp tr

(
ρ(p)

)
lim
t→∞

e−iλ·v/
√
t
(

1 + i
λ·v√
t

+
µ′′

2t
+ O(t−3/2)

)t
=

∫
dp tr

(
ρ(p)

)
exp

(
1

2
(µ′′ + (λ·v)2)

)
(42)

Here, at the first equality we substituted (41), at the second introduced W̃ from (7) in the form (33), and at the
third introduced the perturbation expansion (35) with ε = 1/

√
t. At the last equality we used again the asymptotic

formula limt→∞(1 + x/t+ o(t−1))t = exp(x), which follows immediately from the Taylor expansion of the logarithm.
In the application above there is a cancelation of large phases, so the formula must be applied with care, in the form

lim
t→∞

e−ia
√
t

(
1 +

ia√
t

+
b

t
+ O(t−3/2)

)t
= lim
t→∞

(
e−ia/

√
t
(
1 +

ia√
t

+
b

t
+ O(t−3/2)

))t
= lim
t→∞

(
1 +

b

t
+
a2

2t
+ o(t−1)

)t
= exp

(
b+

a2

2

)
. (43)

Note that, in contrast to µ′ = iv · λ, the second order perturbation coefficient µ′′ will depend on p. Moreover, since
the perturbation is proportional to ελ, the second order perturbation coefficient µ′′ must be homogeneous quadratic
in λ. Hence, according to (42), the limiting distribution of D(t) is a mixture of Gaussians with p-dependent covariance
matrix s(p) such that

λ · s(p) · λ =
∑
jk

sjk(p)λjλk = −µ′′(p)− (λ·v)2. (44)

For the moment, we fix λ, and concentrate on computing the expression (44) for any set of given data and verifying
its positivity.

Evaluating the eigenvalue equation W̃εAε = µεAε to first and second order in ε, we now get

W(A′)(γ)−A′(γ) = iλ·v1I− Ṽ′γ(1I) (45)

W(A′′)(γ)−A′′(γ) = µ′′1I + 2µ′A′(γ)−
∫

mγ(dη)
(
Ṽ′′γ(1I) + 2Ṽ′γ(A′(η))

)
(46)

The first line is just a repetition of (36). From the second line we extract µ′′ by taking the expectation with respect
to the invariant state, using also that by the convention (34) the second term on the right has zero expectation:

µ′′ =

∫
m(dγ) tr

(
ρ Ṽ′′γ(1I)

)
+ 2

∫∫
m(dγ)mγ(dη) tr

(
ρ Ṽ′γ(A′(η))

)
(47)

In this equation, the first order perturbation A′ of the eigenvector must be extracted from (45). Indeed, this is
uniquely possible: By Assumption 2 the simple eigenvalue 1 of W is isolated, so the rank of W− id is exactly one less
than maximal. The kernel is explicitly known: W − id annihilates precisely the multiples of the identity and maps
onto the elements with vanishing expectation under m ⊗ ρ . By definition of v, the right hand side hence lies in the
range of W − id, so there is a unique solution A′ satisfying the normalization condition (34). Note that since the

solution is unique, and Ṽ′γ is skew hermitian, so is A′. Moreover, since the right hand side of (45) is linear in λ, so is
A′. We stress that Equations (45)-(47) are also valid if Assumption 3 is violated and for ballistic scaling ε = 1/t with
non-constant v(p) they can also be used for a finer analysis of the large time behavior, incorporating second order

perturbation theory. From now on we will adopt Assumption 3, so that Ṽ′γ(1I) = K∗γK
′
γ . Since each Kγ is unitary,

we can use this to express the derivatives of Kγ by A′:

K ′γ = Kγ(A′(γ)−W (A′)(γ) + iλ·v1I) (48)

We come back to the determination of µ′′ from (47). We can eliminate the second derivative in the first term by
differentiating (37) with respect to p, or more precisely, by setting p = p + ελ and differentiating with respect to ε.
This gives

0 = −i
∫

m(dγ)
d

dε
tr
(
ρK∗γ(p+ ελ)K ′γ(p+ ελ)

)
= −i

∫
m(dγ) tr

(
ρK∗′γ K

′
γ

)
+−i

∫
m(dγ) tr

(
ρ Ṽ′′γ(1I)

)
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and hence, using (48) and the unitarity of Kγ :∫
m(dγ) tr

(
ρ Ṽ′′γ(1I)

)
= −

∫
m(dγ) tr

(
ρ |A′(γ)−W (A′)(γ) + iλ·v1I|2

)
, (49)

where, for an operator X, we use the abbreviation |X|2 = X∗X. The second term in (47) can also be simplified by

eliminating the derivative in Ṽ′γ(X) = K∗γXK
′
γ via (48). We get∫

mγ(dη) K∗γA
′(η)K ′γ = W (A′)(γ)

(
A′(γ)−W (A′)(γ) + iλ·v1I

)
.

Note that in (47) we need the expectation of this expression in the invariant state m ⊗ ρ , just as (49) is such an
expectation. Bringing together the various terms of (47), and using the skew hermiticity of A′, W (A)′, and iλ·v, we
find for (44):

− µ′′ − (λ·v)2 = = m⊗ ρ
(
|A′ −W (A′) + iλ·v1I|2 − 2W (A′)(A′ −W (A′) + iλ·v1I)

)
− (λ·v)2

= m⊗ ρ
(
W (A′)2 − (A′)2 + [A′,W (A′)]− 2iλ·vA′

)
= m⊗ ρ

(
|A′|2 − |W (A′)|2

)
. (50)

Since m ⊗ ρ is invariant under W , we can also write the first term as the expectation of W (|A′|2), so that this
expression is non-negative by virtue of the Cauchy-Schwarz inequality for channels [35]. With A′ a linear function of
λ, the above expression becomes a quadratic form in λ, as claimed in (44).

Intuitively, one would expect that the diffusion constant becomes very large if the considered quantum walk differs
only little from a coherent quantum walk with ballistic behavior. For example, if the coin operations of a decoherent
quantum walk would be all very similar or if the Markov process is such that it prefers one of the coins, we would
expect reminiscences of a coherent quantum walk even for large times. This effect can be seen in the examples in
Sect. VI A and VI B, where we derive an explicit formula for the variance s(p), which diverges in the coherent limit
of the the considered quantum walks. Similarly, if the Markov process converges to a deterministic Markov chain,
i.e. the transition matrix approaches a permutation matrix, the diffusive order will diverge. This is because we
could consider a full cycle of the permutation as one step of another quantum walk, which is also unitary, leading to
ballistic transport. If on the other hand the transition rates of the Markov process are very small, i.e. there are long
subsequences of coherent evolution, the overall evolution up to time step t would be very similar to the average of
a number of coherent quantum walks each evolved for t time steps. If some of these coherent quantum walks show
ballistic behavior we would again expect that the diffusion constant diverges.

C. Higher orders without ballistic determinism

The general remarks about higher order expansions in Sect. IV B apply also in this case. In this section we focus on
just the first (i.e., O(1/t)) correction to the ballistic scaling. When the ballistic velocity is independent of p, this is, in
fact, best expressed by the diffusive scaling. However, almost all of the second order perturbation theory developed in
the previous sections is independent of that Assumption 3. Therefore, we have already done most of the work needed
to get the first correction to ballistic scaling in the general case.

We adopt Assumption 1 and Assumption 2, but not necessarily Assumption 3. Let us neglect for a moment the
Markov control, and consider the Jordan decomposition (11) for small ε. The tth power of this operator is built from
the terms (

µi(ε)Pi(ε) + Di(ε)
)t

= Pi(ε)

ri∑
r=0

(
t

r

)
µt−ri Di(ε)

r

Here ri is the order of nilpotency of Di(ε), which is bounded by the algebraic multiplicity of µi(ε). When we choose
the label i = 0 for the key eigenvalue (i.e., µ0(0) = 1) we have |µi| < 1, for all i 6= 0 by Assumption 2. Hence
expressions such as tnµt−ri go to zero faster than any power of t−n (n ∈ N). Consequently, in any expansion in such
powers, all terms but the one with i = 0 can be neglected. Moreover, µ0 is simple, so r0 = 0. Therefore, only the
term P0(ε)µ0(ε)t remains. Since we were only interested in the leading order so far, it was enough to replace P0(ε)
by P0(0). However, for a systematic expansion we also have to expand the rank one projection P0(ε) in powers of

ε. This will give P0(ε)(X) = A(ε) tr(ρB(ε)X), where A(ε) is the eigenvector of W̃ε(p) and B(ε) the corresponding
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eigenvector of the adjoint. Of course, eigenvectors are only defined up to a (possibly ε-dependent) factor. We have
already used the convention that tr ρA(ε) = 1. This fixes the factor also for B(ε), since we must have P0(ε)2 = P0,
and hence tr ρA(ε)B(ε) = 1. Hence, expanding B as in (35) we get tr ρA′ = tr ρB′ = 0, so that for an expansion to
order t−1 we do not need B′. These ideas remain valid with Markov control, with the invariant state m ⊗ ρ taking
the role of ρ . Then

P0(1I)(γ) = 1I +
1

t
A′(γ) + o(t−1), (51)

where A′ is determined exactly as above. For the eigenvalue µ0(ε)t = (1 + µ′

t + µ′′

2t2 )t, we first expand the logarithm,

giving exp(µ′ + 1
2t (µ

′′ − (µ′)2) + o(t−1). With the p-dependent covariance matrix s (see (44)) we can thus write

µ0(ε)t = eiλ · v(p)− 1
2tλ · s(p) · λ + o(t−1) (52)

= eiλ · v(p)
(

1− 1

2t
λ · s(p) · λ

)
+ o(t−1).

From the point of view of a series expansion in inverse powers of t these two forms are equivalent. However, the first
form is preferable, because it is the characteristic function of a Gaussian distribution and hence has a probabilistic
interpretation. This has to be taken with a grain of salt, however: The proof of positivity of s(p) given in the previous
section does depend on Assumption 3. Indeed, we will see in an example (Sect. VI C) that s(p) may be complex, and
only represents a probability after integration of the whole expression with respect to p.

Finally, we have to expand the second factor in (8). This correction contains some information about the initial
position distribution, although contracted by a factor 1/t. When ρ(p1, p2) denotes the integral kernel of the initial
density, the effect of the factor exp(iλ ·Q/t) under the trace is to shift the first argument of ρ. We therefore introduce
the function

C0(λ, p) = tr ρ(p+ λ, p), (53)

where the trace is over the internal degrees of freedom. This notation is to suggest that this is some kind of char-
acteristic function of the initial distribution. This is not literally true, since we keep the momentum variable, so at
best it is a phase space distribution function. Indeed, a slightly more symmetric version tr ρ(p+ λ/2, p− λ/2) is the
Fourier transform of the “position distribution at fixed momentum” according to the Wigner distribution function.
Of course, this distribution is contracted by a factor 1/t in ballistic scaling. Together, we get

Ct(λ) =

∫
dp eiλ · v(p)− 1

2tλ · s(p) · λ
(
C0(λ/t, p) +

1

t
tr ρ(p, p)

∫
m(dγ) A′(γ)

)
+ o(t−1). (54)

Heuristically, the interpretation of the first term is the distribution of the sum of two independent quantities for each
p: a Gaussian centered at v(p), with decreasing variance, plus a scaled down version of the initial position distribution.
This is then averaged over momentum. The second term does not allow such a simple interpretation. Two numerical
examples are shown for quantum walks in one lattice dimension in Sect. VI A and VI C below.

D. Memoryless decoherence

In many applications there is no memory in the control process: the walks Vγ are chosen independently in each
step. The Markov process is then a Bernoulli process, and the probability mγ(η) to end up in η is the same from any
state γ. Obviously, this probability is then also the invariant distribution, i.e., we have

mγ(η) = m(η) (55)

for all γ, η. We can look at the resulting process in two ways: On the one hand, we could just specialize using (55),
which is the approach we will take below. On the other hand we could completely discard the control process, so
there is only one value γ = 0, say, and the corresponding V0 operation is V0 =

∫
m(dγ)Vγ . This would violate

Assumption 3 but, of course, this case can nevertheless be fully analyzed. In fact, it simplifies the computation of the
operators A′ and the diffusive order µ′′ considerably. We can reduce the dimension of the system of linear equations
that determines µ′′ by a factor n, where n is the number of Kraus operators from which the control process can choose
from.

Substituting (55) into equation (47) for µ′′ we get

µ′′ =

∫
m(dγ) tr

(
ρ Ṽ′′γ(1I)

)
+ 2

∫
m(dγ) tr

(
ρ Ṽ′γ

(∫
m(dη)A′(η)

))
. (56)
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So in order to determine µ′′ we do not need to know the individual A′(η), but it suffices to know the value of the
average

X = A′ =

∫
m(dη)A′(η). (57)

Our aim is to set up an equation directly for this unknown matrix X. From (30) we find (WA′)(γ) = Vγ(X), which
turns (45) into a definition of A′(γ) in terms of X

A′(γ) = Vγ(X)− iλ·v1I + Ṽ′γ(1I) (58)

The equation for X now follows by averaging:∫
m(dγ)Vγ(X)−X = iλ·v1I−

∫
m(dγ)Ṽ′γ(1I). (59)

Eliminating the control process from (59) and (56) via the definition of V0 and X we get the equations

V0

(
X
)
−X = iλ · v1I−V′0(1I) (60)

and

µ′′ = tr
(
ρ Ṽ′′0 (1I)

)
+ 2 tr

(
ρ Ṽ′0(X

))
. (61)

VI. EXAMPLES

A. The Hadamard walk with reflections

The aim of this section is to derive the asymptotic distribution of Q(t)/
√
t of a quantum walk where the control

process is of Bernoulli type and in each time step it picks one of two unitary quantum walks. We will highlight the
simplification of the formulas (45) and (46), accounting for general Markov processes, for the case of Bernoulli type
decoherence by also calculating the diffusive order for general Markov processes, which then doubles the dimension
of the computation. The unitary quantum walks, the control process chooses from, admit a decomposition into shift
and coin operation. The shift operation is assumed to be the same for both walks, hence, the control process chooses
only the coin operation for each time step. With probability 1− ε it will pick the Hadamard coin for each time step,
which, on its own, would lead to ballistic behavior. In the remaining case the Pauli matrix σ1 will be applied, this
unitary quantum walk hinders the particle from moving at all, the particle will be reflected at each site. The Kraus
operators of the quantum walk read

K1(p) =

√
1− ε

2

(
eip e−ip

eip −e−ip
)

, K2(p) =
√
ε

(
0 e−ip

eip 0

)
. (62)

First, we note that the velocity v(p) is zero, which follows from Eq. (37) and Ṽ′(1I) = K∗1K
′
1 + K∗2K

′
2 = iλσ3.

Alternatively, one could also rephrase this Bernoulli type walk as a Markov controlled walk and then use formula (40)
to get v(p) = 0. This means, in ballistic scaling the position distribution converges to a point measure at the origin.

In order to determine the diffusive scaling we make directly use of Eq. (61). It is easily seen that

Ṽ′′(1I) = K∗1K
′′
1 +K∗2K

′′
2 = −λ21I

and hence by (56) and K ′1K
∗
1 = (1− ε)σ3 together with K ′2K

∗
2 = ε σ3

s(p)λ2 = −µ′′ = λ2 −
∑
α=1,2

tr (K∗αA
′K ′α) = λ2 − iλ ((1− ε) tr (Hσ3H

∗A′) + ε tr (σ1σ3σ
∗
1A
′))

with the Pauli matrix σ1 and the usual Hadamard matrix H. Using the rules H∗σ3H = σ1 and σ1σ3σ1 = −σ3 we get

s(p) = λ2 − i2λ (r(1− ε)a1 − εa3)
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where we abbreviated ai = 2−1 trσiA
′, which implies A′ =

∑3
i0
aiσi. Now, A′ is determined by (60), which reads

3∑
i=0

ai (K∗1σiK1 +K∗2σiK2 − σi) = −iλσ3 .

By calculating the Hilbert-Schmidt scalar product of this equation with the Pauli matrices σi we get the following
system of equations  ε cos(2p)− 1 sin(2p) (1− ε) cos(2p)

ε sin(2p) − cos(2p)− 1 (1− ε) sin(2p)
1− ε 0 −1− ε

 ·
 a1

a2

a3

 =

 0
0
−iλ

 ,

where we have chosen a0 = 0 in order to satisfy m⊗ ρ (A′) = 0. The solution to these equations is a1 = a3 = iλ/2ε
and a2 = iλ tan(p)/2ε. This yields the following expression for the variance

sB(p) =
1− ε
ε

.

By inverse Fourier transform of the characteristic function lim
t→∞

CD(t)(λ) = e−λ
2(1−ε)/(2ε) we obtain the asymptotic

position distribution in diffusive scaling

P(x) =

√
ε

2π(1− ε)
e−x

2 ε
2(1−ε) .

The 1/t correction to the asymptotic position distribution in ballistic scaling can be inferred from (54), we omit the
computation and just give the resulting probability distribution (cf. Fig. 4), which reads

Pt(x, ε) =

√
2πtε

1− ε

(
1 +

x

2(1− ε)

)
exp
(
− tx2ε

2(1− ε)

)
. (63)

FIG. 4. For the quantum walk according to (62) the plot shows the 1/t correction to the asymptotic position distribution in
ballistic scaling after t = 10 depending on the parameter ε.

For a general Markov process M, which chooses from the two unitary quantum walks, the time evolution reads

W(A)(γ) =
∑
η=1,2

mγ(η)K∗γA(η)Kγ , γ = 1, 2

now with Kraus operators and transition matrix

K1(p) =
1√
2

(
eip e−ip

eip −e−ip
)

, K2(p) =

(
0 e−ip

eip 0

)
, M =

(
m1 1−m1

1−m2 m2

)
.

The Bernoulli control process corresponds to the choice m1 = 1−m2 = 1− ε. Since K1(p) and K2(p) are irreducible
for almost all p Proposition 7 applies. Observing that indKγ = 0 we get v(p) = 0 and hence Q(t)/t converges to a
point measure at zero. Before calculating the diffusive order of this quantum walk we will prove a useful lemma.
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Lemma 8 Let Kγ , γ ∈ Γ be a finite collection of unitary walk operators on Z with two dimensional coin. Assume
the Kγ admit a shift coin decomposition Kγ = Uγ · S with

S(p) =

(
eip 0
0 e−ip

)
and p independent unitaries Uγ such that Assumption 2 is satisfied. Let the overall time evolution W be given by a
Markov process M that chooses from the Kγ , i.e.

W(A)(γ) =
∑
η∈Γ

mγ(η)K∗γA(η)Kγ .

Then v(p) = 0 and the diffusion constant is determined by

λ2 · s(p) = −λ2 − 2λi
∑
γ∈Γ

mγa3(γ) ,

where a3(γ) = 2−1 tr(σ3A
′(γ) with A′ according to (45) and the Pauli matrix σ3.

Proof Since indWγ = 0 for all γ it follows from (40) that v(p) = 0.
According to (45) and (50), we need to solve the equation

W(A′)(γ)−A′(γ) = −Ṽ′γ(1I)

in order to determine the diffusive scaling of W. To begin with, we decompose the components A′(γ) into Pauli
matrices σi , i = 0, 1, 2, 3 with σ0 = 1I2

A′(γ) =

3∑
i=0

ai(γ)σi .

Next, it is easily seen that for arbitrary two dimensional unitaries Uγ we have K∗γK
′
γ = iλσ3 and hence

W(A′)(γ) = (a3(γ)− iλ)σ3 +

2∑
i=0

ai(γ)σi .

Now, the variance s(p) can be computed from (50)

λ2 · s(p) = m⊗ ρ
(
|A′|2 − |W (A′)|2

)
=

1

2

∑
γ∈Γ

mγ tr
(
|A′(γ)|2 − |W (A′(γ))|2

)
and since tr |A′(γ)|2 = 2 ·

∑3
i=0 |ai(γ)|2 it follows

λ2 · s(p) =
∑
γ∈Γ

mγ(|a3(γ)|2 − |a3(γ)− iλ|2) = −λ2 − 2λi
∑
γ∈Γ

mγa3(γ) ,

which is real since A′(γ) is skew-hermitian. �

By a straightforward calculation we get the following system of equations for A′
−1 m1 sin(2p) m1 cos(2p) 0 (1−m1) sin(2p) (1−m1) cos(2p)

0 −1−m1 cos(2p) m1 sin(2p) 0 (m1−1) cos(2p) (1−m1) sin(2p)

m1 0 −1 1−m1 0 0

(1−m2) cos(2p) (1−m2) sin(2p) 0 m2 cos(2p)−1 m2 sin(2p) 0

(1−m2) sin(2p) (m2−1) cos(2p) 0 m2 sin(2p) −m2 cos(2p)−1 0

0 0 m2−1 0 0 −m2−1

 ·


a1(1)

a2(1)

a3(1)

a1(2)

a2(2)

a3(2)

 =


0
0
−iλ

0
0
−iλ


Actually, there are two more equations for the variables a0(1) and a0(2), but these are already fixed to be zero in
order to guarantee the condition m⊗ ρ (A′) = 0. Solving these equations we get the result

sM (p) =
1−m2

1−m1
· m2 +m1

2−m1 −m2

The comparison of sB(p) and sM (p) shows that the diffusive order of the quantum walk can distinguish between
Bernoulli and Markov type decoherence, as opposed to the ballistic order which is the same for both control processes.
In both cases, we see that in the coherent limit ε→ 0 and m1 → 1 the variance sB,M (p) diverges independent of m2.
For the Markov process we can also consider the limit m2 → 1 which gives us localization, expressed by sM (p)→ 0.
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B. One dimensional Quantum Walks with equal position distribution

In experimental implementations of one dimensional quantum walks one source of decoherence can be identified as
dephasing of the internal degree of freedom of the walking particle [3]. Such a dephasing error can be modeled by
introducing an additional z-Rotation R(θ) of angle θ before the application of the coin operation, such that a time
step of the quantum walk Wθ is then given by

Wθ(p) = C ·R(θ) · S = C

(
eiθ 0
0 e−iθ

)
S

where C and S are the coin and shift operations as introduced in Eq. (21). In the following we will consider a
quantum walk with Bernoulli type decoherence, the control process is assumed to chose a value θ in each time step
independently according to which Wθ is applied subsequently. This quantum walk applied, up to special values of θ,
Assumptions 1, 2 and 3, hence it is easy to compute the ballistic and diffusive scaling.

One problem faced in experiments is that the quantum walk W = C · S can not easily be distinguished from its
disturbed counterpart Wθ = C ·R(θ) · S, because of the following little lemma.

Lemma 9 For an initial state ψ(p) = φ(z)e−izp localized at lattice point z the position distribution after any number
of time steps t, generated by the quantum walks W = C · S and W = C · R(θ) · S, are identical, where R(θ) is an
arbitrary z-Rotation.

Proof In the Fourier picture it is easy to see that W and Wθ deviate only by a constant momentum shift, i.e.
Wθ(p) = W (p+ θ). Computing the state at lattice site x after t time steps, starting with a state ψ initially localized
at lattice site z we find:

(W t
θψ)(x) =

1

2π

∫
dp W t

θ(p)ψ(p)eipx =
1

2π

∫
dp W t(p+ θ)ψ(z)eip(x−z)

=
1

2π
e−iθ(x−z)

∫
dp W t(p)ψ(z)eip(x−z) = e−iθ(x−z)(W tψ)(x)

Since both amplitudes deviate only by a global phase the probability to find the particle at a lattice point x, and
therefore the position distribution, coincide.

�

So if we start an experiment in a localized state we cannot distinguish between the two. On the other hand, however,
implementing a quantum walk, that will in every time step apply the undisturbed walk W with some probability ε
and with probability (1 − ε) apply the z-rotated quantum walk Wθ, will for the most values of θ result in diffusive
behavior.

As an explicit example consider as the undisturbed walk the one dimensional Hadamard walk as defined in Sect.
IV A. The two Kraus operators in momentum space are then given by

K1(p) = H · S =

√
ε

2

(
eip e−ip

eip −e−ip
)

K2(p) = H ·R(θ) · S =

√
1− ε

2

(
ei(p+θ) e−i(p+θ)

ei(p+θ) −e−i(p+θ)
)

(64)

One can check that only the cases θ ∈ {0, π, 2π} lead to commuting Kraus operators that violate part three of
Assumption 2 and are treated in example VI E. In all other cases we get an asymptotic deterministic velocity v(p) = 0
by Proposition 5.

To compute the diffusion constant we follow the instructions of Sect. V D and calculate the operator A′ =
∑
j ajσj ,

here decomposed in Pauli matrices. Choosing A′ to have zero trace we find a0 = 0 and are left with three parameters
aj that can directly be inferred from Eq. (60), which after eliminating equivalent conditions reads 1 i(1 + (1− ε)e2i(p+θ) + εe2ip) −((1− ε)e2i(p+θ) + εe2ip)

1 −i(1 + (1− ε)e−2i(p+θ) + εe−2ip) −((1− ε)e−2i(p+θ) + εe−2ip)
1 0 −1

 ·
 a1

a2

a3

 =

 0
0
−iλ

 . (65)

Inferring A′ from this equation, we can compute Ṽ′γ(A′) and since Ṽ′′(1I) =
∑
j K
∗
j (p)K ′′j (p) = −λ1I2 as in example

VI A we can determine the variance from Eq. (56)

s(p) =
λ2

sin(θ)2

cos(p+ θ)2 + ε sin(2p+ θ) sin(θ)

ε(1− ε)
. (66)
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FIG. 5. The plot shows the variance s(p) for a dephased Hadamard Walk (64) with θ = π
3

. The undisturbed Hadamard Walk
is applied with probability ε ∈ [0, 1] and the walk Wπ/3 is applied with probability (1− ε).

In contrast to example VI A we have an explicit p dependence of s. As one expects, in the limits ε = 1 and ε = 0,
where only one coin is taken and the decoherence vanishes, the diffusion constant diverges. The same is true for the
cases θ ∈ [0, π, 2π], where the Kraus operators commute and the quantum walk once again exhibits ballistic spreading
as will be shown in example VI E. So, also in the coherent limit θmod 2π → 0, where the two quantum walks, the
Markov process chooses from, become equal, the diffusion constant diverges.

In Fig.5 we plot the variance s(p) for a z-Rotation of θ = π
3 . As explained in the last paragraph, we can observe

divergence of s(p) for the coherent limits ε = 0 and ε = 1. In between these two regimes the p dependence of s(p) is
recognizable.

C. Non-unitary Kraus operators

The following example is a simple version of a quantum walk which satisfies Assumption 1 and 2 but not Assumption
3. This means there is no momentum transfer, and according to Proposition 4 the eigenvalue 1 of W is non-degenerate
for almost all p, but the Kraus operators are non-unitary. Hence, the results of Sect. V A are applicable, and
in particular formula (37) determines the asymptotic behavior of the expectation value of Q(t)/t, but now with a
momentum dependent velocity v(p).

We consider a one dimensional lattice with no internal degree of freedom. The decoherence will be of Bernoulli
type, i.e. the Markov chain is actually trivial. The Kraus operators of the quantum walk are defined by

(K1ψ)(x) =
1

2
(ψ(x) + ψ(x+ 1)) , (K2ψ)(x) =

1

2
(ψ(x)− ψ(x− 1)) . (67)

These operators satisfy the normalization condition
∑
iK
∗
iKi = 1I and their Fourier transforms are given by

K1(p) =
1

2
(1 + eip) , K2(p) =

1

2
(1− e−ip) .

In fact, the Kraus operators K1 and K2 commute, hence, according to Sect. VI E, the behavior of this quantum walk
will be ballistic. The limit of the characteristic function of Q(t)/t is according to the discussion in Sect. III given by

lim
t→∞

CQ(t)/t(λ) = lim
t→∞

∫
dp tr ρ(p)W̃t

1/t(1I) .

Although our theory applies to this problem, it is instructive to calculate this limit using only Fourier methods. We

need to compute the operator W̃t
1/t(1I), in momentum space this becomes a one dimensional problem, for we have

W̃ε(X) =
∑
i

K∗i (p)X(p)Ki(p+ λε) = X(p)
∑
i

K∗i (p)Ki(p+ λε) .
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But this means we can solve the equation W̃εAε = µεAε exactly. Clearly, Aε = 1I and µε(p) =
∑
iK
∗
i (p)Ki(p + λε)

solves the equation. Now, in ballistic scaling ε = 1/t the operator W̃t
1/t(1I) is just given by

µt1/t =
1

4t

(
(1 + e−ip)(1 + ei(p+λ/t)) + (1− eip)(1− e−i(p+λ/t))

)t
=

(
1 + cos(λ/t) + i(sin(p+ λ/t)− sin(p))

2

)t
.

(68)
By a Taylor expansion of this equation to second order and using the formula limt→∞(1 + x/t + o(t−1))t = exp(x)
once again we obtain the limit

lim
t→∞

CQ(t)/t(λ) =

∫
dp ρ(p)eiλ cos(p)/2 .

As already pointed out, we would have obtained the same result by applying (37) and (13). And indeed, these formulas
can be used to determine the asymptotic behavior of more general quantum walks.

Proposition 10 Let the Kraus operators of a quantum walk in one lattice dimension with no internal degree of
freedom be defined by

(Kiψ)(x) =
∑
k

aikψ(x− k) ⇔ Ki(p) =
∑
k

aike
ipk .

where the coefficients aik have to satisfy the constraint
∑
i,k āi(k+x)aik = c0δ0,x ∀x ∈ Z in order to guarantee the

normalization condition
∑
iK
∗
iKi = 1I. Then the group velocity and hence the asymptotic behavior of the quantum

walk is determined by

v(p) =
∑
x

|γx| cos(px+ arg(γx)) , γx =
∑
i,k

āi(k−x)aikk .

Proof The statement follows directly from Eq. (37). �

Interestingly, we can infer from the characteristic function that the behavior of our example walk is truly ballistic. In
fact, the second moment of Q(t)/t in the asymptotic limit is non-zero:

lim
t→∞

〈
Q(t)2/t2

〉
= − ∂2

∂2λ
C(λ)

∣∣∣∣
λ=0

=

∫
dp

cos(p)2

4
ρ(p)

We would like to determine the asymptotic distribution for arbitrary initial states ρ and according to Proposition
6 this requires knowledge of the group velocity v(p), which is for our example given by

v(p) =
cos(p)

2
.

By decomposing momentum space into subsets (−π, 0] and (0, π] on which the function v(p) is invertible and exploiting
the point symmetry of v(p) we obtain the asymptotic distribution of Q(t)/t

P(x) =
2√

1− 4x2

(
ρ(v−1(x)) + ρ(−v−1(x))

)
,

where v−1 denotes the inverse of v restricted to (−π, 0]. Again, we see that at the points where the derivative ∂v/∂p
vanishes, i.e. at the caustic points, there are peaks in the limiting distribution. If we choose ρ to be located at the
origin, i.e. ρ(p) = 1/2π, we get

P(x) =
2

π
√

1− 4x2
.

The Fig. 6 compares this asymptotic distribution with the scaled probability distributions for a finite number of time
steps. Our knowledge of the exact eigenvalue µε allows us to analyze the asymptotic distribution in further detail.
The Taylor expansion of µε to second order reads

µε = 1 + εµ′ +
ε2

2
µ′′ + O(ε3) = 1 + i

ελ

2
cos(p)− ε2λ2

4
(i sin(p) + 1) + O(ε3) .



25

-0.5 0.0 0.5 x

0.5

1.0

1.5

t*ΡHn�tL

(a)

-0.5 0.0 0.5 x

0.5

1.0

1.5

t*ΡHn�tL

(b)

FIG. 6. Position distributions of the walk defined by (67) after (a) 50 and (b) 200 time steps (green/dotted lines) in ballistic
scaling. The red/dashed line shows the asymptotic position distribution for comparison.

Hence, the variance s(p) for this example is a complex valued function

s(p)λ2 = −µ′′ − (v · λ)2 =
2 + i2 sin(p)− cos2(p)

4
λ2 .

The imaginary part of this “variance” defies its interpretation as the variance of added Gaussian noise. However, the
corrections to the probability distribution computed from it will be real, after integration over momenta. In a similar
vein, (68) looks like the characteristic function of a sum of t random variables, but with complex “probabilities”. Only
after integration over p the expression gives a probability distribution.

Using the ideas from Section V C we can determine the 1/t correction to the asymptotic distribution stemming
from the second order of the perturbation expansion in ε. Since we have A′ = 0 and we have chosen ρ(p1, p2) = 1/2π
we get

Ct(λ) =
1

2π

∫
dpeiλv(p)

(
1− 2 + i2 sin(p)− cos2(p)

8t
λ2
)

+ o(t−1) .

With v(p) = cos(p)/2 the integral over p yields a sum of two Bessel functions for the first order approximation C1(λ, t)
of Ct(λ), i.e. Ct(λ) = C1(λ, t) + +o(t−1) and

C1(λ, t) =
1

8t

(
(8t− λ2)J0(λ/2)− 2λJ1(λ/2)

)
.

As already pointed out in Sect. IV B, C1 is not integrable over R (cf. Fig. 7) and therefore we need to introduce a
cutoff in the integration for the inverse Fourier transform of Ct(λ). In order to smoothen the resulting probability

distribution we multiplied C1(λ, t) with a Gaussian g(λ, t) = e−(x/t)2 and computed the inverse Fourier transform
numerically. This smoothening was necessary because of the rapidly oscillating behaviour of C1(λ, t), which can be
seen in Fig. 7, leading to a poor convergence of the numerical integration. The resulting correction to the asymptotic
position distribution for 10 time steps, also shown in Fig. 7, is in good agreement with the exact position distribution.

D. Quantum walks with momentum shifts

Now we want to drop Assumption 1, hence making the results of the preceding sections inapplicable. The quantum
walk we are going to consider is closely related to the example of Sect. VI C, the decoherence will still be of Bernoulli
type and it has Kraus operators

(K1ψ)(p) =
1

2
(1 + ei(p−q))ψ(p− q) , (K2ψ)(p) =

1

2
(1− e−i(p−q))ψ(p− q) . (69)
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FIG. 7. Plot (a) shows the correction of order 1/t (green) to the asymptotic distribution (red) for the walk (67). The exact
values (connected by a polygon) are shown for the same value (t = 10) as the correction. In (b) the 1/t correction C1(λ, t) to
the characteristic function Ct(λ) is shown for t = 10.

The case q = 0 recovers the quantum walk of the previous section which shows ballistic behavior. For q 6= 0 we will
use Fourier methods to show that the behavior is diffusive. For this purpose we will assume that q ∈ 2π · Q , i.e.
there are two numbers m,n ∈ Z relatively prime, such that q = 2π ·n/m. In position space these operators act in the
following way

(K1ψ)(x) =
1

2

(
eixqψ(x) + eixqψ(x+ 1)

)
, (K2ψ)(x) =

1

2

(
eixqψ(x)− eixqψ(x− 1)

)
.

Although these operators themselves are not translation invariant because of the position dependent phase factor
eiqx, the quantum walk constructed from them is translation invariant, as guaranteed by Corollary 2. And indeed,
for arbitrary operators X the matrix elements of K∗iXKi pick up phase factors which depend only on the difference
of the row and column index of the operator, which is clearly a translation invariant operation.

Proposition 11 Let the Kraus operators be given by (69) with q ∈ 2π · Q. If qmod 2π = 0 the behavior is ballistic
according to Sect. VI C. For qmod 2π 6= 0 the ballistic order Q(t)/t converges to a point measure at the origin. In
the case qmod 2π 6= π the diffusive order Q(t)/

√
t converges to

P1(x) =
2√
3π
e−4x2/3 ,

if qmod 2π = π the asymptotic distribution of Q(t)/
√
t is given by

P2(x) =
1

2π

∫
dλ e−iyλe−

3λ2

16

∫
dp ρ(p) exp

(
λ2 cos(2p)

16

)
.

Proof Similarly to the preceding example, we will calculate the quantity tr ρW̃t
ε(1I) in the limit t→∞ with appropriate

scaling of ε. We begin by noting that for an arbitrary function f(p, p′) the following identity holds

W̃ε(f)(p, p′) =

∑
j

K∗j fe
iελQKje

−iελQ

 (p, p′)

=
1

4
(1 + e−ip)(1 + ei(p

′+ελ))f(p+ q, p′ + q) +

+
1

4
(1− eip)(1− e−i(p

′+ελ))f(p+ q, p′ + q)

=
1

2
(1 + cos(p′ − p+ ελ) + i · (sin(p′ + ελ)− sin(p)))f(p+ q, p′ + q) .
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Exploiting the condition q = 2π · n/m, with n and m relatively prime, together with this identity, we see that the
characteristic function of the asymptotic distribution in ε-scaling is given by

lim
t→∞

∫
dp ρ(p)W̃t

ε(1I)(p, p) =

∫
dp ρ(p) lim

s→∞

m−1∏
k=0

1

2s
(1 + cos(ελ) + i · (sin(p+ kq + ελ)− sin(p+ kq)))s , (70)

with t = m · s. Hence, in ballistic scaling ε = 1/t we get the result

lim
t→∞

CQ(t)/t(λ) =

∫
dp ρ(p)

m−1∏
k=0

e
i

2mλ cos(p+kq)

=

∫
dp ρ(p)eλ

∑m−1
k=0

i
2m cos(p+kq)

=

∫
dp ρ(p)

= 1 ,

which follows from a Taylor expansion of (70) in ε and limt→∞(1+x/t+o(t−1))t = exp(x). Therefore, all the moments
vanish and the random variable Q(t)/t converges to a point measure at zero. On the other hand, some combinatorics
tells us that

m−1∏
k=0

1

2
(1 + cos(ελ) + i · (sin(p+ kq + ελ)− sin(p+ kq)))

=

m−1∏
k=0

1

2
(2− 1

2
ε2λ2 + i · cos(p+ kq)ελ− i

2
sin(p+ kq)ε2λ2 + o(ε2))

=
1

2m
(2m + 2m−1iελ

∑
k

cos(p+ kq)− 2m−3ε2λ2

(∑
k

cos(p+ kq)

)2

+

+2m−3ε2λ2
∑
k

cos2(p+ kq)−m2m−2ε2λ2 − i2m−2ε2λ2
∑
k

sin(p+ kq) + o(ε2))

= 1−m1

4
ε2λ2 +

1

8
ε2λ2

∑
k

cos2(p+ kq) + o(ε2))

=

{
1− 3m

16 ε
2λ2 + o(ε2) , if qmod 2π 6= π

1− (3− cos(2p)) ε
2λ2

8 + o(ε2)) , if qmod 2π = π
.

The first equality is just a Taylor expansion in ε, in the second equality we sorted terms according to ε and used the
relation

∑
k<l

cos(p+ kq) cos(p+ lq) =
1

2

(∑
k

cos(p+ kq)

)2

− 1

2

∑
k

cos2(p+ kq) ,

and the third equality uses
∑m−1
k=0 cos(p+ kq) = 0 for m · qmod 2π = 0. The last equality follows from the formula

m−1∑
k=0

cos2(p+ kq) =
1

2

m−1∑
k=0

(1 + cos(2 · (p+ kq)) =
m

2
+ δm,2 cos(2p) .

Hence, for qmod 2π 6= π and in diffusive scaling ε = 1/
√
t we have for arbitrary states ρ

lim
t→∞

CQ(t)/t(λ) = lim
s→∞

∫
dp ρ(p)

(
1− 3λ2

16s
+ o(s−1)

)s
=

∫
dp ρ(p)e−

3λ2

16 = e−
3λ2

16 ,

and the asymptotic probability distribution obtained via inverse Fourier transform reads

P1(x) =
2√
3π
e−

4x2

3 .
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If qmod 2π = π we get the result

lim
t→∞

CQ(t)/t(λ) = e−
3λ2

16

∫
dp ρ(p) exp

(
λ2 cos(2p)

16

)
.

�

In contrast to the case q = 0, the quantum walk for q 6= 0 shows diffusive behavior. The asymptotic distribution
together with the probability distribution for a finite number of time steps is shown in Fig. 8.
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FIG. 8. Asymptotic position distribution for a walk (69) with momentum shift q = π/16 (green/dotted line) after (a) 20 steps
and (b) 100 steps. The red/dashed line is the asymptotic distribution.

E. Commuting Kraus operators

In this subsection we want to give an example that violates the non-degeneracy condition of Assumption 2 and
show that we can still compute the asymptotic position. We consider a decoherent quantum walk with Bernoulli type
control process acting on a finite control space. The degeneracy of the eigenvalue 1 will be exactly the dimension of
the coin space due to the assumption that all the Kraus operators Kj commute, but they must not have a common
degenerate eigenspace. Since we will study uncorrelated noise in this example, we can forget about the classical control
space of the Bernoulli process and model the decoherence by a channel without explicit classical control.

Proposition 12 Suppose that a quantum walk W with Bernoulli type decoherence on a finite control space is im-
plemented with normal and commuting Kraus operators Kj(p) without degenerate eigenvalues. The Kraus operators

can then be decomposed in a common eigenbasis Kj(p) =
∑
α kj,α(p)|ψα(p)〉〈ψα(p)|. If

∑
j kj,αkj,β 6= 1 for α 6= β the

asymptotic position distribution in ballistic scaling is given by

lim
t→∞

CQ(t)/t(λ) =

∫
dp tr

(
ρ(p)eiλ·Ṽ

)
with the vector operator

Ṽτ = −i
∑
j,α

kj,α(p)
∂kj,α(p)

∂pτ
|ψα(p)〉〈ψα(p)| .

Proof Since all the Kraus operators Kγ(p) commute and are normal by assumption, they can certainly be diagonalized
in a common eigenbasis

Kj(p) =
∑
α

kj,α(p)|ψα(p)〉〈ψα(p)| .
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One can check that a basis of invariant operators of W is given by the projectors |ψα(p)〉〈ψβ(p)|. Since W is a
quantum channel it follows that

∑
j |kj,α|2 = 1 and together with the condition on the sums of eigenvalues for α 6= β

this implies that W(A) = A holds only for operators in the span of {|ψα(p)〉〈ψα(p)| = Pα}.
In order to compute the ballistic scaling we are interested in the corrections to the eigenvalue one. Evaluation of

the first perturbation order on an arbitrary operator R =
∑
α rαPα in the span of the eigenoperators to the eigenvalue

one yields

W(R′)(p)−R′ = µ′R−W′(R)

If evaluated with respect to the state ρβ = |ψβ(p)〉〈ψβ(p)| the left hand side of this expression vanishes and we have

µ′β =
1

rβ

∑
α,j

rα tr(ρβK
∗
j (p)(|ψα〉〈ψα|K ′j(p)) =

∑
j

kj,β(p) tr

(
ρβ

d

dε
Kj(p+ ελ)

∣∣∣∣
ε=0

)

=
∑
j

kj,β(p)∇kj,β(p) · λ+
∑
j,α

kj,β(p)kj,α(p) tr

(
ρβ

d

dε
Pα(p+ ελ)

∣∣∣∣
ε=0

)
,

where we just used the definition of R and K ′j(p) and the fact that {|ψα〉} is an eigenbasis of the Kraus operators.
Since Pβ(∂pPα)Pβ = 0 holds for orthogonal projectors, the second summand on the right-hand side vanishes and we
get

µ′β(p) =
∑
j

kj,β(p)∇kj,β(p) · λ

Substituting these results into W̃1/t(1I) we find

lim
t→∞

W̃t
1/t(1I)(p) = lim

t→∞

∑
α

(1 +
1

t
µ′α(p))tPα =

∑
α

eµ
′
α(p)Pα(p) .

Together with (6) and (8) we have

lim
t→∞

CQ(t)(λ) =
∑
α

∫
dp tr

(
ρ(p)eµ

′
α(p)Pα(p)

)
which ends the proof. �

Corollary 13 For a unitary implemented walk, fulfilling the conditions of Proposition 12, the components of the
operator Ṽ are given as the weighted sums of the components of the group velocity operators Vj of the single walk
operators Wj

Ṽτ =
∑
j

ηjVτ,j = i
∑
j

ηj

(∑
α

∂ωj,α(p)

∂pτ
Pα

)
,

where ηj is the probability that the quantum walk Wj is applied in a time step.

Proof The unitarity of all the Kraus operators Kj implies that the eigenvalues kj,α(p) are given by phases
√
ηje

iωj,α(p),

ηj being the probability to apply walk operator Kj . This implies kj,α(p) = ηjk
−1
j,α(p), and therefore we get

kj,α(p)
∂kj,α(p)

∂pτ
= iηj

∂ωj,α
∂pτ

.

Inserting this result into the definition of Ṽτ finishes the proof. �

To conclude this subsection we will look at a one dimensional example. For a given unitary one dimensional
quantum walk W (p) we chose the two Kraus operators

K1(p) =
1

2
(1I +W (p)) K2(p) =

1

2
(1I−W (p)) .
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Since both Kj are just functions of the original walk operator W (p) they will certainly commute, and since W is
unitary and therefore diagonalizable, so are the Kj with eigenvalues

k1,±(p) =
1

2
(1 + eiω±(p)) k2,±(p) =

1

2
(1− eiω±(p)) .

One can calculate that for ω+(p) 6= ω−(p) the kj,± satisfy the sum-condition of Proposition 12, and therefore we can

compute Ṽ directly from the eigenvalues

Ṽ = −i
∑
j,α

kj,α(p)
∂kj,α(p)

∂p
Pα =

∑
α

∂ωα(p)

∂p
Pα(p) =

VW (p)

2
,

where Pα are the eigenprojections and VW the group velocity operator of the original quantum walk W . So this

decoherence model halves the velocities ∂ωα(p)
∂p of the undisturbed quantum walk.
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